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Abstract
In this article, a local search approach is proposed for three variants of the bi-objective
binary knapsack problem, with the aim of maximizing the total profit and minimiz-
ing the total weight. First, an experimental study on a given structural property of
connectedness of the efficient set is conducted. Based on this property, a local search
algorithm is proposed and its performance is compared against exact algorithms in
terms of running time and quality metrics. The experimental results indicate that this
simple local search algorithm is able to find a representative set of optimal solutions in
most of the cases, and in much less time than exact algorithms.
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1 Introduction

Problems arising in multi-objective combinatorial optimization (MoCO) are difficult to
solve. For most MoCO problems, the number of efficient solutions is very large, and
determining if a feasible solution is optimal is NP-complete (Ehrgott, 2000). Learning
about the problem structure helps to understand those difficulties and to design better
algorithms. Stochastic local search algorithms have been successfully applied to many
MoCO problems. It is widely accepted that their good performance is related to some
structural properties of the search space that allow local search procedures to find rea-
sonably good quality solutions in an effective manner. However, little is known about
which properties these are, and how they can affect the performance of the class of
multi-objective local search algorithms.

In this article, the notion of connectedness (Ehrgott and Klamroth, 1997) of the set of
efficient solutions for MoCO problems (also known as the efficient set) is analyzed from
an experimental point of view. The main results of this analysis is then related to the
performance of a particular class of multi-objective local search algorithms. Specifically,
a Pareto-based approach, combining local search principles with the use of a population
of solutions, is investigated. It is based on the Pareto Local Search (PLS) algorithm (Pa-
quete et al., 2007). PLS is a simple and straightforward extension of local search for
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the multi-objective case. Existing algorithms from evolutionary multi-objective opti-
mization share similar principles with PLS, like PAES (Knowles and Corne, 2000) or
SEMO (Laumanns et al., 2004). Those algorithms combine the definition of a neigh-
borhood structure with the management of an archive of potentially efficient solutions
found so far. This archive is iteratively improved by exploring the neighborhood of its
own content until no further improvement is possible, or another stopping condition is
satisfied. A detailed explanation of the principles of these algorithms can be found in
(Liefooghe et al., 2011a).

For a given efficient set of a MoCO problem instance, a graph can be constructed
such that each node represents an efficient solution and an edge connects two nodes
if the corresponding solutions are neighbors for a given neighborhood structure. The
efficient set is connected with respect to that neighborhood structure if the underly-
ing graph is also connected, that is, there is a path between any pair of nodes. If the
efficient set is connected and the neighborhood structure is tractable from a computa-
tional point of view, local search algorithms would be able to find the efficient set in a
very effective manner by starting with at least one efficient solution. Moreover, such a
local search approach has a strong advantage since it provides solutions both in objec-
tive and decision space. However worst-case results have shown that the efficient set
for many MoCO problems is not connected in general with respect to different neigh-
borhood structures (Ehrgott and Klamroth, 1997; Gorski et al., 2011), except for very
few particular cases, including bi-objective knapsack problems with constant sum and
equal weighted items (Gomes da Silva et al., 2004), three-objective knapsack problems
with binary weights (Gorski et al., 2012), as well as bi-objective matroid problems with
at least one binary sum objective (Gorski, 2010). Moreover, some recent results indi-
cate that approximate solutions that are obtained from independent metaheuristic runs
on the bi-objective traveling salesman problem are strongly clustered with respect to
small-sized neighborhood structures (Paquete and Stützle, 2009), i.e. there exists very
few connected components, and most efficient solutions belong to the same component.
In terms of problem-solving, the present results may be relevant for other applications
and other Pareto local search variants or hybrid algorithms (Dubois-Lacoste et al., 2011;
Liefooghe et al., 2011a; Lust and Teghem, 2010).

Recently, we analyzed the connectedness of two bi-objective knapsack problem
formulations (Liefooghe et al., 2011b). In this article, we extend the analysis to an
additional variant, we examine all problems in detail and we give more insights on
the experimental study. In particular, the connectedness property is here investigated
experimentally for three variants of the bi-objective binary knapsack problem: The bi-
objective unconstrained knapsack problem (BUKP), the bi-objective knapsack problem
with bounded cardinality (BKP-BC), and the bi-objective knapsack problem with fixed
cardinality (BKP-FC). Those problems are all NP-hard and intractable in the general
case (Ehrgott, 2000). The experimental results suggest that the efficient set for the three
problems is very often connected with respect to elementary neighborhood structures,
despite of the negative results for the general problem (Gorski et al., 2011). Based
on these positive findings, we adapt a local search algorithm that exploits this prop-
erty and we compare its performance with dynamic programming (DP) algorithms in
terms of running-time, number and quality of solutions found. A special technique is
introduced that allows the early termination of the complete neighborhood exploration
without harming algorithmic performance in terms of solution quality.

The article is organized as follows. The three variants of the bi-objective knap-
sack problem (i.e. BUKP, BKP-BC and BKP-FC) are presented in Section 2. Section 3

2 Evolutionary Computation Volume x, Number x



On local search for bi-objective knapsack problems

provides a connectedness analysis for BUKP, BKP-BC and BKP-FC, respectively. More-
over, the section presents the exact approaches for the corresponding problems too.
The local search algorithm is introduced in Section 4, together with numerical results
obtained on a large set of bi-objective knapsack problem instances of different structure
and size. Finally, Section 5 presents conclusions and further work.

