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Abstract

Existing models from scheduling often over-simplify the problems appearing
in real-world industrial situations. The original application is often reduced
to a single-objective one, where the presence of uncertainty is neglected.
In this paper, we focus on multi-objective optimization in uncertain environ-
ments. A bi-objective flowshop scheduling problem with uncertain processing
times is considered. An indicator-based evolutionary algorithm is proposed to
handle these two difficulties (multiple objectives and uncertain environment)
at the same time. Four different strategies, based on uncertainty-handling
quality indicators, are proposed in the paper. Computational experiments
are performed on a large set of instances by considering different scenarios
with respect to uncertainty. We show that an uncertainty-handling strategy
is a key issue to obtain good-quality solutions, and that the algorithm perfor-
mance is strongly related to the level of uncertainty over the environmental
parameters.

Keywords: Permutation flowshop scheduling, evolutionary algorithms,
multi-objective combinatorial optimization, uncertain processing times.

∗Corresponding author.
Email addresses: arnaud.liefooghe@univ-lille1.fr (Arnaud Liefooghe),

basseur@info.univ-angers.fr (Matthieu Basseur), jeremie.humeau@mines-douai.fr
(Jérémie Humeau), laetitia.jourdan@lifl.fr (Laetitia Jourdan), talbi@lifl.fr
(El-Ghazali Talbi)



1. Introduction

Many real-world problems arising in combinatorial optimization have to
face a lot of difficulties. They are often characterized by large and complex
search spaces, multiple conflicting objective functions, and a host of uncer-
tainties that have to be taken into account. This is the case, for instance,
of most scheduling problems: They are clearly multi-objective [1] and they
are subject to many uncertainties [2]. There exists a growing demand for
solving such real-world applications. However, in practice, the original prob-
lem is usually modeled in a single-objective and deterministic way. In fact,
a few adjustments in terms of resolution methods can be very useful to ad-
dress such problems. This research area has received an increasing interest
in recent years because of its difficulty. Evolutionary algorithms are natural
candidates to tackle such problems and make them preferable to classical
optimization approaches. Indeed, on the one hand, their aptitude has been
recognized for one of the most challenging issue related to multi-objective op-
timization, that is to the identification of a Pareto set approximation [3, 4].
On the other hand, they are often investigated as proper candidates when
solving optimization problems that are subject to uncertainties coming from
many sources, whether on decision variables and environmental parameters,
or directly on the objective function(s) [5]. Due to their inherent stochastic
nature and to their ability to find multiple solutions in a single run, evo-
lutionary algorithms with sufficient adaptations present interesting mecha-
nisms for solving both multi-objective and uncertain problems. However,
very few studies devoted to the consideration of multi-objective optimization
under uncertainty as a whole exist to date, and they are generally confined
to problems from continuous optimization.

In many cases, the basic concept of uncertainty-handling can be trans-
lated to the application of sets from the decision space to the objective space.
Hence, taking uncertainty into account often results in the comparison of sets.
From a multi-objective standpoint, a solution is projected into a sample set
of objective vectors, whose shape is generally not known in advance. The
main challenge raised by such uncertain multi-objective problems can be
summarized by the pairwise comparison of objective vector sets, rather than
a pairwise comparison of single objective vectors in the deterministic case.
Resolution methods and performance assessment must then be adapted to
deal with this specific issue, either through the selection of representative
objective vectors or by adjusting their internal mechanisms. In this pa-
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per, evolutionary approaches are proposed for multi-objective optimization
in uncertain environments, together with their application to a scheduling
problem. In particular, we investigate a bi-objective permutation flow-shop
scheduling problem with uncertain processing times. To the best of our
knowledge, this is the first time that such an uncertain scheduling problem is
investigated in a multi-objective way. Then, a number of components to be
used within an indicator-based evolutionary algorithm are presented, and fit-
ted to the problem under consideration. Note that, in the deterministic case,
indicator-based search appears to be very effective [6], in particular for the
flowshop scheduling problem under study [7]. At last, experimental design
is discussed in the context of uncertain multi-objective optimization, and a
number of variants of the general algorithm are experimented on flowshop
scheduling problem instances of different structure and size. The contribu-
tions of this work can be summarized as follows.

• We formulate a permutation flowshop scheduling problem which aims
at concurrently minimizing the makespan and the total tardiness, and
for which the processing times are subject to uncertainty.

• We propose a new evolutionary algorithm to deal with uncertain multi-
objective optimization problems based on multiple scenarios, i.e. re-
alizations of stochastic data. It extends indicator-based selection ap-
proaches proposed in previous work from Basseur and Zitzler [8]. Four
variants are here investigated, based on (i) objective vector level or
indicator level aggregations and (ii) average and worst-case scenarios.

• We lead an experimental analysis of the approaches introduced in the
paper for the problem under investigation. The experiments are con-
ducted on a large set of benchmark instances and reveal interesting
results depending on the optimization scenario, and on the level of
uncertainty arising on the problem instance.

Recently, we suggested an evolutionary algorithm based on an average-case
objective vector for bi-objective flowshop scheduling under uncertainty [9]. In
this paper, we investigate this approach in detail, we propose new indicator-
based aggregations, and consider both average and worst-case scenarios.
Moreover, we discuss the issue of performance assessment in multi-objective
optimization under uncertainty, and we lead an in-depth experimental anal-
ysis, with a particular focus on the impact of the number of scenarios con-
sidered by the resolution approach with respect to the degree of uncertainty.
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The paper is organized as follows. Section 2 introduces a bi-objective
flowshop scheduling problem with uncertain processing times. Section 3 gives
the necessary background on evolutionary algorithms for multi-objective and
uncertain optimization. Section 4 proposes new indicator-based evolutionary
algorithms for multi-objective optimization in uncertain environments. Sec-
tion 5 presents an experimental analysis of the approaches proposed in the
paper for the flowshop scheduling problem. The last section concludes the
paper.

2. A Bi-objective Flowshop Scheduling Problem with Uncertain

Processing Times

The Flowshop Scheduling Problem (FSP) is one of the most studied prob-
lem from scheduling [10]. The majority of works devoted to the FSP consid-
ers it on a deterministic single-objective form and mainly aims at minimizing
the makespan, i.e. the total completion time. However, many objective func-
tions, varying according to the particularities of the tackled problem, can be
taken into account, and multi-objective approaches have also been proposed.
The reader is referred to [1, 11, 12] for surveys about multi-objective schedul-
ing. Following the formulation of a deterministic model for the bi-objective
FSP, this section presents various sources of uncertainty that have to be taken
into account and introduces different probability distributions to model the
stochastic nature of processing times.

