
HAL Id: hal-00676764
https://hal.science/hal-00676764

Submitted on 6 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Construction of Diagnoser for Complex
Discrete Event Systems
E. Gascard, Zineb Simeu-Abazi

To cite this version:
E. Gascard, Zineb Simeu-Abazi. Automatic Construction of Diagnoser for Complex Discrete Event
Systems. International workshop on Dependable Control of Discrete systems, Jun 2011, Saarbrucken,
Germany. pp.112-1125. �hal-00676764�

https://hal.science/hal-00676764
https://hal.archives-ouvertes.fr


Automatic Construction of Diagnoser for Complex

Discrete Event Systems

Eric Gascard

TIMA laboratory (CNRS - Grenoble INP - UJF)

46 avenue Félix Viallet 38031 Grenoble Cedex FRANCE

Email: eric.gascard@imag.fr

Zineb Simeu-Abazi

G-SCOP laboratory (CNRS - Grenoble INP - UJF)

46 avenue Félix Viallet 38031 Grenoble Cedex FRANCE

Email: zineb.simeu-abazi@g-scop.grenoble-inp.fr

Abstract—This paper deals with the problem of fault diagnosis
of complex discrete event systems in the context of communi-
cating timed automata. Indeed, for the diagnosis, this kind of
systems can be represented by timed models whose components
communicate through channels. This paper starts with a de-
scription of our modelling methodology of discrete event systems
as communicating timed automata. The proposed approach for
diagnosis (detection and isolation) is based on the methodology
known as the diagnoser approach. This paper extends the
approach of diagnoser through the taking into account of the
various communicating synchronized automata representing the
components of the system. It proposes an automatic step of
construction of the global model. The application of the proposed
algorithm allows to obtain the diagnoser of the studied system.
Starting from a model of the complex system, this approach
computes a deterministic automaton, called a diagnoser, which
uses observable events to detect the occurrence of a failure.
The different steps of the proposed method are described by
algorithms and illustrated through a batch process.

I. INTRODUCTION

For the complex systems, the development of a methodology

of fault diagnosis is of principal importance. Indeed, for

such systems, the diagnosis contributes to the improvement

of the availability, the growth of production and of course,

the reduction of maintenance costs. It is a key action in the

improvement of performance of industrial feature. A fault

diagnosis system is able to detect (an indication that something

is going wrong in the system) and isolate faults (determination

of the type of faults and their location).

In continuous systems, residuals are used for diagnosis.

Residuals describe inconsistencies responses between the ac-

tual system behavior and the model. The residual value is used

to detect any fault. In the Discrete Event Systems (or DES)

area, the most common diagnosis approach is the so-called

model-based diagnosis, which uses the inputs and outputs of

the system under supervision to detect the fault and isolate

(locate, distinguish) the source of failure.

In this paper we study the problem of fault detection and

isolation by model-based diagnosis methods in the context of

timed discrete event systems modeled as networks of commu-

nicating timed automata (CTA). This work is a continuation

of the PhD thesis from Dr. Michal Knotek [1], [2]. For the

validation of the proposed method, Uppaal notation [3] is

used to illustrate CTA, knowing that our models can easily

be adapted to other timed automata tools.

Existing model-based diagnosis approaches typically fall

into the following three categories. The first one is called off-

line diagnosis: the behaviors of the system under supervision

are stored in a file which can be exploited by the diagnoser.

The second called passive on-line diagnosis, the system under

supervision and the diagnoser run in parallel, with the latter

observing passively the behaviors progressively, see e.g. [4]. In

the third called active on-line diagnosis, input test sequences

for fault diagnosis are computed, so that the diagnoser may

influence the choice of inputs, see e.g. [5].

This paper uses the principle of passive on-line diagnosis

where the construction of the diagnoser is made off-line.

The early work on the model-based diagnosis problem has

been reported by Sampath et al. in [4]. Their untimed approach

consists in transforming the DES to be diagnosed into a finite

state automaton, called a diagnoser, that uses the history of

events to detect the occurrence of a failure. However with the

presence of real-time systems anywhere, timed DES models

become essential. There has been some research on diagnosis

of timed discrete event systems, we restrict our discussion to

work closely related to automata, e.g. [6]–[12].