2 Bi-objective Knapsack Problems

This section introduces three variants of the binary bi-objective knapsack problem.
Some definitions related to MoCO are given, and we detail the set of problem instances
that will be used in the experiments.

2.1 Knapsack Problems

The original (single-objective) 0/1 knapsack problem can be stated as follows.

max

n
∑

i=1

pixi

s.t.
n
∑

i=1

wixi 6 W

(KP)

where p = (p1, p2, . . . , pi, . . . , pn) is the profit vector, pi ∈ N representing the amount
of profit on item i, i ∈ {1, . . . , n}, and x = (x1, x2, . . . , xi, . . . , xn) with xi = 1 if the
item i is included in the subset of selected items (the knapsack) and xi = 0 otherwise;
w = (w1, w2, . . . , wi, . . . , wn) is the weight vector, wi ∈ N representing the amount of
investment on item i, i ∈ {1, . . . , n}; and W is the overall amount available or budget.
The sum of profits and the sum of weights of a given solution x are denoted by p(x)
and w(x), respectively.

2.2 The Bi-objective Unconstrained Knapsack Problem

By transforming the capacity constraint of Problem (KP) into an objective function,
the following bi-objective unconstrained knapsack problem (Ehrgott, 2000), BUKP for
short, can be obtained as follows.

vmax {p(x),−w(x)} (BUKP)

A proper meaning to the operator “vmax” of the problem above is given as follows.
Let X denote the set of feasible solutions of Problem (BUKP). The image of the feasible
solutions when using the vector maximizing function defines the feasible region in the
objective space, denoted here by Z ⊆ N

2. A feasible solution x ∈ X is efficient if there
does not exist another feasible solution x′ ∈ X such that p(x′) ≥ p(x) and w(x′) ≤ w(x),
with at least one strict inequality in one of above (or (p(x′),−w(x′)) ≥ (p(x),−w(x))).
A vector z ∈ Z is nondominated if there is some efficient solution x ∈ X such that
z = (p(x),−w(x)). A vector z ∈ Z dominates a vector z′ ∈ Z (or z′ is dominated by z) if
z ≥ z′ holds. If neither z 6≥ z′ nor z′ 6≥ z holds, then both are mutually nondominated.
The set of all efficient solutions and the set of nondominated vectors are called the
efficient set and the nondominated set, respectively. One of the most challenging issues
related to MoCO relies on the identification of a minimal complete efficient set, that is, the
smallest subset of the efficient set whose image coincides with the nondominated set.
Note that this subset may not be unique, since multiple solutions can map to the same
nondominated vector.
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Table 1: Instances investigated in the article for the experimental analysis.

Description Parameter Set of values
Problem size n {100, 200, . . . , 1000}

Data correlation ρ {−0.8,−0.4, 0.0, 0.4, 0.8}
Cardinality bound k {n/10, n/5, n/2}

2.3 The Bi-objective Knapsack Problem with Bounded Cardinality

The bi-objective knapsack problem with bounded cardinality (BKP-BC) extends the
BUKP that is obtained by limiting the number of chosen items by a cardinality
bound (k). The formulation of BKP-BC is as follows.

vmax {p(x),−w(x)}

s.t.
n
∑

i=1

xi 6 k
(BKP-BC)

where k gives the maximum number of items allowed in the knapsack. In the problem
above, the operator “vmax” follows the same meaning as in Problem (BUKP). The
same terminology and notation will be used for this problem.

2.4 The Bi-objective Knapsack Problem with Fixed Cardinality

Finally, the bi-objective knapsack problem with fixed cardinality (BKP-FC) is a variant
of BKP-BC where the cardinality is fixed, i.e. a fixed number of items must be in the
knapsack.

vmax {p(x),−w(x)}

s.t.
n
∑

i=1

xi = k
(BKP-FC)

The same terminology and notation is also used for this problem.

2.5 Problem Instances

BUKP instances are defined with two parameters: problem size (n) and correlation be-
tween profit and weight vectors (ρ). Both parameters influence the size of the efficient
set. The corresponding results are given as supplementary material (Liefooghe et al.,
2012). The positive (negative, respectively) data correlation increases (decreases, re-
spectively) the degree of conflict between the two objectives. The size of the instances
and the correlations are given in Table 1. Profit and weight integer values are ran-
domly generated according to a uniform distribution in [100, 1000]. The generation of
correlated data follows the procedure given by Verel et al. (2011), based on a multivari-
ate uniform law of dimension 2 and a correlation coefficient. In addition to n and ρ,
several different values for the cardinality bound (k) are considered for BKP-BC and
BKP-FC. They are given in Table 1. For each problem size, data correlation and (if ap-
ply) cardinality bound, we consider 30 different and independent instances generated
at random.

3 Connectedness Analysis

This section reports an experimental analysis on the connectedness property of the ef-
ficient set for the three problems investigated in the article.
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3.1 Neighborhood Structures

First, let us introduce the neighborhood structures considered for the experimental
analysis: the 1-flip, the 1-exchange and the 1-flip-exchange neighborhoods. Two feasible
solutions are 1-flip neighbors if they differ exactly on one bit. In other words, a given
neighbor can be reached by adding or removing one item from the current solution.
Hence, this neighborhood structure is directly related to the Hamming distance be-
tween binary strings. As for the 1-exchange neighborhood, two feasible solutions are 1-
exchange neighbors if one can be obtained from the other by exchanging two items. The
1-flip-exchange neighborhood is an extension of the two neighborhoods above. Two fea-
sible solutions are 1-flip-exchange neighbors if one can be obtained from the other by ex-
changing two items, adding one item, or removing one item. The use of 1-exchange and
1-flip-exchange neighborhoods for the problems with cardinality constraint is motivated
by the assumption that many efficient solutions have the same cardinality. The size
of the neighborhood is linear with n for the 1-flip neighborhood structure, while it is
quadratic in the case of 1-exchange and 1-flip-exchange. Those neighborhood structures
are related to the ones used by Gorski et al. (2011) for a similar class of knapsack prob-
lems.