2.1. Bi-objective Flowshop Scheduling

The FSP consists in scheduling N jobs {J1, J2, . . . , JN} on M machines
{M1,M2, . . . ,MM}. Machines are critical resources, i.e. two jobs cannot
be assigned to a given machine at the same time. A job Ji is composed of
M consecutive tasks {ti1, ti2, . . . , tiM}, where tij is the jth task of the job Ji,
requiring the machine Mj . A processing time pij is associated to each task
tij ; and a due date di is given to each job Ji (the deadline of the job). As
illustrated in Figure 1, we here focus on the permutation FSP, where the
operating sequences of the jobs are identical and unidirectional on every
machine. Then, for a problem instance of N jobs, there exists N ! feasible
solutions. In this study, we focus on minimizing both the makespan (Cmax)
and the total tardiness (T ), that are among the most widely investigated
objective functions from the literature [12]. Let Cij be the completion date
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Figure 1: A feasible solution for the permutation flowshop scheduling problem where
3 jobs (J1, J2, J3) are scheduled on 4 machines (M1,M2,M3,M4).

of task tij , the objective functions can be defined as follows.

Cmax = max
i∈{1,...,N}

{CiM} (1)

T =

N
∑

i=1

{

max{0, CiM − di}
}

(2)

The single-objective FSP of minimizing the makespan is known to be NP-
hard for three machines and more [13]. The objective of minimizing the
total tardiness is already NP-hard for one machine [14]. Hence, medium
and large-size bi-objective problem instances can generally not be solved to
optimality. According to Graham et al. [15], this problem can be denoted by
F/perm, di/(Cmax, T ).

2.2. Uncertain Processing Times

In real-world scheduling situations, the uncertainty mainly occurs from
environmental parameters and can then be classified into the second cate-
gory given in [5], i.e. decision variables or environmental parameters are
subject to perturbation, see Section 3.3. To our knowledge, no other study
has been leaded on a multi-objective combinatorial optimization problem
with uncertainty on the environmental parameters. However, solutions are
sensitive to perturbations coming from many potential sources such as, for
instance, release or due date variations, machine breakdowns, unexpected
arrival or cancellation of orders, variable processing times, etc. It is obvious
that no parameter can be regarded as an exact and precise data and that
non-deterministic approaches are required to solve scheduling problems. In
this paper, we adopt a proactive stochastic approach where processing times
are regarded as uncertain parameters.
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Widely investigated in a single-objective form, the stochastic FSP has, to
our knowledge, never been investigated in a multi-objective way. Following
an analysis, we propose four different general distributions a processing time
may follow. Of course, a rigorous statistical analysis, based on real data,
is imperative to determine the concrete and exact distribution associated
to a given processing time pij of a real-world optimization problem. A re-
view of existing work on single-objective flowshop scheduling with uncertain
processing times can be found in [16].

• Uniform Distribution. A processing time pij can uniformly be in-
cluded between two values a and b. Then, pij follows a uniform dis-
tribution over the interval [a, b]. This kind of distribution is used to
provide a simplified model of real industrial cases. For instance, it has
already been used in [16, 17].

• Exponential Distribution. A processing time pij may follow an
exponential distribution E(λ, a). Exponential distributions are com-
monly used to model random events that may occur with uncertainty.
This is typically the case when a machine is subject to unpredictable
breakdowns. For example, processing times have been modeled by an
exponential distribution in [18, 19] among others.

• Normal Distribution. A processing time pij may follow a normal
distribution N (µ, σ) where µ stands for the mean and σ stands for the
standard deviation. This kind of distribution is especially usual when
human factors are observed. A process may also depend on unknown
or uncontrollable factors and some parameters can be described in a
vague or ambiguous way by the analyst. Therefore, processing times
vary according to a normal distribution [16, 20].

• Log-normal Distribution. A random variableX follows a log-normal
distribution with parameters µ and σ if logX follows a normal distribu-
tion N (µ, σ). The log-normal distribution is often used to model the
influence of uncontrolled environmental variables. For instance, this
modeling has already been used in [21, 22].
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3. Background on Evolutionary Optimization for Multi-objective

and Uncertain Problems

In this section, we give some definitions related to evolutionary multi-
objective optimization. Then, we focus on indicator-based evolutionary op-
timization. At last, we review existing approaches for uncertainty-handling
in evolutionary computation, with a particular interest on multi-objective
applications.

3.1. Evolutionary Multi-objective Optimization

A Multi-objective Optimization Problem (MOP) can be defined by a set
of n ≥ 2 objective functions f = (f1, f2, . . . , fn), and a set X of feasible
solutions in the decision space. In the combinatorial case, X is a discrete set.
Let Z denote the set of feasible points in the objective space. Without loss
of generality, we here assume that Z ⊆ R

n and that all n objective functions
are to be minimized. In the deterministic case, to each decision vector x ∈ X
is assigned exactly one objective vector z ∈ Z on the basis of the vector func-
tion f : X → Z with z = (z1, z2, . . . , zn) = f(x) = (f1(x), f2(x), . . . , fn(x)).
A decision vector x ∈ X is said to be efficient (or Pareto optimal) if there
does not exist any other decision vector x⋆ ∈ X such that (i) f(x⋆) is
component-wise smaller than or equal to f(x) and (ii) f(x) 6= f(x⋆). One
of the most challenging issue in multi-objective optimization is to find the
minimal set of efficient solutions (or efficient set). However, generating the
entire efficient set is usually infeasible, due to, e.g., the complexity of the
underlying problem or the large number of optima. Therefore, in many ap-
plications, the overall goal is often to identify a good approximation of it.
Evolutionary algorithms are commonly used to this end, as they are partic-
ularly well-suited to find multiple efficient solutions in a single simulation
run. The reader can refer to [3, 4] for more details about evolutionary multi-
objective optimization.

3.2. Indicator-Based Evolutionary Multi-objective Optimization

3.2.1. Main Principles

Different interpretations of what a good efficient set approximation is are
possible, and the definition of approximation quality strongly depends on
the decision-maker preferences. In [6], Zitzler and Künzli assume that the
optimization goal is given in terms of a binary quality indicator IΩ : Ω×Ω →
R, where Ω stands for the set of all efficient set approximations. Thereby, a
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value IΩ(A,B) quantifies the difference in quality between two efficient set
approximations A,B ∈ Ω. So, if R denotes the optimal efficient set (or any
other reference set), the overall optimization goal can be formulated as:

arg minA∈Ω IΩ(A,R) (3)

As noticed by the original authors, R does not have to be known since it just
serves the formalization of the optimization goal. Therefore, R being fixed,
IΩ can be seen as a unary function that assigns, to each approximation set, a
value reflecting its quality with respect to the optimization goal. If IΩ is dom-
inance preserving [6], IΩ(A,R) is minimum for A = R. The indicator, that
can be chosen according to the decision-maker preferences, is thus directly
used in the fitness assignment scheme of the so-called Indicator-Based Evo-
lutionary Algorithm (IBEA) proposed in [6]. As a consequence, the fitness
value F of a solution x belonging to a population P measures the usefulness
of x according to the optimization goal:

F (x) = IΩ(P \ {x}, {x}) (4)

An interesting property of indicator-based optimization is that no specific
diversity preservation mechanism is generally required, according to the in-
dicator being used.