In [6], passive on-line diagnosis in timed discrete-event

systems is performed by Zad et al., based on a framework

incorporating time as an extra event, called clock tick. The

authors design a diagnoser using the methodology presented

in [13] for untimed cases.

In [7], Tripakis proposes a passive on-line diagnosis to

dense-time automata based on state estimation in a timed

automaton with ε-transitions, its complexity to diagnose faults

from an observation is exponential in the size of the plant and

in the size of the observation [14].

In [8], a timed extension of the Sampath et al. diagnosis

approach is proposed. The diagnoser is a timed automaton

constructed off-line. In their approach to handle the state space

problem, the authors use zone representation for partitioning

the state space into a set of symbolic states (zones). However

no comment were made about the synthesis of their diagnoser.

Lunze and Supavatanakul present in [9] a model-based diag-

nosis method of DES described by timed automata. They apply

the idea of consistency-based diagnosis to timed automata.

These related works require the computation of a global

model of the system (centralised approach) which is not al-

ways possible with large discrete event systems due to the state



explosion problem. To handle large DES, there exist methods

relying on a decentralised model [15] such as [10], [11]. These

decentralised diagnoser approaches compute a diagnosis for

each component of the system (local diagnosis) and then build

a diagnosis of the whole system (global diagnosis) by merging

these local diagnoses.

In [12], Lamperti and Zanella propose a diagnostic method

that mixes the diagnoser approach of Sampath et al. with an

extended version of the decentralised model.

The presentation of the proposed approach in this paper

is structured as follows: Section II presents the main ideas

of our approach and discusses the differences between our

method with the existing ones. The timed automata with the

necessary notation are presented in section III. In section IV,

we present the diagnoser construction procedure and a case

study to illustrate our method. Section V concludes the paper.

II. PROPOSITION OF A NEW METHOD FOR DIAGNOSIS OF

TIMED SYSTEMS

The system to be diagnosed is described as a network of

communicating timed automata composed of a controller C, a

plant P , n actuators A1, . . . ,An and m sensors S1, . . . ,Sm.

We consider only permanent faults on actuators and sensors.

Our method proposes passive on-line diagnosis. The observ-

able events are commands issued by the controller to the

actuators and sensor readings. The unobservable events are

actuator readings modifying the plant behavior and commands

issued by the plant behavior to the sensors. The diagnoser has

access to only observable events.

A first difference with the Sampath et al. approach concerns

the model used to represent the system: we use communicating

timed automata and we do not represent faults as unobservable

events, but as particular states of the timed automata.

Figure 1 shows the principle architecture of the method

which is decomposed into two major steps.

The first step is the automatic construction of a timed

automaton, named draft diagnoser G as follows:

• Computation of a restricted part of the composition

C‖A1‖ . . . ‖An‖S1‖ . . . ‖Sm‖P . We do not explore the

whole global model: when multiple transitions are pos-

sible, if some involve controller, we choose only these

transitions. Indeed, the plant status is determined by the

controller’s actions. It is useless to add some states that

cannot be reached. We say that we give greater priority

to controller transitions. So, each state of G corresponds

to a vector (ℓc, ℓa1, . . . , ℓan, ℓs1, . . . , ℓsm, ℓp) where each

element is a state of a component.

• Simplification of the labelled transitions of the restricted

global model: we remove guards and updates that involve

unobservable events. So, the transitions of our draft

diagnoser are composed of a guard: a Boolean expression

on observable events (sensors values or control command

for actuators) with the associated time.

The second step is the construction of the diagnoser from

the previous timed automaton: we ”determinise” the automa-

ton and construct if necessary new transitions for the faults

isolations.

A second difference with the Sampath et al. approach relates

the ability in the isolation of faults. Indeed, thanks to our

diagnoser, the timing constraints taken into account, we are

able to distinguish faults indistinguishable in the untimed

approach.

Draft diagnoser

Controller model

Actuators/Sensors models

Plant model

(faultless & faulty behavior)

(nondeterministic timed automaton)

Diagnoser

Determinisation

Composition

& abstraction

I2

I3 O2

O1

(deterministic timed automaton)

OUTPUTSINPUTS

I1

Fig. 1. Principle of the diagnoser construction

III. BACKGROUND ON TIMED AUTOMATA

A. Formal syntax of timed automaton

A timed automaton [16] is a finite-state machine extended

with clock variables. It uses a dense-time model where a

clock variable evaluates to a real number. All the clocks

progress synchronously. Throughout the paper we use Uppaal

syntax to illustrate timed automata.