3.2 Connectedness Analysis for BUKP

This section describes an experimental analysis for investigating the influence of the
problem size and the degree of conflict between the two objectives on the connected-
ness property of the efficient set for BUKP. A multi-objective dynamic programming
algorithm (MDP-BUKP) is implemented to compute the efficient set. This algorithm
consists of the first phase of the Nemhauser-Ullman algorithm for the single-objective
binary knapsack problem (Nemhauser and Ullman, 1969). It has been shown to be the-
oretically efficient for several input data distributions (Beier and Vöcking, 2004). The
MDP-BUKP sequential process consists of n stages. At any stage i ∈ {1, . . . , n}, the al-
gorithm generates a set of states Si, which represents promising feasible solutions made
up of the first i items, i ∈ {1, . . . , n}. A state s = (sp, sw) ∈ Si represents a feasible
solution of profit sp and weight sw. The MDP-BUKP algorithm follows the recursion:

Si := vmax {(sp + pi, s
w − wi), s ∈ Si−1}

for i ∈ {1, . . . , n}, with the basis case S0 := {(0, 0)}. Operator “vmax” returns the states
that are mutually nondominated in Si. At the last stage n, the set Sn corresponds to
the nondominated set. In order to obtain the efficient set with the MDP-BUKP algo-
rithm, a binary string is maintained with each state and updated accordingly during
the sequential process. For this reason, the implementation keeps states with the same
component values. Only two sets of states are maintained during the overall sequential
process since, at any stage i > 0, only set Si−1 is required. The code is written in C++
using the STL library.

For the connectedness analysis, the outcome of MDP-BUKP consists of the maxi-
mal complete efficient set. The 1-flip and the 1-flip-exchange neighborhood structures are
considered for this problem. Gorski et al. (2011) theoretically show that the BUKP ef-
ficient set is not connected in the general case with respect to the 1-flip neighborhood
operator. For each neighborhood, an adjacency matrix is built, indicating whether each
two efficient solutions are neighbors or not. Based on this matrix, the connectedness of
the corresponding efficient graph is tested. First, for those set of instances, the efficient
set is always connected with respect to the 1-flip-exchange neighborhood. In addition,
for each instance, we compute the proportion of connected solutions over the efficient
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Table 2: Proportion of the largest connected component and number of unconnected
solutions on the graph of efficient solutions of BUKP instances with respect to the
1-flip neighborhood (%larg and #miss, respectively). Average values, respectively
rounded at 10−1 and 100, are reported.

ρ = −0.8 ρ = −0.4 ρ = 0.0 ρ = 0.4 ρ = 0.8
n %larg #miss %larg #miss %larg #miss %larg #miss %larg #miss

100 100.0 0 100.0 0 100.0 0 100.0 0 100.0 0
200 100.0 1 100.0 0 100.0 0 100.0 0 100.0 0
300 100.0 1 100.0 0 100.0 0 100.0 0 100.0 1
400 100.0 0 100.0 1 100.0 1 100.0 1 100.0 1
500 100.0 1 100.0 0 100.0 1 100.0 1 100.0 3
600 100.0 1 100.0 1 100.0 1 100.0 0 100.0 1
700 100.0 1 100.0 1 100.0 1 100.0 1 100.0 3
800 100.0 1 100.0 1 100.0 1 100.0 1 100.0 2
900 100.0 1 100.0 1 100.0 2 100.0 2 100.0 2

1000 100.0 2 100.0 3 100.0 1 100.0 2 100.0 2

set induced by the 1-flip neighborhood. Table 2 gives this average ratio of the largest
connected component of the efficient graph, as well as the average number of solutions
that are not connected to this largest connected component. Both numbers are rounded
to the nearest value. Many instances are connected with respect to this smaller neigh-
borhood structure. Moreover, although the correlation in the input data influences the
size of the efficient set, more than 99.9% of efficient solutions belong to the same graph
component for all the instances we investigated. As well, very few solutions are miss-
ing in average, i.e. at most 3 efficient solutions out of 89851 in the worst case (n = 500,
ρ = 0.8).

3.3 Connectedness Analysis for BKP-BC

The efficient set of BKP-BC is computed by means of a multi-objective dynamic pro-
gramming algorithm (MDP-BKP-BC), that extends the MDP-BUKP algorithm given in
Section 3.2. This algorithm has (k ·n) stages. At each stage, the algorithm generates the
set T(i,j) of states, which represents a set of potential efficient solutions made up of the
first i items, i ∈ {1, . . . , n}, with cardinality j, j ∈ {1, . . . , k}. A state t = (tp, tw) ∈ T(i,j)

represents a feasible solution of profit tp and weight tw. This approach follows the
recurrence relation:

T(i,j) := vmax
{

T(i−1,j) ∪
{

(ts + pi, t
w − wi), t ∈ T(i−1,j−1)

}}

for i ∈ {1, . . . , n} and j ∈ {1, . . . , k}, with the basis cases T(i,0) := {(0, 0)}, for
i ∈ {0, . . . , n} and T(0,j) := {(0, 0)} for j ∈ {0, . . . , k}. The nondominated set of states

is given by the set vmax
{

T(n,0) ∪ · · · ∪ T(n,k)

}

. The implementation follows the same
principles presented in Section 3.2 for the MDP-BUKP algorithm. However, the imple-
mentation of MDP-BKP-BC has to keep 2(k + 1) sets during the overall process, since
at each state i ∈ {1, . . . , n}, the sets T(i,j) and T(i−1,j), for j ∈ {0, . . . , k} are required.
For this reason, MDP-BKP-BC should take more time than MDP-BUKP for the same
instance size.