3.2.2. Binary Quality Indicators

In addition to IΩ, let us define two other kinds of binary quality indicators
as follows.

• First, IZ : Z × Z → R is a function whose purpose is to compare two
objective vectors z and z′ ∈ Z.

• Second, IX : X × X → R is a function whose purpose is to compare
two decision vectors x and x′ ∈ X .

Thus, these three types of binary indicators all consist of mapping two ele-
ments to a real number by comparing their respective quality relatively to
each other. Even if there might exist stand-alone versions for every kinds
of indicators presented above, a possibility is to build an IX-indicator from
an IZ-indicator. Let us take the example of the binary additive ǫ-indicator.
First defined to compare two non-dominated set approximations [23], it can
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I(z,z’) > 0
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Figure 2: Illustration of the the binary additive ǫ-indicator (IZ,ǫ+).

naturally be used to compare two single objective vectors. In the latter case,
it is defined as follows:

IZ,ǫ+(z, z
′) = max

i∈{1,...,n}
(zi − z′i) (5)

As illustrated in Figure 2, IZ,ǫ+ computes the minimum value by which an
objective vector z ∈ Z can or has to be translated in the objective space to
weakly dominate another point z′ ∈ Z. Thus, in the deterministic case, it is
a common place to compare two decision vectors x and x′ ∈ X with the help
of IZ,ǫ+, as defined in the following equation.

IX,ǫ+(x, x
′) = IZ,ǫ+(f(x), f(x

′)) (6)

This will not be the case in the uncertain case, where a set of objective
vectors can be associated to a single solution. Now, to evaluate the quality
of a solution x ∈ P in comparison to a whole population P (and then to
compute the fitness value of x within IBEA), there exists several approaches.
As presented in [6], a simple possibility is to sum up the IX-values of each
population item in comparison to the remainder of the population.

F (x) =
∑

x′∈P\{x}

IX(x
′, x) (7)

Note that other examples of binary quality indicators than can be used within
indicator-based multi-objective search methods can be found in [6, 23].

3.2.3. Indicator-Based Evolutionary Algorithm

A detailed description of the Indicator-Based Evolutionary Algorithm
(IBEA) introduced in [6] is reproduced in Figure 3. The selection scheme
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IBEA

1. Initialization. Start with a user-given initial population P of size N ,
or generate it randomly.

2. Fitness assignment. Calculate fitness values of individuals in P ; i.e.
F (x) =

∑

x′∈P\{x} IX(x
′, x).

3. Environmental selection. Iterate the following steps until the size of
the population P does not exceed N :

(a) Choose an individual x⋆ ∈ P with the smallest fitness value; i.e.
F (x⋆) ≤ F (x) for all x ∈ P .

(b) Remove x⋆ from P .
(c) Update the fitness values of the remaining individuals; i.e. F (x) =

F (x)− IX(x
⋆, x) for all x ∈ P .

4. Termination. If a stopping condition is satisfied, then stop and re-
turn P .

5. Mating selection. Perform binary tournament selection with replace-
ment on P in order to fill the temporary mating pool P ′.

6. Variation. Apply recombination and mutation operators to the mating
pool P ′ and add the resulting offspring to P . Go to Step 2.

Figure 3: Outline of the Indicator-Based Evolutionary Algorithm (IBEA), adapted
from [6].

for reproduction is a deterministic tournament between two randomly cho-
sen individuals. The replacement strategy consists in deleting, one-by-one,
the worst individuals, and in updating the fitness values of the remaining
solutions each time a solution is removed. This process is iterated until the
required population size is reached.

3.3. Evolutionary Optimization in Uncertain Environments

In their review on evolutionary optimization approaches in the presence
of uncertainty, Jin and Branke [5] classify uncertainties into four categories:
(i) noisy objective function, (ii) robustness, (iii) approximated objective
function or (iv) time-varying objective function. Note that the two last
classes are not addressed in this paper. First, we assume that an approx-
imated objective function is closely related to the problem to be solved,
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whereas we attempt to be as generic as possible from an algorithmic point of
view. Second, we believe that taking dynamic variations into account within
a reactive approach is a complete different issue than dealing with other
kinds of uncertainty. However, the first two classes are closely related the
one to the other. Indeed, while dealing with a noisy objective function, an
expected objective function is, in practice, often approximated by using a set
of sample values. This is also the case when searching for robust solutions.
In this second category, the authors include two sub-classes. The first one
relates to problems where design variables are subject to perturbations or
change after the search process, while the second one relates to variations on
the environmental parameters, as it is the case for the FSP investigated in
this paper. As noticed in [5], very few studies have already investigated the
optimization of MOPs in uncertain environments.

Note that an existing class of search methods consists of applying multi-
objective optimization approaches to find robust solutions for single-objective
optimization problems. In this case, a robustness measure is generally defined
and a corresponding objective function is added to the problem formulation.
The problem is then converted into a MOP where performance and robust-
ness are treated as separate goals. An example of such approach is given
in [24]. Note that similar techniques can be applied to MOPs (see, for in-
stance, [25]), and the issue of robustness in multi-objective optimization has
already been addressed in [26] for problems where solutions are sensitive to
decision variables perturbations.

To our knowledge, existing approaches for solving MOPs that are subject
to uncertainties are the following ones. First, Teich [27] and Hughes [28]
independently suggested to extend the concept of Pareto dominance for the
stochastic case. They integrate a probabilistic dominance relation into the fit-
ness assignment scheme of a multi-objective search method. But both studies
make an assumption on the probability distribution the objective functions
follow. In [29], another ranking scheme, based on the average value and on
the variance of a set of objective vector samples, is presented. This ranking
strategy is integrated into NSGA-II [30] to solve noisy MOPs. In [26], Deb
and Gupta propose a similar strategy. To a feasible solution is associated an
average value for each dimension of the objective space, determined over a
given sample of objective vectors. A classical multi-objective search method,
usually designed for deterministic MOPs, is then applied over these approxi-
mated objective vectors. More recently, Barrico and Antunes [31] introduced
a process to quantify the degree of robustness of a solution that is inte-
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grated into a multi-objective evolutionary algorithm. Additionally, Goh and
Tan [32] studied the impact of noisy objective functions on the performance
of a set of evolutionary multi-objective optimization algorithms. In the same
paper, the authors propose some features to handle noise, including an expe-
riential learning directed perturbation operator, a gene adaptation selection
strategy and a “possibilistic” archiving methodology. Finally, the concept
of indicator-based multi-objective optimization introduced in the previous
section has been extended in order to take stochasticity into account in [8].
According to the classification given in [5], all presented methods deal either
with noisy objective functions or with robustness on design variables, even if
all of them can generally be applied in both cases.