A timed automaton is described by A =
(L, ℓ0, Sync, Clk, V,E, Init, I) where:

• L is a finite set of states of the timed automaton, called

locations; ℓ0 ∈ L is the initial location;

• Sync is a set of synchronisation actions which includes

actions, co-actions, and internal τ -action. An action emit

over a channel a is denoted by a! and its co-action receive

is denoted by a?. The τ -action is an internal action such

that there is no synchronisation label;

• Clk is the set of clocks;

• V is the set of integer variables;

• E ⊆ L × B(Clk, V ) × Sync × Updates × L is a set

of edges (transitions) between locations with a synchro-

nisation action conditioned by a guard and performing

a sequence of assignments. We shall write ℓ
g,s
−−→

u
ℓ′

when (ℓ, g, s, u, ℓ′) ∈ E. We use B(Clk, V ) as the set

of constraints allowed in guards and invariants. We use

Updates as the set of sequences of assignments of the



form x1 = e1, . . . , xn = en, where xi refers to an

integer variable or a clock and ej is an expression. As-

signments are performed after the guard evaluation and in

a sequential manner (not concurrently). On synchronising

edges, the assignments on the !-side (the emitting side)

are evaluated before the ?-side (the receiving side).

• Init ⊆ Updates is a set of assignments that assign the

initial values to variables;

• I : L → B(Clk, V ) is function associated with each

location. For each location ℓ, I(ℓ) denotes its invariant,

i.e. the timed automaton may stay in the location, as long

as the invariant is satisfied.

B. Illustrative example: Batch process

We will illustrate our diagnoser construction on a simple

didactic example: a small batch neutralization process. The

process represents a mixture of two ingredients in one tank

to obtain a final product. The tank is equipped by two level

sensors L1, L2 and two input valves V 1, V 2. Filling in tank

must respect the following control sequence: valve V 1 is

opened, an ingredient 1 flows into tank. When the level L1
is reached, the valve V 1 is closed and V 2 is opened. After

the sensor L2 indicates that level is reached, the valve V 2 is

closed.

We model each equipment (valves and sensors), the control

sequence and the tank’s behavior as timed automata. The

figures are directly exported from Uppaal. Initial locations are

marked using a double circle. Edges are by convention labelled

by the triplet: guard, action, and assignment in that order. The

internal τ -action is indicated by an absent action-label.

1) Timed automaton for the controller: The commands to

open and close the valves are modelled as synchronisation

actions OpenV 1!, CloseV 1!, OpenV 2!, CloseV 2!. The state

of the levels L1 and L2 are expressed as integer variables,

initialized to 0, and updated to 1 when the level is reached.

Figure 2 describes the timed automaton of the controller.

Fig. 2. Timed automaton for the controller

2) Timed automata for the valves: We model the real state

of the valves V 1 and V 2 as integer variables V 1 and V 2,

initialized to 0. When the valve is opened, the associated

variable equals 1, 0 when the valve is closed. For the modelling

of valve V 1, we consider the following faults:

• F1: Fault valve V 1 being stuck close. Practically it means,

that tank stays in the initialized state. Controller waits

from event L1 which can not occur because of the stuck

valve.

• F2: Fault valve V 1 being stuck open. This fault can

physically cause an overflow.

Figure 3(a) describes the timed automaton of the valve V 1
with faults consideration. Valve V 1 in the faultless mode

can be in the two states: Close, Open. The initial state is

Close. The state can be changed by the synchronisation co-

action CloseV 1? and OpenV 1?. The description of the faulty

behavior of V 1 corresponds to setting the variable V 1 with

an incorrect value leading to the faulty states StuckClose and

StuckOpen. Figure 3(b) describes the timed automaton of the

valve V 2 without faults.

(a) Valve V 1 (b) Valve V 2

Fig. 3. Timed automata for the valves

3) Timed automata for the sensors: The real state of the

sensors L1 and L2 is modelled as integer variables L1 and

L2, initialized to 0. When the level L1 (resp. L2) is reached,

the associated variable equals 1. For the modelling of sensor

L1, we consider the following fault F3: Sensor L1 stays in

close position. It means when the level L1 is reached, this

sensor does not indicate it. Figure 4(a) describes the timed

automaton of the sensor L1 with faults consideration. Sensor

L1 in the faultless mode can be in the two states: Down, Up.

