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Abstract. In a two-machine flow shop scheduling problem, the set of ε-
approximate sequences (i.e., solutions within a factor 1+ε of the optimal)
can be mapped to the vertices of a permutation lattice.
We introduce two approaches, based on properties derived from the anal-
ysis of permutation lattices, for characterizing large sets of near-optimal
solutions. In the first approach, we look for a sequence of minimum level
in the lattice, since this solution is likely to cover many optimal or near-
optimal solutions. In the second approach, we look for all sequences of
minimal level, thus covering all ε-approximate sequences.
Integer linear programming and constraint programming models are first
proposed to solve the former problem. For the latter problem, a direct ex-
ploration of the lattice, traversing it by a simple tree search procedure, is
proposed. Computational experiments are given to evaluate these meth-
ods and to illustrate the interest and the limits of such approaches.

1 Introduction

Computing the set of near-optimal solutions of a combinatorial problem has
many applications. It is for instance the case when there is some uncertainty in
the problem definition. For example, production systems are subject to numer-
ous disturbances deriving mainly from data uncertainty and unexpected events.
These disturbances result in lack of raw materials, tardiness, tool failure, etc.,
and may make the initial planning infeasible. In particular, this motivates re-
search works on flexibility and robustness in scheduling [9]. This is why dynamic
or reactive approaches have been developed [10, 24, 25]. Among the possible dy-
namic approaches, some of them are based on the characterization of sets of so-
lutions. In this context, the set of solutions can be used in an interactive and/or
dynamic environment to guide the decision making from an optimal solution to
another one when an unexpected event occurs, or on a user request.



Another important reason to obtain the characteristics of optimal solutions is
to solve multiobjective scheduling problems [27]. These characteristics could be
incorporated into branch-and-bound procedures, in order to prune nodes more
efficiently, hopefully.

In [2, 3, 10], the set of solutions or schedules is given by a sequence of groups
of jobs on each machine, where the sequence of jobs inside each group is not
fixed (the authors talk about ‘groups of permutable jobs’). All the character-
ized solutions ensure a performance guarantee on a given quality measure. This
methodology has been implemented in a software and has been used in practice
by several companies [23]. In [1], a set of semi-active schedules is characterized
by a partial order of jobs on each machine. The authors propose a method for
computing the best case and the worst case performances. In [15], the authors
propose a method for characterizing a large set of optimal solutions, based on
the analysis of interval structures and on a theorem established in [17]. The
method is applied to a single-machine problem, where jobs have release dates
and due dates. All these methods allow the characterization of a subset of the
set of optimal or approximate solutions. Another way for this characterization is
to provide constraint propagation techniques or dominance properties, in order
to maintain the tightest set of remaining consistent decisions [14].

It is well known that there potentially exist several optimal solutions to
a given scheduling problem. They may even have a huge number of different
optimal solutions [7, 26], for example several hundreds of thousands for mid-size
academic instances. Moreover, it is well known as well that it is often not easy to
find an optimal solution to a scheduling problem because of its NP-completeness
in the general case. However, some scheduling problems can also be solved in
polynomial time using specific methods, which generally consist in sorting the
jobs according to a simple priority rule.

In this paper, we investigate the possibility to characterize the whole set
of optimal solutions of the two-machine flow shop scheduling problem, i.e., to
give the analytical characteristics of these solutions. Obviously, the aim is not to
enumerate these solutions, but to describe their characteristics. In our approach,
this is achieved by the knowledge of dominance rules for the problem under
consideration and through the study of the various optimal solutions associated
with the vertices of a lattice. Since a realistic goal (for an enterprise for example)
is not necessarily to focus on optimal solutions, note that the same methods
apply for characterizing the whole set of ε-approximate solutions, i.e., the set
of solutions in the lattice with a performance not worse than a given distance
function of ε from the value of the optimal solution.