To summarize, a small but increasing number of studies are devoted to
the resolution of MOPs in uncertain environments. A first remark is that
existing approaches generally assume specific characteristics for the proba-
bility distribution that is associated to a given objective function. Therefore,
they exploit problem knowledge that may not be available in practice. A
second remark is that the methods proposed in the literature have all been
experimented on continuous optimization problems, and mainly where noisy
objective functions are involved. A last remark is that a key issue while
taking uncertainty into account for MOPs is performance assessment, as no
suitable protocol has been designed up to now.

4. Indicator-Based Evolutionary Algorithms for Multi-objective Op-

timization in Uncertain Environments

In this section, a number of new approaches, based on indicator-based
selection, are proposed to handle multi-objective optimization problems sub-
ject to uncertainty.

4.1. An Uncertainty-Handling Approach based on Scenarios

As explained in section 3.1, in deterministic multi-objective optimization,
a single objective vector z ∈ Z is assigned to every solution x ∈ X , based on
the vector function f . Thus, f(x) defines the ‘true’ evaluation of x, and f is
assumed to represent a deterministic mapping from the decisional space X
to the objective space Z. While taking uncertainty into account, each time
a solution is evaluated, the resulting objective vector can possibly map to
a different point in the objective space. We will then consider that f does
not represent a deterministic mapping from X to Z, but that a (potentially
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infinite) set of objective vectors is now associated to a given solution x. We
assume that the ‘true’ evaluation of a solution is not known before the end
of the search process. No hypothesis is done on any probability distribution
associated to the objective function(s), the decision variable(s) or to the
environmental parameter(s), because such distribution is generally not known
in advance and may differ for any solution.

Thus, in the uncertain case, each solution x ∈ X is assigned a sample
of objective vectors. The higher the degree of uncertainty, the larger the
variance among the objective vectors resulting from multiple and indepen-
dent evaluations of x. It is then necessary to determine a satisfactory sample
size, as the sampling step could be expensive in terms of computation time.
Indeed, since evaluating a solution can be expensive, a good trade-off be-
tween a fine accuracy and a reasonable time consumption must be found.
In addition, the potential number of evaluations for one solution is generally
limited in practice. In this case, only a subset of these evaluations must be
used during the search process, the remaining part being used to assess the
performance of the algorithm(s). More formally, for each solution x ∈ X ,
we assume that a set of independent and equally probable evaluations are
computed. Thus, a sample of objective vectors {z(i)}pi=1 is now associated
to each solution. Let us consider two arbitrary solutions. Two cases may
arise. First, it may happen that one evaluation of a given solution is strictly
independent of all the other evaluations performed until now. Then, all the
objective vectors of all the evaluated solutions are independent with each
other, and the size of the objective vector sample can differ from a solution
to another. Another alternative is to consider a finite set of independent and
equally probable scenarios S = {s1, s2, . . . , sp}, as in robust optimization [33].
S(x) = {z(1), z(2), . . . , z(p)} is the sample of independent evaluations of a solu-
tion x ∈ X . The sample elements z(i) associated to x represents the value of
the objective vector of x if scenario si occurs (see Figure 4). Herewith, given
two solutions x, x′ ∈ X , we assume that the corresponding objective vectors
{z(i)}pi=1 and {z′

(j)
}p

′

j=1 are paired and of same size (p = p′). Thus, given a

scenario si, the corresponding objective vectors z(i) and z′(i) are comparable
with each other.

4.2. Uncertainty-Handling Quality Indicators

The proposed algorithms for multi-objective optimization in uncertain
environments are based on the indicator-based fitness assignment strategy
introduced in Section 3.2, and proposed in [6]. In order to take uncertainty
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Figure 4: An example of multiple evaluations of a solution x considering four scenarios
S = {s1, s2, s3, s4}.

into account, we introduce a set of four uncertainty-handling quality indi-
cators that could be used within IBEA, or any other indicator-based meta-
heuristic. These indicators correspond to different strategies among which
the decision-maker can choose according to his/her preferences or according
to the kind of problem he/she has to face. Let us assume that a binary in-
dicator IZ : Z ×Z → R dedicated to the comparison of two objective vector
has been defined, for instance IZ,ǫ+ as defined in Section 3.2. In contrast
with the deterministic case, the interpretation of this kind of indicator from
the objective space to the decision space is no more obvious. Indeed, due to
the use of scenarios, not a single objective vector is assigned to a solution,
but rather a set of objective vectors corresponding to the collected sample.

IX(x, x
′) 6= IZ(f(x), f(x

′)) (8)

As a consequence, the proposed approaches consist in defining different ag-
gregation strategies of the information available in the two objective vector

sets {z(1)k , z
(2)
k , . . . , z

(p)
k } and {z′(1)k , z

′(2)
k , . . . , z

′(p′)
k }, respectively associated to

two solutions x, x′ ∈ X , in a unique scalar IX-value. In that sense, this work
extends the contribution of [8], where such indicators have been proposed to
deal with noisy objective functions for the particular case of the ǫ-indicator.
The approaches presented in this paper are independent of the IZ indicator
under consideration. The obtained IX -value could then take place in a fitness
assignment scheme based on a binary quality indicator.

Two kind of indicators, corresponding to two levels of aggregations, are
proposed (Figure 5). First, indicators based on the objective values lay on

the sample {z(1)k , z
(2)
k , . . . , z

(p)
k } associated to a solution x ∈ X . These ap-

proaches consist in transforming the sample associated to a solution in a
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Figure 5: Two classes of uncertainty-handling multi-objective indicators: Objective vector
level indicators and I-value level indicators.

single objective vector by means of a representative value for each objective
function. Note that these objective vector level approaches are based on
generic concepts that can be applied outside indicator-based search. In this
case, a single representative vector can be seen as the determinist objective
vector, and the problem can be handled as in the deterministic case. The
second class of indicators, based at the I-value level, consists in computing
a sample of I-values extracted from the two samples of objective vectors
collected from a pair of solutions from the current population. For each
class, two indicators are proposed. They correspond to an average-case and
a worst-case strategy, respectively.

4.2.1. Objective Vector Level Approaches

The first set of quality indicators designed to deal with uncertainty rely
at the objective vector level. They are based an the objective vector sample
{z(1)k , z

(2)
k , . . . , z

(p)
k } associated with a solution x ∈ X . They consist in trans-

forming the objective vector sample into a single point. Then, the resulting
objective vectors associated with two solutions can be compared using an IZ
indicator, as in the deterministic case.

Worst-case Objective Vector Indicator. A worst-case objective vector (zworst)
can be settled as below. This results in a pessimistic approach, with a high
risk aversion.

Iz
worst

X (x, x′) = IZ(z
worst, z′worst) (9)

such that zworst
k = maxi∈{1,...,p} z

(i)
k , k ∈ {1, . . . , n}. Let us remind that a

minimization problem is here assumed. As a consequence, such indicator is
somehow linked with the field of robust optimization [33].
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Figure 6: Illustration of the representative objective vectors considered in objective vector
level approaches: the worst-case objective vector (zworst) and the average-case objective
vector (zavg).