The initial state is Down. The state can be changed by the

synchronisation co-action Sensor1?. The description of the

faulty behavior of L1 corresponds to setting the variable L1
with an incorrect value leading to the faulty state StuckDown.

Figure 4(b) describes the timed automaton of the sensor L2
without faults.

(a) Sensor L1 (b) Sensor L2

Fig. 4. Timed automata for the sensors

4) Timed automaton for the tank behavior: The physical

behavior of the tank is represented by an Uppaal timed

automaton. First, we define its faultless behavior (figure 5(a)),

second we extend it with faulty behavior (figure 5(b)). For the

diagnosis purposes, it is needed that the tank model covers any

possible behavior. We use two clocks, t1, t2, to observe the

filling up to the level L1 and L2. Dynamics is implemented

using timed transitions (guards are expressed as conditions on

clocks) which observed the respective clock, e.g. from state

Empty to Inter (level L1 is reached by opening the valve

V 1 while the valve V 2 is still closed), the automaton reaches

the state Inter in time 20. These timed transitions produce

an action corresponding to the sensor reading L1, L2. For this

purpose, the synchronisation action Sensor1! and Sensor2!
are used.



(a) Batch process with faultless behavior

(b) Batch process with faultless and faulty behavior

Fig. 5. Timed automata for the batch process

IV. DIAGNOSER CONSTRUCTION

For this section, we fix a complex discrete event system

M modelled as a network of communicating timed automata

sharing the same sets of synchronisation actions Sync, clocks

Clk, integer variables V and initial assignments Init. Our

diagnoser construction procedure involves two phases. In the

first phase, we construct a timed automaton named draft

diagnoser G, which is the abstracted partial model of the

composition of the components. In the second phase, the

diagnoser D is obtained by determinisation of G.

A. Construction of the draft diagnoser

The algorithm for computing the draft diagnoser is given

by Algorithm 1.

Algorithm 1 Computation of the draft diagnoser

Require: C,P,A1, . . . ,An,S1, . . . ,Sm

Ensure: draft diagnoser G =
(Lg, ℓ

g
0
, Sync, Clk, V,Eg, Init, Ig)

1: Initialization: ℓ
g
0

= (ℓc
0, ℓ

a1
0 , . . . , ℓan

0 , ℓs1
0 , . . . , ℓsm

0 , ℓ
p
0
);Lg =

{ℓg
0
};Waiting = {ℓg

0
};

2: while Waiting 6= ∅ do

3: ℓg = Waiting.pop();
4: lst trans = Transitions(ℓg);
5: (lst transCtrl, lst transPlant) =

Partition(lst trans);
6: {we partition the set of transitions according to the role

of the controller or the plant in the transition}
7: if lst transCtrl 6= ∅ then

8: {we use a transition directed by the controller}
9: for all transition e ∈ lst transCtrl do

10: if e.destination 6∈ Lg then

11: Waiting.push(e.destination);
12: Lg = Lg ∪ {e.destination};
13: end if

14: if e.sync = ∅ then

15: {case ℓc
u

g
−→ ℓc

v where g is a Boolean expression

on the status of the sensors}
16: Eg = Eg ∪ {ℓg g

−→ e.destination};

17: else

18: {case ℓc
u

actuatori!−−−−−−−−−−−→
sentactuatori=1

ℓc
v synchronised with

ℓai
u

actuatori?−−−−−−−→
v=value

ℓai
v }

19: E = E∪{ℓg sentactuatori==1
−−−−−−−−−−−−→ e.destination};

20: end if

21: end for

22: else

23: {we use a transition directed by the plant}
24: for all transition e ∈ lst transPlant do

25: if e.destination 6∈ Q then

26: Waiting.push(e.destination);
27: Q = Q ∪ {e.destination};
28: end if

29: if e.sync = ∅ then

30: {case ℓp
u

g1

−−−−→
clki=0

ℓp
v where g1 is a Boolean

expression on the status of the actuators}
31: E = E ∪ {ℓg −−−−→

clki=0

e.destination};

32: else

33: {case ℓp
v

g2,sensorj !