The rest of the paper is organized as follows. Section 2 provides the necessary
notations, definitions, and properties concerning the main mathematical object
used in this work: the “lattice of permutations”. Then in Section 3, we recall how
all optimal solutions of a class of scheduling problems can be characterized by a
subset of vertices of minimal level in the permutohedron. Then we present the
problem addressed in this paper, namely: finding a minimum vertex, and finding
all minimal vertices. In Section 4 we propose an Integer Linear Programming



(ILP) approach as well as a Constraint Programming (CP) approach for the
former problem, whereas Section 5 describes an algorithm to solve the latter
problem. Section 6 presents the results obtained from computational experiments
and Section 7 gives a conclusion and some future research directions.

2 The Lattice of Permutations: Definitions and
Properties

We consider the set {1, 2, . . . , n} of integers and Sn the group of all permutations
on {1, 2, . . . , n}. We represent the members of Sn by strings of integers. As an
example, consider n = 4; σ = 4213 denotes a permutation σ where σ(1) = 4,
σ(2) = 2, σ(3) = 1, and σ(4) = 3. Using the same notations as in [22], we
denote by index(σ, i) the position of integer i in permutation σ. For the previous
example, we have index(σ, 1) = 3.

With the elements of Sn we define a directed graph where the nodes are the
elements of Sn. In this digraph, there exists an edge between nodes σ and σ′ if
and only if σ = αijβ with α and β two partial orders, i, j ∈ {1, 2, . . . , n} with
index(σ, j) = index(σ, i) + 1, σ′ = αjiβ, and i < j. In other words, there is an
edge between σ and σ′ if these permutations are the same, except that there
exist i and j, two consecutive jobs with i < j, that are in the reverse order in σ′.

This digraph is a lattice, called the lattice of permutations or permutohedron
[13]. Figure 1 gives the lattices of permutations for n = 3 and n = 4.

To each permutation in the lattice can be associated a level. There are at most
n(n− 1)

2
+ 1 levels. By convention we say that permutation (n, n−1, n−2, . . . , 1)

is at level 0 and that permutation (1, 2, 3, . . . , n) is at level n(n−1)/2. We denote
by κ(σ) the level of permutation σ. For a given permutation σ, we denote by
Γ (σ) the set of couples defined as follows:

Γ (σ) = {(i, j) ∈ {1, 2, . . . , n}2 | i < j and index(σ, i) < index(σ, j)}

For example, in permutation σ = 4132, we have Γ (σ) = {(1, 3), (1, 2)}.

We now report some properties associated to the lattice of permutations
previously defined.

Property 1. [6]: For any permutation σ, the level of σ is exactly its number of
inversions from permutation at level 0, i.e., the number of times we have i < j
and index(σ, i) < index(σ, j):

κ(σ) = |Γ (σ)|

Property 2. [6]: Let consider a permutation σ. Any predecessor π of σ in the
digraph is such that:

Γ (σ) ⊂ Γ (π)
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Fig. 1: Lattices of permutations for n = 3 (left) and n = 4 (right)

If we consider the elements of Γ (σ) as a set of constraints associated to σ, we
can say that all the predecessors of σ have to satisfy at least the same constraints
as σ. We then claim that Γ (σ) gives the characteristics of all the predecessors of
permutation σ in the digraph.

3 Characteristic Solutions

In many scheduling problems, a set of dominant solutions (e.g., left-shifted sched-
ules) can be mapped with the set of permutations of jobs and consequently to
the vertices of a permutohedron. Moreover, in a previous paper [8], we showed
that, for a number of classes of such problems, by carefully choosing the labeling
of the jobs, one can design a permutohedron with a very desirable property: none
of its children can have a strictly better objective value than its own. Thus, the
set of optimal solutions with minimal level in the permutohedron is sufficient to
characterize all optimal solutions. Indeed, a solution is optimal if and only if it
belongs to this set, or is an ancestor of an element in this set.

The problems for which this method holds are those where a simple rule
(checkable in O(1)) exists guaranteeing that given two consecutive jobs in a
sequence, it is possible to say which job it is always better to put first. Such
a rule allows the building of optimal algorithms in O(n log n) time complexity,
after sorting the jobs according to this rule. They are therefore all easy to solve.



However, finding all solutions, or a large number of solutions to such problems
may still be difficult.