Average-case Objective Vector Indicator. When taking uncertainty into ac-
count, most approaches aim to find the ‘optimal’ expected value with re-
spect to each objective function. Let us define an average-case objective

vector (zavg), together with the corresponding Iz
avg

X indicator.

Iz
avg

X (x, x′) = IZ(z
avg , z′avg) (10)

such that zavgk = 1
p

∑p

i=1 z
(i)
k , k ∈ {1, . . . , n}. This idea is commonly used

in the single-objective case [5], and has already been suggested in several
studies from multi-objective optimization [26, 29].

The worst-case and the average-case objective vectors are illustrated in
Figure 6.

4.2.2. I-value Level Approaches

Unlike previous strategies, both approaches presented below are based on
the I-values obtained by means of the objective vector samples of two solu-
tions. They are then specific to indicator-based approaches. Let x, x′ ∈ X
be two arbitrarily chosen solutions from the current population, and let

{z(1)k , z
(2)
k , . . . , z

(p)
k } and {z′(1)k , z

′(2)
k , . . . , z

′(p′)
k } be their associated objective

vector samples. For each of the indicator presented below, two cases may
happen. If the scenario associated with the ith evaluation of the two solu-
tions is the same for all i ∈ {1, 2, . . . , p}, then the objective vector samples
of the two solutions are paired. Otherwise, if the scenarios are different or
randomly chosen for each evaluation, then the objective vector samples are

16



independent. As proposed by Basseur and Zitzler [8], our approaches con-
sist in defining an aggregation strategy from the sample of IZ-values obtained
from the pairwise comparison of the objective vectors of two solutions. In the
case of paired samples, the strategy will be based on the following IX -value
samples of size p, with IZ being an arbitrary chosen indicator.

IZ(z
(1), z′(1)), . . . , IZ(z

(p), z′(p)) (11)

In the case of independent objective vector samples, the considered sample
will rather be the following one, of size (p× p′).

IZ(z
(1), z′(1)), . . . , IZ(z

(i), z′(j)), . . . , IZ(z
(p), z′(p

′)) (12)

Thus, the idea of this second class of approaches consists in taking all the
objective vector combinations into account. Once again, two indicator level
strategies will be proposed, corresponding to the worst-case and the average-
case, respectively. Both work on the pairwise comparison of the objective
vector samples collected for two solutions, based on a IZ indicator. Without
loss of generality, we here assume that IZ-values are to be minimized.

Worst-case I-value Level Indicator. Given an IZ indicator and two solutions
x, x′ from the current population, a possible approach consists in considering
the worst element of the IZ-value sample. The resulting strategy is pes-
simistic, given that the best-performing objective vector associated with x
with respect to the objective vector sample of x′ is taken into account. A
worst case indicator can be defined as follows for paired samples:

Iworst
X (x, x′) = max

i∈{1,...,p}
IZ(z

(i), z′(i)) (13)

For independent samples:

Iworst
X (x, x′) = max

i∈{1,...,p},j∈{1,...,p′}
IZ(z

(i), z′(j)) (14)

Average-case I-value Level Indicator. As well, let us define an average-case
indicator where the mean of I-values is used in the fitness assignment scheme.
For paired samples:

IavgX (x, x′) =
1

p

p
∑

i=1

IZ(z
(i), z′(i)) (15)
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For independent samples:

IavgX (x, x′) =
1

p · p′

p
∑

i=1

p′
∑

j=1

IZ(z
(i), z′(j)) (16)

4.2.3. Summary

The proposed uncertainty-handling indicators can now take place into
the indicator-based fitness assignment scheme based on a binary quality in-
dicator. They can then be used inside EMO algorithms like IBEA. They
give birth to a set of evolutionary algorithms that are able to handle multi-
objective optimization problems in uncertain environments. These strategies
allow to specify different kinds of decision-maker preferences in terms of
uncertainty-handling, by means of the definition of a simple indicator. Thus,
only two levels must now be defined to instantiate an IBEA-like algorithm in
order to take uncertainty into account: an indicator to compare two objective
vectors (as in the deterministic case) and an additional uncertainty-handling
indicator. Four possible uncertainty-handling indicators have been proposed
in the paper.

5. Experimental Analysis

This section presents an experimental analysis of the approaches proposed
in the paper applied to the uncertain and multi-objective FSP introduced
in Section 2. The issue of performance assessment is first discussed in the
context of multi-objective optimization in uncertain environments, and the
evolutionary algorithms presented in the previous section are experimented
on a number of FSP instances of different structure and size.

5.1. Performance Assessment

In the deterministic case, approximating the efficient set is itself a bi-
objective problem, as the aim is to find a Pareto set approximation with
both high convergence and diversity properties. In recent years, the perfor-
mance assessment of EMO algorithms has been widely investigated in the
literature [23]. Nevertheless, to the best of our knowledge, this issue has
not been satisfactorily addressed so far for multi-objective optimization in
uncertainty environments.
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5.1.1. Set-based Quality Indicators and Statistics

The following performance assessment approach applies to deterministic
multi-objective optimization problems. The adaptations required to handle
the uncertain nature of the problem are discussed afterwards. In this study,
a set of 20 runs per instance and per algorithm is performed. In order to
evaluate the quality of the Pareto set approximations for every instance we
experimented, we follow the protocol proposed by Knowles et al. [34]. For a
given instance, we first compute a reference set Z⋆

N containing the whole set
of non-dominated objective vectors we obtained during all our experiments.
Second, we define zmin = (zmin

1 , . . . , zmin
n ) and zmax = (zmax

1 , . . . , zmax
n ), where

zmin
k (resp. zmax

k ) denotes the lower (resp. upper) bound with respect to the
kth objective function for all the solutions we obtained. In order to give a
roughly equal range to all the objective functions, values are normalized with
respect to zmin and zmax.

Let us consider an efficient set approximation A. In order to measure
the quality of A in comparison to Z⋆

N , we compute the difference between
these two sets by using the unary hypervolume metric [23], zmax being the
reference point. The hypervolume difference indicator (I−Ω,H) computes the
portion of the objective space that is weakly-dominated by Z⋆

N and not by A.
Furthermore, we also consider the additive ǫ-indicator [23] presented in Sec-
tion 3.2. The unary additive ǫ-indicator (I1Ω,ǫ) gives the minimum factor by
which an approximation A can or has to be translated in the objective space
to weakly-dominate the reference set Z⋆

N .
As a consequence, for each test instance, we obtain 20 I−Ω,H-values and

20 I1Ω,ǫ-values, corresponding to the 20 runs, per algorithm. Once all these
values are computed, we perform a statistical analysis for a pairwise compar-
ison of methods. To this end, we use the Wilcoxon signed rank test. Details
for this statistical testing procedure are given in [34]. Hence, for a given test
instance, and with respect to the indicator under consideration, this statisti-
cal test reveals if the sample of approximation sets obtained by a given search
method is significantly better than the one of another search method, or if
there is no significant difference between them. For the sake of conciseness,
we only report how many algorithms obtained statistically better results than
the corresponding algorithm for the instance under consideration. In other
words, a value of zero means that no other method generated significantly
better results. Note that all the performance assessment procedures have
been achieved using the performance assessment tools provided in PISA [35].
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5.1.2. General Comments