First, let us note that MDP-BKP-BC did not find the efficient set for the following
instances, due to an overload of RAM resources available: k = n/2, ρ ∈ {0.4, 0.8}, and
n ∈ {800, 900, 1000}. In the same way than for the BUKP, we did not find any instance
whose efficient set is not connected with respect to the 1-flip-exchange neighborhood.
These results corroborate those of Gorski et al. (2011) for much smaller instances (up
to 100 items). However, as reported in Table 3, and differently from the connectedness

6 Evolutionary Computation Volume x, Number x



On local search for bi-objective knapsack problems

Table 3: Proportion of the largest connected component and number of unconnected
solutions on the graph of efficient solutions of BKP-BC instances with respect to the
1-flip neighborhood (%larg and #miss, respectively). Average values, respectively
rounded at 10−1 and 100, are reported.

ρ = −0.8 ρ = −0.4 ρ = 0.0 ρ = 0.4 ρ = 0.8
n %larg #miss %larg #miss %larg #miss %larg #miss %larg #miss

k = n/10
100 93.2 23 73.6 57 66.6 120 57.7 150 58.2 286
200 90.4 81 72.5 214 58.9 320 55.0 457 59.5 908
300 89.7 157 71.9 447 58.8 650 55.1 853 60.2 1424
400 88.7 262 71.5 658 57.1 1060 54.8 1464 61.9 2565
500 88.9 346 71.4 1031 58.6 1698 55.3 2487 63.3 3236
600 89.1 369 71.8 1190 56.4 2104 54.9 3021 62.5 4978
700 88.5 555 72.1 1467 56.6 2662 55.4 4035 63.8 5569
800 89.7 557 72.7 1698 57.0 3551 55.5 4815 63.0 6842
900 89.1 767 72.1 2096 56.4 4095 54.8 5949 63.0 8252

1000 89.0 946 70.7 2757 55.8 5041 55.3 7537 63.7 10389
k = n/5

100 92.3 40 75.5 142 66.9 270 60.1 444 58.1 809
200 90.5 168 75.2 409 63.9 780 55.9 1125 54.1 2188
300 90.8 280 75.1 818 63.5 1608 56.1 2498 53.9 4043
400 89.8 640 74.0 1606 61.4 2685 54.1 3870 54.7 6671
500 90.9 672 75.7 2024 61.2 3992 54.1 5942 55.7 9673
600 91.1 965 75.9 2595 61.1 4755 54.3 7973 54.6 15112
700 90.1 1303 73.6 3194 62.7 6186 53.9 10022 55.3 18096
800 90.3 1337 74.5 4604 61.1 8373 53.3 12586 54.7 21088
900 90.6 1580 74.3 4902 61.2 8987 53.7 15817 54.0 26504

1000 90.3 2006 74.0 6007 61.3 11909 52.9 18678 55.0 29719
k = n/2

100 97.3 49 91.2 210 86.1 303 83.1 604 80.4 920
200 97.0 241 90.6 671 84.4 1111 80.5 2220 77.7 5125
300 96.7 390 90.5 1057 85.6 1914 80.2 3889 77.0 8059
400 96.5 552 89.9 1963 84.5 3751 80.6 6158 77.7 11725
500 96.6 846 90.4 2423 85.0 4946 79.7 9524 76.3 19235
600 96.6 1228 90.2 3466 84.5 6688 80.8 11692 78.0 24240
700 96.3 1411 89.5 4898 84.5 8917 79.5 17144 76.1 35859
800 96.4 1673 89.5 5813 84.0 12024 – – – –
900 96.2 3489 89.4 9859 83.9 13635 – – – –

1000 96.3 2950 89.7 8811 84.6 15489 – – – –

results obtained for the first problem, no instance with an efficient set that is connected
with respect to the 1-flip neighborhood was found. The size of the largest connected
component of the efficient graph varies from more than 50%up to 97% of the cardinality
of the efficient set. This proportion decreases with the increase of data correlation, and
with the decrease of the cardinality bound.