In terms of scheduling, a permutation is a sequence of jobs. Let f(σ) denote
the objective value (to minimize) of a sequence σ. We say that an ordering
relation R is an improving relation iff for any sequence αjiβ (with α and β two
arbitrary subsequences and i and j two consecutive jobs) we have:

iRj ⇒ f(αijβ) ≤ f(αjiβ)

This property is often referred to as “pairwise interchange” mechanism, and it is
frequently used for proving properties of scheduling algorithms. Indeed it is easy
to see that the sequence σ built by sorting all jobs according to an improving
order relationR is optimal. Starting from an arbitrary sequence, one can obtain σ
by iteratively swapping consecutive elements while never degrading the objective
value.

Assume that sequence (1, 2, . . . , n) is an optimal sequence given by a sorting
algorithm based on an improving relation R and consider the permutohedron
rooted in (1, 2, . . . , n). By definition, given any sequence σ and one of its suc-
cessor σ′, we have f(σ) ≤ f(σ′). Therefore, if a sequence σ is optimal, all the
predecessors of σ are optimal sequences. Moreover, we say that a sequence σ is
minimal with respect to a permutohedron, iff it is optimal and none of its chil-
dren are, i.e., any further swap of two consecutive jobs leads to a sub-optimal
solution. Notice that the method that we introduce in this paper applies to any
problem for which an improving relation exists (this is true for many scheduling
problems).

In this paper, we are concerned with finding all minimal sequences in such
permutohedra and, in particular, the minimal sequence with minimum level in
the lattice (so-called minimum sequence). Intuitively, the optimal sequence with
minimum level covers many optimal solutions. It can therefore be seen as robust
in the sense that, when for some reason this solution is no longer valid, one
can easily generate optimal solutions by swapping jobs in order to climb up the
lattice, with the hope that at least one of these solutions will still be valid. An-
other possibility is to compute all minimal sequences. Indeed, this is a relatively
concise way of storing all the optimal solutions of the problem.

We shall introduce several methods to address the two following problems:

– PB1, finding an optimal sequence with minimum level in the lattice;
– PB2, finding all minimal sequences in the lattice.

Example 1. For instance, suppose that the sequence (1234) in Figure 1 is given
by a sorting algorithm with respect to an improving relation R and that the
sequences (3142) and (2431) are the only minimal sequences (they are underlined
in Figure 1). Then we know that the set of optimal solutions is exactly the set
composed of themselves and of their ancestors: {(1234), (2134), (1324), (1243),
(2314), (2143), (3124), (1342), (2341), (2413), (3142), (2431)} (marked in italic).
Observe that the minimum sequence is (2431) and covers 8 optimal solutions
(including itself), whereas (3142) covers only 5.



We consider a set of n jobs to schedule in a two-machine flow shop, where
the two machines are denoted by M1 and M2 and we denote by pj,1 and pj,2,
the processing time of job j on machine M1 and on machine M2, respectively,
1 ≤ j ≤ n. Cj denotes the completion time of job j on machine M2. The
criterion under study is the makespan Cmax = max1≤j≤n Cj . The problem that
we consider is denoted by F2||Cmax and is solved to optimality by ordering the
jobs following Johnson’s dominance condition [20].

Considering the makespan minimization (minCmax in our case), we define
an ε-approximate sequence (ε ∈ R+) as a sequence σ̄ such that:

C∗max ≤ Cmax(σ̄) ≤ (1 + ε)× C∗max

In the following expressions, it is sufficient to replace C∗max by (1 + ε)C∗max

for characterizing the ε-approximate solutions.

4 Finding the Minimum Sequence

In order to find a schedule of minimum level in the permutohedron we solve the
scheduling instance with some slight modifications.

We assume that the root sequence σ∗ of the lattice was obtained using John-
son’s algorithm, and such that jobs are renumbered with respect to this first op-
timal sequence. Then we re-solve the initial instance with the following changes:

– The objective function Cmax to minimize is replaced by the constraint stating
that the expression Cmax should be less than (1 + ε)Cmax(σ∗).

– We use a new objective function: minimize the level in the lattice.