A common practice consists in converting the uncertain problem into a
deterministic one be means of a particular strategy, and then to assess the
performance of the approximation sets with regards to this deterministic
formulation. For instance, the mean or the expected value over a sample of
objective vectors are used in [36, 27, 37]. Another way to do so consists in
considering the deterministic model from which the uncertain problem has
been derived from as the ‘true’ single scenario, which is used to evaluate the
outputs [38, 32, 39]. However, as pointed out earlier, in real-world situations,
there does not exist an single (average-case or ‘true’) evaluation associated
with a given solution, or at least it is usually not known in advance. Thus, no
realization of stochastic data can be considered more reliable than another,
whatever it is issued from deterministic data or from an arbitrary realization.
As a consequence, we pay a particular attention to the following issues.

• At the end of the search process, we take a sample of possible evalu-
ations into account rather than a unique evaluation in order to assess
the performance of the approximation obtained by a given algorithm.

• We also re-evaluate the solutions by means of uncertain data that differ
from the ones used during the search process. This allows to avoid
the influence of the search process, and then provides a more fair and
unbiased comparison between the algorithms.

5.1.3. Methodological Approaches

Two methodological approaches are proposed to assess the performance of
algorithms for multi-objective optimization in uncertain environments. They
are based on similar ideas than for the resolution approaches, presented in
Section 4, and follow the same reasoning as illustrated in Figure 4. The first
class is based at the objective vector level whereas the second class is based
on I-values.

Objective Vector Level Approach. Let A be a set of solutions found by a given
algorithm. To each solution x ∈ A is then associated a set of objective vectors
{z(1)k , z

(2)
k , . . . , z

(q)
k } of size q, where q is the number of scenarios considered for

performance assessment. The first approach consists in computing, for each
solution, a single objective vector corresponding to the worst-case (zworst) and
to the average-case (zavg), as explained in Section 4.2.1. As a consequence,
each solution is now associated to a single objective vector aggregating the
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information related to uncertainty according to the worst- or the average-
case.

I-value Level Approach. The second approach is based on the indicator val-
ues obtained by the approximation sets found by the algorithms. Let A and
B be two solution sets obtained by two different algorithms on the same prob-
lem instance. To each solution x ∈ A is associated a set of objective vectors
{z(1)k , z

(2)
k , . . . , z

(q)
k } of size q, and to each solution x′ ∈ B is associated a set

of objective vectors {z′(1)k , z
′(2)
k , . . . , z

′(q′)
k } of size q′. Once again, two cases

may arise: either the objective samples are paired (then q = q′), or they are
independent. In the following, we assume that they are paired, even if the
reasoning can easily be adapted to the case of independent samples. We as-
sume that an algorithm A has obtained r approximations for a given instance,
issued from r independent executions. If we consider a single scenario s ∈ S,
a classical analysis can be performed, with respect to a given indicator I. As
a consequence, we obtain a set of r scalar values {I(A1), I(A2), . . . , I(Ar)},
where I(Ai) is the value obtained by the ith execution of the algorithm A
with respect to indicator I and scenario s. Now, if we consider q scenarios
simultaneously, we obtain the following set of I-values:

exec. 1 exec. 2 · · · exec. r
scenario s1 I(A1

1) I(A1
2) · · · I(A1

r)
scenario s2 I(A2

1) I(A2
2) · · · I(A2

r)
...

...
... · · ·

...
scenario sq I(Aq

1) I(Aq
2) · · · I(Aq

r)

Then, for a given execution j ∈ r, we compute the corresponding I-value
with respect to the worst-case and to the average-case of the following set:
{I(A1

j), I(A
2
j), . . . , I(A

r
j)}. This is performed for all the algorithms. There-

fore, a single (scalar) I-value is obtained per algorithm, per instance and per

scenario. At last, we use a statistical test to determine if a given algorithm
obtains significantly better results than another algorithm with respect to
indicator I, and to worst- or average-case preferences.
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5.2. Experimental Design

5.2.1. Benchmark Instances

In order to experiment the different approaches introduced in the paper,
we propose a set of benchmark instances1 built from Taillard’s instances for
the single-objective FSP [40]. In the original instances, the processing times
are generated randomly, according to a uniform distribution pij ∈ U(0, 99).
These instances are extended here, first for the multi-objective case, then for
the uncertain case. These instances contain uncertain processing times and
due dates for different problem sizes.

Benchmark Instances for the Multi-objective FSP. First, we need to extend
the instances for the multi-objective case by adding a due date for every job.
These dates were fixed using a random value chosen between p × M and
p× (N +M − 1), where N stands for the number of jobs, M for the number
of machines and p for the average value of previously generated processing
times for the instance under consideration. Thus, a due date di roughly
lies between the average completion date of the first scheduled job and the
average completion date of the last scheduled job. An instance denoted by
N ×M × i represents the ith instance made of N jobs and M machines.

Benchmark Instances for the FSP with Uncertain Processing Times. To gen-
erate uncertain data, we apply the four probability distributions introduced
in Section 2 over initial deterministic processing times by means of a configu-
ration file. We choose to allow to configure this uncertainty over the machines
only, by specifying, for each machine, a probability distribution associated
with its parameters or some proportions depending on its central tendency.
Thus, there exists a correlation between all the processing times of a given
machine. Moreover, as in real-world problems, each time a randomness is
applied on an initial deterministic test instance using the same configuration
file, the processing times obtained in the resulting instances are different.

5.2.2. Implementation Issues

The uncertainty-handling indicators introduced in Section 4 and the re-
lated indicator-based evolutionary algorithms have all been implemented un-

1Benchmark instances for both the deterministic and the stochastic cases are all avail-
able at the following URL: http://www.lifl.fr/~liefooga/benchmarks/.
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der the ParadisEO-MOEO software framework2 [41]. ParadisEO-MOEO is
a white-box object-oriented C++ library dedicated to the reusable design,
implementation and analysis of metaheuristics for multi-objective optimiza-
tion. Note that the algorithms share the same base components for a fair
comparison between them.

The problem-related components designed for the FSP addressed in this
paper are given below. The solution representation is based on permutations
of size N , where N stands for the number of jobs for the instance under con-
sideration. The population is initialized with randomly generated solutions.
The crossover operator consists of a two-point crossover, and the mutation
operator consists of a shift (or insertion) mutation. Both variation operators
are described in [42].