−−−−−−−→ ℓp
w synchronised with

ℓsj
u

sensorj?

−−−−−−→
v=value

ℓsj
v where g2 is a Boolean expres-

sion on the clock clki}

34: E = E ∪ {ℓg g2&&v==value
−−−−−−−−−−→ e.destination};

35: end if

36: end for

37: end if

38: end while

The interresting idea is to apply a reachability analysis on

the composition C‖A1‖ . . . ‖An‖ S1‖ . . . ‖Sm‖P and to limit

the exploration of the state space by giving greater priority

to controller transitions. The main data structure is a (FIFO)

queue Waiting to hold the reachable states of G in postorder.

To express the composition C‖A1‖ . . . ‖An‖S1‖ . . . ‖Sm‖P ,

the states of G are defined as tuples of states of the

components. So, the initial state of G, ℓ
g
0

is expressed as

(ℓc
0, ℓ

a1
0 , . . . , ℓan

0 , ℓs1
0 , . . . , ℓsm

0 , ℓ
p
0
).

Priority given to controller transitions is expressed in lines

5-7: we partition the set of available transitions according

to the role of the controller and use only these transitions,

if present, for the reachability analysis. We construct an

abstracted model: we do not label the transitions with unob-

servable events.

In lines 19 and 31, the real status of the actuators, unob-

servables, do not appear as guard of the building transitions.

However, we use some integer variables sentactuatori to

memorize the request on actuatori.

B. Construction of the diagnoser

The timed automaton obtained by Algorithm 1 can

not be used as a diagnoser due to its nondeterminism.

So we need a step of determinisation. Algorithm 2

presents our determinisation procedure. It is based on

the subset construction method: the basic idea underlying

the transformation is the use of sets of states of the



Fig. 6. Diagnoser of the batch process constructed by Algorithm 2

nondeterministic automaton as states in the corresponding

equivalent deterministic automaton. The initial state of the

diagnoser is formed by a singleton that contains the initial

state in the draft diagnoser. As in Algorithm 1, we use

a (FIFO) queue Waiting to hold the new states of the

diagnoser in postorder.

Algorithm 2 Computation of the diagnoser

Require: draft diagnoser G =
(Lg, ℓ

g
0
, Sync, Clk, V,Eg, Init, Ig)

Ensure: diagnoser D = (Ld, ℓd
0, Sync, Clk, V,Ed, Init, Id)

1: Initialization: ℓd
0 = {ℓg

0
};Ld = {ℓd

0};Waiting = {ℓd
0};

2: while Waiting 6= ∅ do

3: ℓd = Waiting.pop();
4: (states with arcs, states without arcs) =

Partition(ℓd);
5: {we partition the set of states ℓd according to they are

or not source of transitions in G}
6: for all ℓg ∈ states with arcs do

7: {ℓd = {. . . , ℓg, . . .} and ℓg has some transitions in

G}
8: lst trans = Transitions(ℓg);
9: for all e ∈ lst trans do

10: if ∃ℓ′d ∈ Ld such that e.destination ∈ ℓ′d then

11: {e.destination is present in of another state of

the diagnoser, so it is unnecessary to create a

new state due to property ?? }

12: Ed = Ed ∪ {ℓd e.guard
−−−−−−−−−→
e.assignment

ℓ′d};

13: else if ∃{ℓd e.guard
−−−−−−−−−→
e.assignment

ℓ′d} ∈ Ed then

14: {there exists already a transition in the diagnoser

starting from ℓd with the same guard/assignment

of transition e, so we complete the subset of

states ℓ′d with e.destination}
15: ℓ′d = ℓ′d ∪ {e.destination};
16: else

17: Create new state ℓ′d = {e.destination};
18: Ld = Ld ∪ {ℓ′d};

19: Ed = Ed ∪ {ℓd e.guard
−−−−−−−−−→
e.assignment

ℓ′d};