The complexity of the modified problem is not known. However, there are
examples of tractable problems that become NP-hard when adding a similar
objective function. For instance monotone-2SAT (the satisfiability of a 2-CNF
formula with only positive literals) is NP-hard if the number of atoms set to
true is to be minimized [4].

4.1 Integer linear programming approaches

We first propose an integer linear programming model with the variables defined
as follows: for all 1 ≤ i < j ≤ n, yi,j is a binary variable (0–1) equal to 0 if job
i precedes job j in the sequence and 1 otherwise. We also introduce continuous
variables: tj,1 and tj,2 are the start times of job j on machine M1 and on machine
M2, respectively. HV stands for High Value, and can be set for example to∑n
j=1

∑2
k=1 pj,k.

In addition, it is assumed that the binary variables verify a kind of triangle
inequality:

yi,k ≤ yi,j + yj,k,∀i, j, k ∈ {1, . . . , n}, i 6= j 6= k

We have:
tj,k ≥ ti,k + pi,k −HV yi,j , (4.1)



ti,k ≥ tj,k + pj,k −HV (1− yi,j), (4.2)

(4.1) and (4.2),∀k ∈ {1, 2},∀i, j ∈ {1, . . . , n}, i 6= j

tj,2 ≥ tj,1 + pj,1,∀j ∈ {1, . . . , n}

To take account of the objective function, let C∗max denote the optimal value
– supposed to be known – of the makespan.

We post the following constraints:

tj,2 + pj,2 ≤ C∗max,∀j ∈ {1, 2, . . . , n} (4.3)

Another way to express Property 1 is to say that the level in the lattice
is equal to the cardinality of the set of permutations preserved from the root
sequence σ∗. Notice that the characteristic function of the set Γ (σ) is given by
the set of variables yi,j (with the correspondence yi,j = 0 ⇔ (i, j) ∈ Γ (σ)).
Finding the sequence with minimum level can therefore be expressed by the
following objective function:

MAX

n∑
i=1

n∑
j=i+1

yi,j

4.2 Constraint programming approach

We propose a constraint programming model similar to the integer linear pro-
gramming model described in Section 4.1, however solved using a different ap-
proach.

As in the ILP model, we introduce a binary variable yi,j for each pair of jobs,
taking the value 0 if job i precedes job j and 1 otherwise. We also introduce
integer variables tj,1 and tj,2 for the start times of job j on machine M1 and on
machine M2, respectively.

We post precedence constraints between the two activities of each job as
follows:

yi,j ⇒ tj,k ≥ ti,k + pi,k, (4.4)

¬yi,j ⇒ ti,k ≥ tj,k + pj,k, (4.5)

(4.4) and (4.5),∀k ∈ {1, 2},∀i, j ∈ {1, . . . , n}, i 6= j

tj,2 ≥ tj,1 + pj,1,∀j ∈ {1, . . . , n}

Note that we do not post constraints on triplets of binary variables to exclude
cycles. Bound consistency is enforced on these constraints, i.e., when the value
of the binary variable yi,j is set, the bounds of the integer variables ti,k and tj,k
are updated with respect to the constraint ti,k ≥ tj,k + pj,k, or tj,k ≥ ti,k + pi,k
according to yi,j ’s value. Conversely, if one of the two precedence constraints



becomes entailed or disentailed because of the current domain of ti,k and tj,k,
then the value of yi,j is set accordingly.

Exactly as in the ILP model, we set a maximum value to the objective func-
tion using the same constraints. Moreover, finding the sequence with minimum
level is expressed by the same objective function:

MAX

n∑
i=1

n∑
j=i+1

yi,j

The method that we used to solve this constraint programming model is
essentially the same used for several variants of the job-shop scheduling problem
in [18, 19].

Search method: The problem is solved using a dichotomic search on the objective,
yielding a satisfaction problem at each step. Each of these steps is bounded by
the number of nodes of the search tree that can be expended during search. If
the dichotomic search is not conclusive, a branch-and-bound procedure is used
starting from the bounds computed during the dichotomic phase.