5.2.3. Scenarios

In our experiments, we consider a set of (p+q) equally probable scenarios:
p scenarios devoted to the search process and q = 20 scenarios for the per-
formance evaluation process. Two p-values are here considered: p = 10 and
p = 20. These values correspond to an objective vector sample of size 10 and
20, respectively, associated with each solution. Every scenario corresponds
to a realization of the uncertain environmental parameters, i.e. processing
times. To create these scenarios, we use the stochastic models defined in
Section 2. Then, for a given instance, we generate p+ q independent scenar-
ios, for which the processing times follow different probability distributions
in the following way, where pij denotes the processing time of Job Ni on
Machine Mj .

• Uniform distribution: pij ∼ U(a = (1− α)× pij, b = (1 + α)× pij) ;

• Normal distribution: pij ∼ N (µ = pij , σ = α× pij) ;

• Exponential distribution: pij ∼ E(a = pij , λ = 1
α×pij

) ;

• Log-normal distribution: pij ∼ log-N (µ = log pij , σ = α× log pij).

In the following, we consider various distributions, i.e. the probability distri-
bution of the processing times is different on every machine. In any case, the

2ParadisEO is available for download at the following URL: http://paradiseo.

gforge.inria.fr.
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Table 1: Stopping condition: number of evaluations.
Instance Number of evaluations
20× 05× 01 500000
20× 05× 02 500000
20× 10× 01 1000000
20× 10× 02 1000000
20× 20× 01 2000000
50× 05× 01 5000000
50× 10× 01 10000000
50× 20× 01 20000000

central tendency of the distribution always corresponds to the deterministic
processing time pij for the instance under consideration. The α parameter
allows to tune the degree of deviation of the processing times. In the fol-
lowing, two α-values will be considered α ∈ {0.10, 0.20}. For instance, they
correspond to a deviation of ±10% and ±20% for a uniform distribution,
respectively.

5.2.4. Resolution Approaches under Study

The algorithms under consideration for the experiments correspond to the
four proposed indicators which are integrated in the IBEA algorithm. Fur-
thermore, we will also consider a naive approach based on a single scenario,
denoted by z1. The objective vector sample size associated with a solution
is then 1, and the resulting algorithm behaves like in the deterministic case.
Furthermore, we consider the approach proposed by Basseur and Zitzler [8],
which is based on an estimation of the expected IX-value associated with a
solution for the particular case of the ǫ-indicator. Furthermore, let us note
that the general concept of the objective vector level approach based on the
average-case is frequently encountered in the single-objective case [5], and
has been extended to multi-objective optimization in [26, 29], among others.

5.2.5. Parameter Setting

The remaining parameters are set as follows. First, the stopping condition
is based on a maximum number of evaluations, given in Table 1. As a
consequence, the higher the sample size, the lower the number of iterations
of the algorithm. This will allow us to evaluate the impact of the sample
size on the overall algorithm performance. The population size is set to
100 solutions. The crossover and mutation rates are set to 0.25 and 1.0,
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Table 2: Parameter setting used in the paper for the experimental analysis.

Description Parameter Value(s)
Algorithm

Solution representation Permutation
Population size 100

Crossover operator Two-point operator
Crossover rate 0.25

Mutation operator Shift (insertion) operator
Mutation rate 1.0

Objective vector level indicator IZ IZ,ǫ

Uncertainty-handling solution level indicator IX {Iz
1

X , Iz
worst

X , Iz
avg

X , Iworst
X , I

avg
X }

Stopping condition (number of evaluations) (see Table 1)
Instances

Number of jobs N {20, 50}
Number of machines M {5, 10, 20}

Deviation level α {0.10, 0.20}
Number of scenarios (search process) p {10, 20}

Number of scenarios (performance assessment) q 20

respectively. A summary of all the parameters used in the paper is given in
Table 2.

5.3. Experimental Results

First of all, notice that only the results related to a different distribu-
tion for each machine are presented. We also experimented our approaches
for each probability distribution separately (i.e. uniform distribution only,
exponential distribution only, normal distribution only, and log-normal dis-
tribution only), but the results did not bring to light significant differences
with a different distribution over each machine. The worst-case and average-
case approaches are respectively compared with each other according to the
two performance assessment process presented in the paper. For instance,
the comparison with respect to the average-case objective vector values is
performed only on the approaches zavg and Iavg. First, we compare our ap-
proaches to the one proposed by Basseur and Zitzler [8]. The latter method
is based on an estimation of the expected value of the IZ,ǫ-values associated
with a solution. The corresponding algorithm is much more time-consuming
than our proposed algorithms. Furthermore, its performance is not compet-
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itive with respect to the performance assessment used in the paper. This is
the reason why numerical results for this approach are omitted in the paper.

Table 3 and Table 4 provide computational results with respect to the
objective vector level performance assessment approach for the worst-case
and the average-case, respectively. Table 5 and Table 6 are the counterpart
for the I-value level performance assessment. For each instance and each
algorithm, the values reported in the tables number of algorithms that obtain
significantly better results for the instance under consideration. A value of
‘0’ means that no other algorithm performs significantly better than the one
under consideration.

First, let us remark that uncertainty-handling evolutionary algorithms
obtained an overall better performance than z1, where a single scenario is
considered. The only instance where z1 performs significantly better than
the other algorithms is 20 × 10 × 01, for worst-case objective vector values.
This proves that deterministic approaches cannot compete, even with very
basic uncertainty-handling approaches. With respect to the representative
objective vector, there is no significant difference between indicator level
and objective vector level approaches for high deviations on the processing
times (α = 0.20), but the former generally outperforms the latter for a
small deviation (α = 0.10). We can also remark the very good performance
of the average-case objective vector approach when considering an average-
case performance assessment protocol. With respect to the I-value level
performance assessment, there is generally no significant difference between
indicator level and objective vector level approaches for α = 0.10, even if the
latter seems to be slightly better. On the contrary, for a higher deviation
(α = 0.20), it appears that indicator level approaches perform better most of
the time. At last, with regards to the influence of the sample size associated
with a solution (the number of scenarios), it seems that it is related to the
level of deviation of the processing times. Indeed, in most cases, for a given
resolution approach, a sample of size of p = 10 achieves better results for
a deviation degree of α = 0.10, whereas a sample of size p = 20 performs
better for a deviation degree of α = 0.20.