3.4 Connectedness Analysis for BKP-FC

The multi-objective dynamic programming algorithm for BKP-FC (MDP-BKP-FC) is
based on MDP-BKP-BC. The implementation follows the same principles. The only
difference is on the computation of the nondominated set, which is now given by the
set vmax

{

T(n,k)

}

.
Given that all feasible solutions from BKP-FC must have the same number of items

in the knapsack to satisfy the constraints, the 1-exchange neighborhood was considered
for the connectedness analysis. Let us remark that MDP-BKP-FC was not able to solve
the following large-size instances due to an overload of RAM resources available: k =
n/2, ρ = 0.8 and n ∈ {900, 1000}. However, we did not find any unconnected case for
all the other instances; see supplementary material for details (Liefooghe et al., 2012).
This extends known results from Gorski (2010), based on the connectedness of the BKP-
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Algorithm 1 Pseudo-code of the Pareto Local Search algorithm

Input: n ∈ N

p,w ∈ N
n

x0 ∈ X
Output: Set VT

1: VF := {x0}
2: VT := ∅
3: while VF 6= ∅ do
4: select x⋆ from VF

5: VF := VF \ {x⋆}
6: VT := VT ∪ {x⋆}
7: for all x ∈ N (x⋆) do
8: if {x′ | x′ ∈ VF ∪ VT , (p(x

′),−w(x′)) ≥ (p(x),−w(x))} = ∅ then
9: VF := {x′ | x′ ∈ VF , (p(x),−w(x)) 6≥ (p(x′),−w(x′))}

10: VT := {x′ | x′ ∈ VT , (p(x),−w(x)) 6≥ (p(x′),−w(x′))}
11: VF := VF ∪ {x}
12: end if
13: end for
14: end while
15: return VT

FC weakly efficient set and on Hamming distance 2.

4 Local Search for Bi-objective Knapsack Problems

This section reports an experimental analysis on the performance of a local search algo-
rithm applied to several instances of the bi-objective knapsack problems under study.

4.1 Local Search Algorithm

The local search algorithm for all problems is based on the Pareto Local Search (PLS)
(Paquete et al., 2007). The pseudo-code is given in Algorithm 1. For the sake of sim-
plicity, let us assume that all feasible solutions have a distinct image in the objective
space. Two archives of nondominated solutions are maintained, VT and VF , respec-
tively. Archive VT contains the set of solutions whose neighborhood has already been
explored, while VF contains the remaining ones. PLS starts with a feasible solution
that initializes the archive. Then, at each iteration, a solution is chosen from VF , and
its neighborhood is explored (N (x) denotes the feasible neighbors of a given solution
x ∈ X). All the nondominated neighboring solutions are used to update VF and dom-
inated solutions are discarded from VF and VT . The algorithm terminates once VF is
empty. This algorithm stops naturally when a Pareto local optimum set is found, it does
not cycle, and if connectedness of the efficient set holds, it is able to identify a minimal
complete set by starting with at least one efficient solution (Paquete et al., 2007).

In the following, some particular details of the implementation are described.

• Selection. At each iteration of the algorithm, the solution from VF with the smallest
profit value is selected (Algorithm 1, line 4).

• 1-flip neighborhood exploration. In order to perform the 1-flip neighborhood explo-
ration in an efficient manner, a preliminary step, applied before the search pro-
cess, ranks the items into different layers, with respect to the dominance-depth rank-
ing (Goldberg, 1989). For instance, this ranking is performed between solutions in
the NSGA-II algorithm (Deb et al., 2002). Two different ranks are required to cover
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Figure 1: Dominance-depth ranking of items for the exploration of the neighborhood
(left: ranking for adding, right: ranking for deleting).

the cases of adding and deleting an item. This ranking is illustrated in Fig. 1. Let Lk

denote the set of items in the k-th layer and let i ∈ Lk and j ∈ Ll, with k < l. Then,
for the case of the addition, it holds that (pj ,−wj) 6≥ (pi,−wi). Let us consider
an arbitrary solution x⋆ ∈ X . The neighborhood exploration starts by examining
the items in the first layer, and proceeds with the items in the subsequent layers.
For each item i such that x⋆

i = 0, the corresponding neighboring solution x with
xi = 1 and xj = x⋆

j for j 6= i, is (incrementally) evaluated and is used to update the
archive. Within a given layer, the exploration follows the nondecreasing order of
the weight values. The exploration stops once no item of a given layer Lk belongs
to the current solution, i.e. ∀i ∈ Lk, x⋆

i = 0. Indeed, it is not worth looking into
subsequent layers because all the corresponding neighboring solutions are neces-
sarily dominated by at least one neighboring solution built from Lk. For the case
of deletion, a similar reasoning applies with the corresponding changes.

• 1-exchange neighborhood exploration. In order to exchange pairs of items more ef-
ficiently, the following pre-processing procedure is applied. First, for each item
i ∈ {1, . . . , n}, a set of (n − 1) tuples record the profit and weight difference with
respect to every other item j 6= i. Hence, a tuple gives the difference, in terms
of profit and weight values, of adding item i and removing item j in a knapsack.
Then, these (n− 1) tuples are ranked in terms of dominance-depth for every item.
When considering the exchange of item i with another item, the exploration fol-
lows the order given by the dominance-depth, with respect to the nondecreasing
order of the weights for items within the same layer. The exploration stops when
no item of a given layer belongs to the current solution. The exploration is iterated
for every item inside the current solution.

• 1-flip-exchange neighborhood exploration. For this neighborhood, the same reasoning
as above applies when adding or removing an item, and when exchanging two
items. Three steps are then performed during the pre-processing phase.

• Data structures. Archives VF and VT are implemented as red-black trees. The
removal of dominated solutions follows the algorithm of Kung et al. (1975).
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Table 4: Proportion of efficient solutions, number of missing solutions, and Iǫ-value of
efficient set approximations found by PLS–flip for BUKP instances (%eff, #miss and Iǫ,
respectively). Average values, rounded at 10−1, are reported.