Variable selection heuristic. We use a slightly modified version of the domain
over weighted-degree heuristic [12] to select the next variable to branch on. Ob-
serve that we branch only on the binary variables (yi,j). Let w(ti) be the number
of times search failed while propagating any constraint involving job i, and let
min(ti,k) and max(ti,k) be, respectively, the minimum and maximum starting
time of ti,k at any point during search. The next variable yi,j to branch on is
the one minimizing the value of:

(max(ti,k) +max(tj,k)−min(ti,k)−min(tj,k) + 2)/(w(ti,k) + w(tj,k))

Value selection heuristic. When branching on the variable yi,j we try first the
value assigned to this variable in the best feasible solution found so far. If no
solution has been found, the value 0 is tried first. This idea is a simplified ver-
sion of the solution guided approach (SGMPCS) proposed by Beck for job-shop
scheduling problems [5].

Restarts with Nogoods. We use a geometric restarting strategy [28]. When a
given number of nodes have been explored, we stop the current exploration and
start again from scratch. The limit in number of nodes grows geometrically: it
is of the form s, sr, sr2, sr3, . . . where s is the base and r is the multiplicative
factor. In our experiments the base was 256 failures and the multiplicative factor
was 1.3. Moreover, after each restart, the dead ends of the previous explorations
are stored as clausal nogoods [21].

5 Finding all Minimal Sequences

Observe that it is possible to solve this problem using iteratively the method
described in the previous section, and avoiding rediscovery of previous solutions
with nogoods.



Suppose that a first sequence σ0 of minimum level has been computed, and
suppose that it corresponds to the set of precedences index(σ0, a1) < index(σ0, b1)
and index(σ0, a2) < index(σ0, b2) and ... and index(σ0, aν0) < index(σ0, bν0).
The clause index(σ0, b1) < index(σ0, a1) or index(σ0, b2) < index(σ0, a2) or ...
or index(σ0, bν0) < index(σ0, aν0) can be added to the model in order to avoid
finding σ0 again.

For the CP formulation we can add:

ya1,b1 ∨ ya2,b2 ∨ . . . ∨ yaν0 ,bν0 (5.1)

And for the ILP formulation:

ya1,b1 + ya2,b2 + . . .+ yaν0 ,bν0 ≥ 1 (5.2)

At each iteration, only one additional constraint of this type is produced and
no additional variable is generated.

However, we shall see that such an approach is not efficient, hence we propose
an algorithm that directly explores the lattice in depth first order and finds all
minimal sequences. The only difficulty is to avoid exploring twice the nodes of
the lattice, given that we cannot store it explicitly. As in the previously discussed
models, the method starts from a schedule σ∗ given by rule R, then the jobs
are renumbered with respect to this first optimal solution. However, instead of
solving the scheduling problem, we explore the lattice depth first in Algorithm 1.
In other words, a move occurs on the lattice by swapping elements of the optimal
order only if the move corresponds to a downward edge in the lattice, and if it
does not degrade the objective value below (1 + ε)× Cmax(σ∗).

Let σ be a permutation on {1, . . . , n}. The only operations that we use
to move on the lattice is to swap two consecutive elements. We denote by
swap(σ,(a, b)) the permutation σ′ equal to σ except that a and b are swapped.
For instance, swap((41325),(1, 3)) = (43125). We denote by opt(σ) the fact that
the objective value of the schedule σ is within the tolerated interval.

Algorithm 1 Explore-Lattice

Data: σ, Γ (σ), explored

minimal← True;
1 foreach k ∈ {1, . . . , n− 1} do

a← σ(k);
b← σ(k + 1);

2 if a < b and (a, b) ∈ Γ (σ) and opt(swap(σ, (a, b))) then
minimal← False;

3 if (a, b) 6∈ explored then
Explore-Lattice(swap(σ, (a, b)), Γ (σ) \ {(a, b)}, explored);

explored← explored ∪ {(a, b)};
4 if minimal then print(σ);



Algorithm 1 is initially called with σ = (123..n), Γ (σ) = {(a, b)/1 ≤ a <
b ≤ n} and explored = ∅. It explores the optimal part of the lattice depth first.
The current permutation is kept in the variable σ, whenever we reach a local
optimum, i.e., a permutation σ such that any swap increases the objective value
above the acceptable threshold, we print it (Line 4).