6. Discussion

This paper deals with the modeling of multi-objective optimization prob-
lems in uncertain environments, and with the design and analysis of evolu-
tionary algorithms to tackle them. We argued that many real-world applica-
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Table 3: Algorithm comparison according to the worst-case objective vector values.
I−Ω,H

I1Ω,ǫ+

z1 zworst Iworst z1 zworst Iworst

10 20 10 20 10 20 10 20
α = 0.10

20× 05× 01 4 0 2 0 2 4 0 2 0 2
20× 05× 02 4 0 0 0 1 4 0 0 0 0

20× 10× 01 2 0 0 1 3 1 0 0 3 3
20× 10× 02 4 1 0 0 1 4 1 2 0 0

20× 20× 01 4 2 1 0 0 4 2 0 0 0

50× 05× 01 3 0 0 0 1 2 0 0 2 2
50× 10× 01 4 0 1 0 0 4 0 1 0 0

50× 20× 01 4 1 0 0 0 4 2 1 1 0

α = 0.20
20× 05× 01 4 3 0 0 1 4 2 0 0 0

20× 05× 02 4 1 3 0 1 4 2 3 1 0

20× 10× 01 3 0 0 2 0 4 1 0 2 0

20× 10× 02 0 3 2 1 1 0 3 2 0 0

20× 20× 01 4 2 1 0 1 4 1 1 0 1
50× 05× 01 3 3 1 2 0 3 3 1 1 0

50× 10× 01 4 2 3 0 1 4 2 3 0 1
50× 20× 01 4 3 0 1 0 4 3 0 0 0

Table 4: Algorithm comparison according to the average-case objective vector values.
I−Ω,H

I1Ω,ǫ+

z1 zworst Iworst z1 zworst Iworst

10 20 10 20 10 20 10 20
α = 0.10

20× 05× 01 1 0 3 0 3 1 0 3 0 3
20× 05× 02 3 0 1 2 2 2 0 0 2 2
20× 10× 01 1 0 1 1 3 1 0 1 3 3
20× 10× 02 0 0 0 0 2 1 0 0 2 3
20× 20× 01 4 0 0 0 3 4 0 0 0 3
50× 05× 01 2 0 0 3 3 1 0 0 3 3
50× 10× 01 3 0 1 1 3 3 0 1 2 3
50× 20× 01 4 0 0 2 1 4 0 0 2 2

α = 0.20
20× 05× 01 4 0 0 0 1 4 0 0 0 2
20× 05× 02 4 0 0 0 3 4 0 0 0 3
20× 10× 01 4 0 0 3 2 3 0 0 3 2
20× 10× 02 0 0 0 0 0 0 0 0 0 0

20× 20× 01 4 1 0 2 0 4 1 0 1 0

50× 05× 01 4 0 1 2 3 3 0 1 2 3
50× 10× 01 4 0 0 3 0 4 0 0 3 2
50× 20× 01 4 1 0 3 1 4 1 0 1 1
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Table 5: Algorithm comparison according to the worst-case indicator values.
I−Ω,H

I1Ω,ǫ+

z1 zworst Iworst z1 zworst Iworst

10 20 10 20 10 20 10 20
α = 0.10

20× 05× 01 4 0 2 0 0 4 0 0 0 0

20× 05× 02 3 2 2 0 0 2 2 1 0 0

20× 10× 01 3 0 1 2 2 1 0 0 2 2
20× 10× 02 2 2 3 0 0 3 0 2 0 0

20× 20× 01 4 1 1 0 0 4 0 0 0 0

50× 05× 01 1 0 2 0 2 0 0 0 1 3
50× 10× 01 4 1 2 0 1 4 0 0 0 2
50× 20× 01 4 2 2 0 0 4 1 1 1 0

α = 0.20
20× 05× 01 4 3 1 0 0 4 2 2 0 0

20× 05× 02 4 2 2 0 1 4 2 2 0 0

20× 10× 01 3 3 1 1 0 2 2 1 2 0

20× 10× 02 2 2 2 0 0 2 2 2 0 0

20× 20× 01 2 2 2 0 0 2 2 2 1 0

50× 05× 01 3 2 2 0 1 2 2 2 0 0

50× 10× 01 3 2 2 0 1 4 2 2 0 0

50× 20× 01 4 2 2 0 0 3 2 2 0 0

Table 6: Algorithm comparison according to the average-case indicator values.
I−Ω,H

I1Ω,ǫ+

z1 zworst Iworst z1 zworst Iworst

10 20 10 20 10 20 10 20
α = 0.10

20× 05× 01 2 0 2 0 2 4 0 2 0 2
20× 05× 02 4 0 0 0 1 4 0 0 2 0

20× 10× 01 2 0 1 2 2 2 0 0 3 2
20× 10× 02 2 0 0 0 2 1 0 0 1 2
20× 20× 01 4 0 0 0 0 4 0 0 0 2
50× 05× 01 2 0 1 2 3 2 0 0 3 3
50× 10× 01 4 0 1 1 3 3 0 1 2 3
50× 20× 01 4 1 0 3 1 4 1 0 3 2

α = 0.20
20× 05× 01 4 0 0 0 0 4 0 0 0 0

20× 05× 02 4 2 1 0 0 4 2 1 0 0

20× 10× 01 4 2 0 3 1 3 1 0 3 1
20× 10× 02 4 1 2 0 0 4 1 2 0 0

20× 20× 01 4 3 1 2 0 4 2 1 2 0

50× 05× 01 4 0 1 1 1 4 0 1 2 2
50× 10× 01 4 1 1 0 0 4 1 0 0 0

50× 20× 01 4 3 1 1 0 4 3 1 1 0

28



tions, especially in scheduling, involve some sort of uncertainty, and multiple
objective functions. This uncertainty may come from many different sources,
such as the objective function(s), the decision variables or the environmen-
tal parameters. We formulated a bi-objective flowshop scheduling problem
with uncertain processing times. Even if uncertainty-handling optimization
is reasonably studied in the single-objective case, this research area is very
limited in multi-objective optimization. However, with a reasonable effort,
evolutionary algorithms can be adapted to such problems. When dealing
with uncertainty, we show that the basic concept often results on the com-
parison of sample sets, from the decision space to the objective space. Then,
we proposed new methodological approaches, based on evolutionary compu-
tation, for multi-objective optimization under uncertainty. They are based
on an additional level to be defined within an indicator-based fitness assign-
ment. Some of them are based on the aggregation of the objective vector
sample, other are applied at a more fine-grained level, through the pairwise
comparison of solutions by means of a binary quality indicator applying to
objective vectors. We discussed the issue of performance assessment in such
context. Then, we applied and experimented our evolutionary algorithms
to the multi-objective scheduling problem under uncertainty investigated in
the paper. Our results show that taking uncertainty into account is a cru-
cial issue to obtain good-quality solutions subject to uncertain environmental
parameters. Moreover, we show that the sample size (number of scenarios)
considered during the resolution process has a large impact on the perfor-
mance of the algorithms. In particular, the higher the deviations over pro-
cessing times, the larger the number of scenarios to be taken into account.
At last, objective vector level approaches appear to slightly outperform indi-
cator level approaches for small noise over processing times, while the latter
outperforms the former for a higher noise level.

In future works, we plan to study more deeply the impact of the remaining
parameters over the performance of our algorithms. Moreover, many issues
remain open with regard to the modeling, the resolution and the performance
assessment of multi-objective optimization in uncertain environments. In
particular, during our experiments, we found that taking uncertainty into
account proved to be very expensive in terms of computational time, due to
the high number of evaluations required per solution, and to the increase on
the cardinality of sets to be compared during the search process. Therefore,
we believe that parallel computing has a major role to play in solving such
problems, especially for real-world applications where the evaluation step

29



often requires significant computational resources.
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