20: Waiting.push(ℓ′d);
21: end if

22: end for

23: end for

24: for all ℓg ∈ states without arcs do

25: {ℓd = {. . . , ℓg, . . .} and ℓg has no transition in G}

26: if ∃{ℓd guard
−−−−−−−−→
assignment

ℓ′d} ∈ Ed such that guard is

empty then

27: ℓ′d = ℓ′d ∪ {ℓg}

28: else if ∃{ℓd guard
−−−−−−−−→
assignment

ℓ′d} ∈ Ed such that guard

is satisfied in ℓg then

29: ℓ′d = ℓ′d ∪ {ℓg}
30: else

31: Create new state ℓ′d = {ℓg};
32: Ld = Ld ∪ {ℓ′d};

33: Ed = Ed ∪ {ℓd to be defined
−−−−−−−−−→ ℓ′d};

34: end if

35: end for

36: end while

While there is a state ℓd of the diagnoser for which the

transitions have not been determined (loop While line 2), we

do the following:

• According to the nature of source of transitions in the

draft diagnoser, the set of states ℓd is decomposed. The set

of states states with arcs and states without arcs

(line 4) are obtained.

• From states with arcs (lines 6-23), we create new

sets of states ℓ′d (new states in the diagnoser) com-

posed by the set of destination of transitions e having

their sources in states with arcs and with the same

guards/assignments. We create new transitions in the

diagnoser ℓd e.guard
−−−−−−−−−→
e.assignment

ℓ′d.

• From states without arcs (lines 24-35), we complete

the set of states ℓ′d computed at the previous step by

using transitions with empty guard or we create new

sets of states composed by a single state ℓ′d = {ℓg}.

For these later states, theirs incoming transitions labelled



with to be defined must be defined manually as

the negation of a Boolean formula composed by the

disjunction of all the others guards starting from ℓd.

Application to the batch process:

Figure 6 shows the diagnoser: we have substituted the guard

to be defined by (t2 == 20)&&(L2 == 0). This new

guard is deduced by its neighbor (t2 == 20)&&(L2 == 1).
The isolation of faults in the diagnoser is characterized by

the particular labelling of faulty states: labels are composed by

the name of the faulty component and its type of fault. These

informations come from the labelling of states of the draft

diagnoser which mention the status of each component. For

example, in figure 6, several states of the diagnoser are named

with A1StuckClose, A1StuckOpen or S1StuckDown.

C. Formal verification of the diagnoser

The construction of the diagnoser without verifying its

correctness is needless. We must prove that the diagnoser is

correct, in the sense that it announces a fault if and only if the

fault has occurred. We apply model-checking techniques [17]

proposed in [18] for obtaining the formal verification of our

diagnosers. Thanks to our modeling in Uppaal, we can use

its model-checker. Verification compares reachable states in

global model M (composed by timed automata components,

M = C‖A1‖ . . . ‖An‖S1‖ . . . ‖Sm‖P) and diagnoser D. The

fact that an actuator or a sensor contains the fault event Fk

corresponds to the fact that M reaches the state M.Fk. In

a similar way, the fault isolation Fk by the diagnoser is

formulated D.Fk.

To verify the correctness of the diagnoser, we are taking

the synchronous composition of the global model M and the

diagnoser model D. We must verify:

1) that there are no missed detections. If a fault Fk occurs

then the diagnoser must eventually lead to state in which

it is isolated. Formally, this property is expressed by the

CTL formulae A�(G.Fk → A♦D.Fk).
2) that there are no false alarms. Every diagnoser result

of fault isolation Fk is caused by this fault. Hence, the

property to verify is formulated as follows: A�(D.Fk →
G.Fk).

V. CONCLUSION

This paper proposes a model-based approach to passive on-

line fault diagnosis for timed systems. We suppose the system

to be diagnosed is described as a network of communicating

timed automata. Each component describes an actuator or a

sensor or the control sequence or the process. We consider

only permanent faults on actuators and sensors. The first

contribution of this paper is the formalization of the systems

that we are able to take into account. The second contribution

is the definition of a diagnoser for such systems and algorithms

to build it are given. Our construction method involves two

steps. Firstly we build the abstracted partial model of the

composition of the components, we obtain a draft version of

our diagnoser: it is a nondeterministic timed automaton. So, in

a second step, we determinise it to obtain the final diagnoser.

Our approach has been implemented and experimented on

a batch process. The diagnoser software is based on two

parts: the core implemented in C++ and the graphic interface

implemented in GTK+. The core implements Algorithms 1 &

2 and generates the Uppaal description of the diagnoser.