We keep track of the current value of Γ (σ) using a set. Last, we use another
set denoted explored to store the elements of Γ (σ) that we already explored in
previous branches, to avoid visiting twice the same vertex of the lattice.

The first loop (in Line 1) goes over all the possible swaps in the sequence σ.
The swaps that satisfy the conditions in Line 2 are actually edges in the lattice
leading to an ε-approximate solution. If such an edge exists, the current node is
not a local optimum. Then, the condition in Line 3 ensures that the successor
has not yet been explored.

{(1, 2)(1, 3)(1, 4)(2, 3)(2, 4)(3, 4)}

{(1, 3)(1, 4)(2, 3)(2, 4)(3, 4)} {(1, 2)(1, 3)(1, 4)(2, 4)(3, 4)} {(1, 2)(1, 3)(1, 4)(2, 3)(2, 4)}

{(1, 4)(2, 3)(2, 4)(3, 4)} {(1, 3)(1, 4)(2, 3)(2, 4)} {(1, 2)(1, 4)(2, 4)(3, 4)} {(1, 2)(1, 3)(1, 4)(3, 4)} {(1, 2)(1, 3)(1, 4)(2, 3)}

{(1, 4)(2, 4)(3, 4)} {(2, 3)(2, 4)(3, 4)} {(1, 3)(2, 3)(2, 4)} {(1, 2)(1, 4)(3, 4)} {(1, 2)(1, 3)(1, 4)} {(1, 2)(1, 3)(2, 3)}

{(2, 4)(3, 4)} {(2, 3)(2, 4)} {(1, 3)(2, 3)} {(1, 2)(3, 4)} {(1, 2)(1, 3)}

{(3, 4)} {(2, 3)} {(1, 3)}

{}

Γ ε

ε ε,Γ Γ ε

ε Γ ε

Fig. 2: Elements of Γ (σ) in the lattice of permutations (n = 4)

Example 2. To illustrate the exploration of the lattice, take again the example
depicted in Figure 1 for n = 4. Figure 2 now displays the corresponding sets
Γ (σ). Algorithm 1 explores all the solid edges of this digraph. For each dotted
edge adjacent to a solid edge, we mark the reason why it is not explored with
the following notation:

ε: The child has an objective value strictly greater than (1 + ε)× f(σ∗).

Γ : The successor edge corresponds to swapping a for b, however (a, b) ∈ explored.



Theorem 1. Algorithm 1 is correct and explores exactly one node for each ε-
approximate solution in the instance.

Proof. The correctness of the algorithm is entailed by the properties of the per-
mutation lattice described in Section 3. We merely show here that branches of
the search tree pruned because of the set explored do not lead to unseen minimal
solutions. A swap (a, b) is added to explored iff it has been previously tried in the
same or in an earlier recursive call. In other words, let the current sequence be
σ with characteristic set Γ (σ). If (a, b) ∈ explored, then a node π with charac-
teristic set Γ (π) ⊇ Γ (σ)\{(a, b)} and all its successors have been explored. Now
suppose that there exists a successor ω or σ that is not a successor of π and such
that (a, b) /∈ Γ (ω). This implies that Γ (ω) ⊂ Γ (σ) and Γ (ω) 6⊂ Γ (π). However,
since Γ (π) ⊇ Γ (σ)\{(a, b)}, we necessarily have (a, b) ∈ Γ (ω), contradicting our
hypothesis.