ρ = −0.8 ρ = −0.4 ρ = 0.0 ρ = 0.4 ρ = 0.8
n %eff #miss Iǫ %eff #miss Iǫ %eff #miss Iǫ %eff #miss Iǫ %eff #miss Iǫ

100 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
200 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
300 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.2 1.0
400 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.1 1.0 1.0 0.1 1.0 1.0 0.0 1.0
500 1.0 0.1 1.0 1.0 0.0 1.0 1.0 0.1 1.0 1.0 0.1 1.0 1.0 0.1 1.0
600 1.0 0.1 1.0 1.0 0.1 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.1 1.0
700 1.0 0.1 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.1 1.0 1.0 0.2 1.0
800 1.0 0.2 1.0 1.0 0.1 1.0 1.0 0.1 1.0 1.0 0.1 1.0 1.0 0.3 1.0
900 1.0 0.2 1.0 1.0 0.0 1.0 1.0 0.1 1.0 1.0 0.3 1.0 1.0 0.2 1.0

1000 1.0 0.2 1.0 1.0 0.1 1.0 1.0 0.1 1.0 1.0 0.3 1.0 1.0 0.3 1.0
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Figure 2: CPU time in seconds (average value and deviation, given in log-scale) of
MDP-BUKP and PLS–flip for BUKP instances. Values below 0.1 seconds are not re-
ported to increase readability.

4.2 Experimental Analysis for BUKP

The dynamic programming algorithm MDP-BUKP and two PLS versions, based on the
1-flip and the 1-flip-exchange neighborhood structures, respectively denoted by PLS–
flip and PLS–flip-exchange, were run on the BUKP instances described in Section 2.5.
The PLS algorithms all start with the same initial efficient solution x0 = 0. This solution
maps, on the objective space, to an extreme point from the nondominated set, with null
profit and weight values. Our hope is that the local search algorithms will perform
efficiently due to the connectedness results reported in Section 3.2.

The implementation of MDP-BUKP was modified so that the outcome consists of
a minimal complete efficient set. All the algorithms share the same programming lan-
guage, data structures, compilation options and were run in the same machine. The
experiments were conducted on an Intel Core 2 Quad processor with 2.40 GHZ and
4GB RAM under Ubuntu 10.04. All codes were compiled with g++ version 4.4.3 using
the -O3 flag. The CPU-time taken by PLS–flip and MDP-BUKP for ρ = −0.4 and ρ = 0.4
is reported in Fig. 2. Similar relationship between performance of both implementa-
tions was obtained for the remaining correlation values (Liefooghe et al., 2012). Since
PLS–flip-exchange took always significantly more time than MDP-BUKP, the results of
the former are omitted. Table 4 presents the percentage of efficient solutions and the
number of missing solutions returned by PLS–flip, averaged over the results obtained
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Table 5: Proportion of efficient solutions, number of missing solutions, and Iǫ-value of
efficient set approximations found by PLS–flip for BKP-BC instances (%eff, #miss and
Iǫ, respectively). Average values, rounded at 10−1, are reported.

ρ = −0.8 ρ = −0.4 ρ = 0.0 ρ = 0.4 ρ = 0.8
n %eff #miss Iǫ %eff #miss Iǫ %eff #miss Iǫ %eff #miss Iǫ %eff #miss Iǫ

k = n/10
100 0.9 6.2 1.0 0.7 32.7 1.1 0.7 55.9 1.1 0.5 102.0 1.2 0.5 225.4 1.3
200 0.9 30.0 1.0 0.7 120.7 1.1 0.6 213.1 1.2 0.5 388.6 1.3 0.4 832.3 1.4
300 0.9 65.2 1.0 0.7 246.3 1.1 0.6 458.0 1.2 0.5 783.2 1.3 0.4 1641.3 1.4
400 0.9 128.1 1.0 0.7 408.0 1.1 0.6 778.0 1.2 0.5 1345.3 1.3 0.4 2876.6 1.4
500 0.9 190.0 1.0 0.7 630.2 1.1 0.6 1139.7 1.2 0.5 2078.9 1.3 0.4 4347.4 1.4
600 0.9 253.8 1.0 0.7 821.2 1.1 0.6 1612.1 1.2 0.5 2905.4 1.3 0.4 5936.8 1.4
700 0.9 354.5 1.0 0.7 1079.9 1.1 0.6 2112.3 1.2 0.5 3801.9 1.3 0.4 7855.3 1.4
800 0.9 409.4 1.0 0.7 1292.2 1.1 0.6 2610.0 1.2 0.5 4673.6 1.3 0.4 9421.1 1.4
900 0.9 525.1 1.0 0.7 1638.8 1.1 0.6 3254.1 1.2 0.5 5750.2 1.3 0.4 11619.5 1.4

1000 0.9 648.8 1.0 0.7 2076.4 1.1 0.6 3937.2 1.2 0.5 7001.7 1.3 0.4 14048.7 1.4
k = n/5