We have applied model-checking techniques for the formal

verification of our diagnosers. The property to be checked

expresses that the diagnoser is correct if it announces a fault

if and only if the fault already exists in the system model.

A perspective of this work is to extend our approach to take

into account uncertainly in task durations that appear in some

process, for example in manufacturing systems. Another issue

not addressed in this paper is the study of the diagnosability

of failures, and obtain necessary and sufficient conditions for

failure diagnosability.

REFERENCES

[1] M. Knotek, “Fault diagnostics based on temporal analysis,” Ph.D. dis-
sertation, University Joseph Fourier - Grenoble (FRANCE) and BRNO
University of Technology (Czech Republic), 2006.

[2] Z. Simeu-Abazi, M. Di Mascolo, and M. Knotek, “Fault diagnosis
for discrete event systems: Modelling and verification,” Reliability

Engineering & System Safety, vol. 95, no. 4, pp. 369–378, 2010.
[3] G. Behrmann, A. David, and K. Larsen, “A tutorial on UPPAAL,” in

Formal Methods for the Design of Real-Time Systems, ser. LNCS, vol.
3185, 2004, pp. 200–236.

[4] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Diagnosability of discrete-event systems,” IEEE Trans-

actions on Automatic Control, vol. 40, no. 9, pp. 1555–1575, 1995.
[5] F. Lin, “Diagnosability of discrete event systems and its applications,”

Discrete Event Dynamic Systems, vol. 4, no. 2, pp. 197–212, 1994.
[6] S. Zad, R. Kwong, and W. Wonham, “Fault diagnosis in discrete-

event systems: incorporating timing information,” IEEE Transactions

on Automatic Control, vol. 50, no. 7, pp. 1010–1015, 2005.
[7] S. Tripakis, “Fault diagnosis for timed automata,” in Formal Techniques

in Real-Time and Fault-Tolerant Systems, ser. LNCS, vol. 2469, 2002.
[8] H. Derbel, M. Yeddes, N. Hadj-Alouane, and H. Alla, “Diagnosis of a

class of timed discrete event systems,” in 8th International Workshop

on Discrete Event Systems, 2006, pp. 256–261.
[9] J. Lunze and P. Supavatanakul, “Diagnosis of discrete-event system

described by timed automata,” in Proceedings of IFAC 15th World

Congress, 2002, pp. 77–82 Vol J: Fault Detection and Supervision.
[10] Y. Pencolé and M.-O. Cordier, “A formal framework for the decen-

tralised diagnosis of large scale discrete event systems and its application
to telecommunication networks,” Artificial Intelligence, vol. 164, 2005.

[11] M. Sayed-Mouchaweh, A. Philippot, and V. Carre-Menetrier, “Decen-
tralized diagnosis based on boolean discrete event models: application on
manufacturing systems,” International Journal of Production Research,
vol. 46, pp. 5469–5490, 2008.

[12] G. Lamperti and M. Zanella, “Continous diagnosis of discrete-event
systems,” in Proceedings of the Workshop on Principles of Diagnosis,

DX’03, 2003, pp. 105–112.
[13] S. H. Zad, R. Kwong, and W. Wonham, “Fault diagnosis in discrete-

event systems: framework and model reduction,” IEEE Transactions on

Automatic Control, vol. 48, no. 7, pp. 1199–1212, 2003.
[14] P. Bouyer and F. Chevalier, “Fault diagnosis using timed automata,”

in Foundations of Software Science and Computational Structures, ser.
LNCS, vol. 3441, 2005, pp. 219–233.

[15] P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella, “Diagnosis of large
active systems,” Artificial Intelligence, vol. 110, pp. 135–183, 1999.

[16] R. Alur and D. Dill, “A theory of timed automata,” Theorical Computer

Science, vol. 126, no. 2, pp. 183–235, 1994.
[17] E. M. Clarke and B.-H. Schlingloff, “Model checking,” in Handbook

of Automated Reasoning, J. A. Robinson and A. Voronkov, Eds., 2001,
vol. 2, pp. 1635–1790.

[18] M. Knotek, Z. Simeu-Abazi, and F. Zezulka, “Fault diagnosis based on
timed automata: Diagnoser verification,” in IMACS Multiconference on

Computation Engineering in Systems Applications, CESA’06, 2006.