Algorithm 1 never explores a sub-optimal node, that is, a node with objec-
tive value strictly greater than (1 + ε) × f(σ∗). Indeed all predecessors of an
ε-approximate node are ε-approximate, and a sub-optimal successor is not vis-
ited. Moreover, no node is explored twice. Indeed, suppose that a node ω has
already been explored, and that the current node is a direct predecessor σ of ω.
Let consider the recursive call at which ω was first explored. This call was at
the same level in the recursive tree, and when exiting the branch starting with
ω a swap (a, b) ∈ Γ (ω) is added to explored. Therefore, the branch leading to ω
from σ will not be explored, since (a, b) ∈ Γ (ω) and (a, b) ∈ explored. Therefore
every ε-approximate node is explored at most once (in fact exactly once since
there is no other pruning condition). ut

6 Computational Experiments

We generated 30 random instances of two-machine flowshop problems (F2||Cmax)
for 3 sizes: 8, 10 and 12 jobs. Then for each of them we computed an optimal
sequence by sorting the jobs according to Johnson’s rule. We give results for each
size class, and for 5 values of ε, average across the 30 instances. The experiments
were run on a MacBook pro dual core 2.3 GHz (no parallelization was used)
using Mistral solver, except for the ILP model that was run on a PC clocked at
2.26 GHz with 3.45 GB RAM and solved using IBM ILOG CPLEX.

6.1 PB1: Finding a sequence of minimum level

In Table 1, we compare the results of the ILP and CP approaches to solve PB1,
i.e., find a solution of minimum level. The first column indicates the number
of jobs n, and the value of ε. A time limit of 10 minutes was imposed on both
approaches. For each method, we report the average minimum level of the se-
quence, the ratio of proven results within the time cutoff, the average CPU time
in seconds, and the number of nodes explored.



Table 1: Minimum level: ILP vs. CP

Instance
CP ILP

Level Opt. Time (s) Nodes Level Opt. Time (s) Nodes

n = 8

ε = 0 14.40 1.00 0.05 5085 14.40 1.00 0.38 2048
ε = 0.05 9.80 1.00 0.04 3945 9.80 1.00 0.32 1340
ε = 0.1 7.06 1.00 0.02 2597 7.06 1.00 0.24 823
ε = 0.15 4.96 1.00 0.01 1510 4.96 1.00 0.30 392
ε = 0.2 3.36 1.00 0.01 896 3.36 1.00 0.11 228

n = 10

ε = 0 23.36 1.00 3.27 249195 23.36 1.00 7.57 43679
ε = 0.05 16.00 1.00 2.05 170201 16.00 1.00 4.65 28641
ε = 0.1 12.16 1.00 1.15 91903 12.16 1.00 3.28 19410
ε = 0.15 9.06 1.00 0.59 46386 9.06 1.00 2.34 9300
ε = 0.2 6.46 1.00 0.30 23350 6.46 1.00 0.92 4086

n = 12

ε = 0 30.26 0.66 72.64 3.83M 30.26 0.70 329.02 942822
ε = 0.05 19.63 0.90 57.50 3.42M 19.63 0.93 141.71 506002
ε = 0.1 14.36 0.96 35.34 2.07M 14.36 1.00 56.85 281196
ε = 0.15 10.46 1.00 18.10 1.06M 10.46 1.00 20.78 100744
ε = 0.2 7.23 1.00 6.50 0.37M 7.23 1.00 6.53 27201

We observe that despite the modest size of the instances, the problem is
very hard to solve for the model we used. We believe that the objective func-
tion makes the problem extremely difficult to solve to optimality. These models
can be efficient on much larger job-shop problems, however with more standard
objective functions (such as Cmax or Lmax).

We were unfortunately unable to run the two approaches on identical hard-
ware, however, the two machines were of the same generation and the data we
report here is sufficient to conclude that:

– the CP approach is slightly faster than the ILP model on smaller instances.
– however, when the size grows, and not all instances are solved to optimality

within the time cutoff, CPLEX is able to prove optimality more often than
Mistral on the CP model.

Another interesting observation is that despite the fact that the proposed ap-
proaches cannot prove it for all instances, they both find a sequence of minimum
level. The fact that they both find the exact same objective value (level) is al-
ready a strong argument, and in fact we were able to verify it in the following
set of experiments.