100 0.9 18.3 1.0 0.8 80.2 1.1 0.7 137.1 1.1 0.6 257.5 1.2 0.5 524.3 1.3
200 0.9 81.7 1.0 0.8 268.2 1.1 0.6 509.7 1.2 0.6 859.9 1.2 0.5 1826.4 1.3
300 0.9 159.7 1.0 0.8 540.1 1.1 0.6 1005.8 1.2 0.6 1798.5 1.2 0.5 3730.6 1.3
400 0.9 296.7 1.0 0.7 953.7 1.1 0.6 1875.2 1.2 0.5 3177.1 1.3 0.5 6401.9 1.3
500 0.9 403.7 1.0 0.8 1321.7 1.1 0.6 2746.7 1.2 0.5 4870.5 1.3 0.5 9895.4 1.4
600 0.9 543.4 1.0 0.8 1796.9 1.1 0.6 3781.7 1.2 0.5 6768.4 1.3 0.5 13245.3 1.4
700 0.9 784.8 1.0 0.7 2593.5 1.1 0.6 4718.2 1.2 0.5 8600.6 1.3 0.5 16922.8 1.4
800 0.9 972.2 1.0 0.7 3086.2 1.1 0.6 6190.5 1.2 0.5 10647.3 1.3 0.5 20682.9 1.4
900 0.9 1155.9 1.0 0.7 3839.8 1.1 0.6 7539.1 1.2 0.5 12832.6 1.3 0.5 24831.5 1.4

1000 0.9 1435.4 1.0 0.7 4670.4 1.1 0.6 8983.7 1.2 0.5 15663.6 1.3 0.5 30061.9 1.4
k = n/2

100 1.0 21.7 1.0 0.9 91.6 1.0 0.9 180.6 1.1 0.8 286.3 1.1 0.8 576.3 1.1
200 1.0 86.0 1.0 0.9 325.9 1.0 0.8 717.6 1.1 0.8 1192.8 1.1 0.8 2352.9 1.1
300 1.0 191.3 1.0 0.9 680.6 1.0 0.9 1281.2 1.1 0.8 2484.1 1.1 0.8 4942.1 1.1
400 1.0 340.4 1.0 0.9 1205.3 1.0 0.8 2381.4 1.1 0.8 4046.7 1.1 0.8 8019.2 1.1
500 1.0 490.9 1.0 0.9 1704.1 1.0 0.9 3347.7 1.1 0.8 6357.4 1.1 0.8 12289.5 1.2
600 1.0 683.1 1.0 0.9 2319.6 1.0 0.8 4839.5 1.1 0.8 8203.4 1.1 0.8 15702.7 1.2
700 1.0 970.6 1.0 0.9 3262.5 1.1 0.8 6299.8 1.1 0.8 11395.7 1.1 0.8 21414.3 1.2
800 1.0 1194.9 1.0 0.9 4142.0 1.0 0.8 8090.1 1.1 – – – – – –
900 1.0 1542.9 1.0 0.9 5061.5 1.0 0.8 9901.3 1.1 – – – – – –

1000 1.0 1788.0 1.0 0.9 5915.4 1.1 0.8 11444.0 1.1 – – – – – –

in 30 instances for each size and correlation. Moreover, we report statistics related to
the the multiplicative ǫ-indicator (Iǫ) proposed by Zitzler et al. (2003). It gives the min-
imum multiplicative factor by which an approximation set A has to be translated in
the objective space in order to weakly dominate the efficient set X⋆

E . In other words,
Iǫ(A) = 1 means that the approximation found coincides with the nondominated set.
Iǫ can be defined as follows.

Iǫ(A) = min
ǫ∈R+

{∀x ∈ X⋆
E , ∃x

′ ∈ A : p(x′) · ǫ > p(x), w(x′) · ǫ 6 w(x)} (1)

Although the experimental analysis indicated the existence of instances with uncon-
nected efficient set with respect to the 1-flip neighborhood (see Table 2), the results
show that the local search approach using the same notion of neighborhood is able to
identify a minimal complete set in many cases. For other instances, it leads to the iden-
tification of more than 99.9% of the efficient set, within Iǫ-values very close to 1. The
number of missing efficient solutions is then negligible compared to the cardinality of
the efficient set. Furthermore, the local search performs very efficiently in comparison
to the dynamic programming approach in terms of computational time. Indeed, the
larger the instance size, the larger the gap between PLS–flip and MDP-BUKP in terms
of CPU time. However, PLS–flip appears to be slightly more efficient for negatively
correlated data.
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Figure 3: CPU time in seconds (average value and deviation, given in log-scale) of
MDP-BKP-BC, PLS–flip and PLS–flip-exchange for BKP-BC instances. Values below 0.1
seconds are not reported to increase readability.

4.3 Experimental Analysis for BKP-BC

Given the positive results reported in the previous section, a similar local search algo-
rithm was developed under the same reasoning as for BUKP. The same initial solution,
x0 = 0, is used to start the search process. The only difference is in the neighborhood
exploration, since a maximum number of items has to be ensured in the solution when
considering the possibility of adding an item, i.e. only feasible solutions are considered.

MDP-BKP-BC and the two versions of PLS were run in the BKP-BC instances. The
experiments were performed on the same machine, with g++ version 4.4.3 using the
-O3 flag. As for the connectedness analysis, MDP-BKP-BC was not able to terminate
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Table 6: Proportion of efficient solutions, number of missing solutions, and Iǫ-value of
efficient set approximations found by PLS–exchange for BKP-FC instances (%eff, #miss
and Iǫ, respectively). Average values, rounded at 10−1, are reported.