6.2 PB2: Finding all minimal sequences

In Table 2, we compare our lattice exploration algorithm with a simple enumer-
ation of all the solutions of the problem using the CP model above. The first
column still refers to the number of jobs n, and the value of ε. The number



Table 2: All characteristic solutions vs. number of optimal solutions

Instance
Characteristic solutions All solutions

Sol. Ratio
CPU Time (s) Count CPU Time (s) Count

n = 8

ε = 0 0.00 28 0.04 1549 55
ε = 0.05 0.00 79 0.10 7127 90
ε = 0.1 0.00 119 0.19 16143 135
ε = 0.15 0.00 107 0.27 25310 236
ε = 0.2 0.00 78 0.37 31951 409

n = 10

ε = 0 0.05 413 1.63 63020 152
ε = 0.05 0.17 1696 7.43 442323 260
ε = 0.1 0.39 2522 18.10 1126764 446
ε = 0.15 0.62 2182 34.18 2101697 963
ε = 0.2 0.71 1345 47.06 2864340 2129

n = 12

ε = 0 2.40 7383 281.90 7476041 1012
ε = 0.05 21.41 32015 1821.84 77899794 2433
ε = 0.1 46.24 47703 – – –
ε = 0.15 71.69 32881 – – –
ε = 0.2 82.10 15384 – – –

of characteristic solutions (total number of minimal sequences) is reported in
column 3 while the CPU time in seconds to compute them all using the lattice
exploration algorithm is in column 2. Then, in columns 5 and 4 we give the total
number of solutions (total number of ε-approximate solutions) and the time it
takes to list them all using the CP model. Last, we give the ratio of the total
number of solutions over the number of characteristic solutions in column 6.

We first observe that the ratio between the size of the whole set of ε-approxi-
mate solutions and the number of minimal solutions required to characterize
them seems to grow geometrically both with n and with ε. It suggests that the
benefit of this approach grows with the size of the instances. For n = 12 and
ε > 0.05, the enumeration took longer than the one hour and a half time cutoff
that we imposed in every case.

The CPU time needed to compute characteristic solutions with the lattice
exploration algorithm is of course much smaller than that of enumerating all
solutions. However the factor is relatively constant when the size augments.
This is not surprising since the complexity of the lattice exploration algorithm
is very much linked to the total number of optimal solutions.

Moreover, we observe that finding all minimal solutions using Algorithm 1
is often faster than finding the solution of minimum level with either the CP or
ILP model. Clearly, since the minimum solution is minimal, it suggests that the
CP and ILP models are sub-optimal. However, as ε grows, the runtime required
for both the CP and the ILP models for solving PB1 becomes lower than that of
Algorithm 1 for finding all minimal solutions. Indeed, the complexity of solving
these models does not depend directly on ε. In fact, we observe empirically that



both CPLEX and Mistral are faster when ε grows. Therefore, the two approaches
are complementary.

7 Conclusions and Further Research Directions

In this paper, we propose to characterize the whole set of ε-approximate schedules
for the two-machine flow shop scheduling problem. The main concept to set up
our reasoning is the lattice of permutations (total orders of the jobs). To treat the
issue, two optimization problems are addressed: (1) finding an optimal sequence
with minimum level (maximum depth) in the lattice; (2) finding all minimal
sequences. The complexity of these problems remains open.

We propose three different approaches operating the concept of lattice of
permutations, namely an integer linear programming formulation, a constraint
programming approach, and a direct exploration of the lattice based on depth-
first search.

Computational experiments show that the CP approach with Mistral is faster
than the ILP with CPLEX for small instances, but CPLEX can prove optimality
more often than Mistral.

This approach can be used for characterizing the set of ε-approximate sched-
ules for other scheduling problems, if an ordering relation exists between two
consecutive jobs. It is the case for some single-machine problems (1||Lmax,
1||

∑
Cj , ...) and for other two-machine flow shop scheduling problems [11].

A future research direction is to go further in the complexity study of the
problems and to succeed to prove that they are actually NP-hard for the F2||Cmax.

It is unlikely, however, that this method will be helpful for counting the
number of optimal solutions. Indeed, counting the number of predecessors of a
sequence in the lattice is equivalent to counting the linear extensions of a partial
order, which is #P-complete [16]. Furthermore, one needs to take into account
the intersection of sets of predecessors, which makes the problem even more
difficult.
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