ρ = −0.8 ρ = −0.4 ρ = 0.0 ρ = 0.4 ρ = 0.8
n %eff #miss Iǫ %eff #miss Iǫ %eff #miss Iǫ %eff #miss Iǫ %eff #miss Iǫ

k = n/10
100 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
200 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
300 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
400 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
500 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
600 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
700 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
800 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
900 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0

1000 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
k = n/5

100 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
200 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
300 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
400 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
500 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
600 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
700 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
800 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
900 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0

1000 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
k = n/2

100 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
200 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
300 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
400 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
500 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
600 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
700 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0
800 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0

due to an overload of RAM resources available. Indeed, for k = n/2 and ρ = 0.8, the
maximum number of states maintained by the algorithm is 10.166.945 in average for
n = 700, whereas it goes higher than 11.000.000 states after two hours of CPU time for
all the BKP-BC instances under consideration. In contrast, the maximum number of so-
lutions (the archive size) maintained by PLS-BKP-BC is 105.811 in average for n = 700,
and 125.323 in average for n = 800. The CPU-time taken by the three approaches is
plotted in Fig. 3 for six different instance parameter settings. Clearly, both PLS ver-
sions take much less time than MDP-BKP-BC to terminate. Similar results hold for
the remaining instances; see supplementary material for details (Liefooghe et al., 2012).
Moreover, as expected from the connectedness analysis reported in the previous sec-
tion, PLS–flip-exchange was always able to find a minimal complete set for all instances
up to 1000 items in less than one hour of CPU-time. Clearly, PLS–flip-exchange takes
advantage of the connectedness property reported in Section 3.3. Table 5 reports qual-
ity metrics for the solutions found by PLS–flip. PLS–flip is, in many cases, able to find
more than half of a minimal complete set in less than one second, except for ρ = 0.8
and k = n/10, where only 40% is found. Furthermore, the performance of PLS–flip de-
creases as the cardinality bound decreases, and as the data correlation increases. The
problem size has a low influence on the results.

4.4 Experimental Analysis for BKP-FC

For BKP-FC, we consider a PLS algorithm based on the 1-exchange neighborhood, de-
noted by PLS–exchange. As for BKP-BC, only feasible neighboring solutions are consid-
ered as candidates to update the archive. The following efficient solution is considered
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Figure 4: CPU time in seconds (average value and deviation, given in log-scale) of
MDP-BKP-FC and PLS–exchange for BKP-FC instances. Values below 0.1 seconds are
not reported to increase readability.

to initialize the search process. We sort all the items with respect to weight values in
the increasing order, and the k first items are included in the initial solution. As a con-
sequence, the solution maps to an extreme point of the nondominated set, with lowest
weight and profit values with respect to the cardinality k under consideration.

MDP-BKP-FC and PLS–exchange were run on the BKP-FC instances described in
Section 2.5. The experiments were performed on the same machine, with the same com-
pilation options. Fig. 4 gives the CPU time taken by both algorithms to terminate for
ρ ∈ {−0.4, 0.4}. For other ρ-values, please refer to supplementary materials (Liefooghe
et al., 2012). Table 6 gives qualitative values of solutions found by PLS–exchange. A
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minimal complete efficient set was always found by PLS–exchange for all the instances
we experimented in less than one hour. The higher the cardinality constraint, the higher
the CPU time taken by both algorithms to terminate. However, PLS–exchange is always
taking much less time than MDP-BKP-FC. As expected from the results reported in
Section 3.4, PLS–exchange is able to outperform MDP-BKP-FC by exploiting the con-
nectedness of efficient solutions.

5 Concluding Remarks

This article describes an experimental analysis on the structure of the efficient set, in
terms of connectedness, for three MoCO problems. Even if theoretical investigations
for similar problems report unconnected efficient set in the general case (Ehrgott and
Klamroth, 1997; Gorski et al., 2011), the experimental analysis for the problems inves-
tigated in this paper are quite promising. For all bi-objective versions of the uncon-
strained knapsack problem and knapsack problem with a bounded and a fixed car-
dinality constraint, the experiments suggest that small-sized neighborhood structures
give rise to connected efficient sets quite frequently, and independently of the size and
of the structure of input data. In fact, it is not yet clear what structure of the input data
may generate, in general, an unconnected efficient set under the 1-flip-exchange neigh-
borhood that was used in this article.

Although the large number of connected instances motivates the use of local search
algorithms, it is still an open question whether those approaches are efficient enough
as compared to exact algorithms. The experimental analysis reported in this article
gives a clear positive answer for problems with a cardinality constraint. For the first
problem, without cardinality constraint, some preliminary results indicated that the
local search proposed in this article under the same neighborhood that (empirically)
provides connectedness would not be worthwhile in terms of running time. Still, using
a smaller neighborhood structure allows the same algorithm to find more than 99.9%
of the efficient set in a significantly less amount of time than the exact approach.

The simplicity of the local search proposed in this article is very appealing: it needs
no definition of parameters and requires a minimum number of modifications in order
to be applied to other type of knapsack problems, even with more than two objective
functions. For instance, the same principles can be applied to the multi-objective knap-
sack problem (with several maximizing profit objectives and one capacity constraint)
by ignoring or penalizing infeasible neighboring solutions. However, finding appropri-
ate definitions of neighborhoods that give rise to large number of connected efficient
sets for knapsack problems with capacity constraints is still under investigation.

A natural question is whether it is possible to derive analytical results for
MoCO problems that would prove connectedness by assuming some structure or dis-
tribution on the input data. Connections with neighborhood structures arising in the
context of the linear programming formulation of the MoCO problem may provide fur-
ther insights (Gorski et al., 2011). Moreover, the derivation of bounds on the run-time
of multi-objective evolutionary algorithms that start from efficient solutions are also of
interest. For instance, the size of the efficient set for the first problem is polynomially
bounded for many input data distributions (Beier and Vöcking, 2004). This suggests
that a polynomial run-time bound may be achieved by such type of algorithms.
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