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Abstract

We investigate the incompressible Navier-Stokes equations with variable density.
The aim is to prove existence and uniqueness results in the case of discontinuous ini-
tial density. In dimension n = 2,3, assuming only that the initial density is bounded
and bounded away from zero, and that the initial velocity is smooth enough, we get
the local-in-time existence of unique solutions. Uniqueness holds in any dimension
and for a wider class of velocity fields. Let us emphasize that all those results are
true for piecewise constant densities with arbitrarily large jumps. Global results are
established in dimension two if the density is close enough to a positive constant, and
in n-dimension if, in addition, the initial velocity is small. The Lagrangian formula-
tion for describing the flow plays a key role in the analysis that is proposed in the
present paper.

MSC: 35Q30, 76D05
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Introduction

Incompressible flows are often modeled by the homogeneous Navier-Stokes equations :
that is the density of the fluid is assumed to be a constant. However in many applications as
blood flows or models of rivers, although the fluid is practically incompressible, the density
can not be considered as a constant quantity, as a consequence of the complex structure of
the flow due to e.g. a mixture of fluids or pollution (see e.g. [2, 4, 19, 23, 29]). This makes
us look at the density as a nonnegative unknown function which has constant values along
the stream lines. The simplest model which can capture such a physical property is the
so-called inhomogeneous Navier-Stokes system:

pe+v-Vp=0 in  Qx(0,7),
pve+pv-Vo—vAv+VQ =0 in Qx(0,7),
dive =0 in  Qx(0,7), (0.1)
v=20 on 0 x (0,7),
v]4—0 = o, pli=o = po n Q.

The unknown functions are: p — the density of the fluid, v — its velocity field and @) — its
pressure. The constant positive viscosity coefficient is denoted by v. We consider the cases



where €2 is a bounded domain of R", or the whole space R"™, and we focus mainly on the
physically relevant space dimensions n = 2, 3.

The goal of the present paper is to revisit results concerning the well-posedness issue
of (0.1). We concentrate our analysis on the regularity of density. In our recent work [11],
we established the existence and uniqueness of solutions to (0.1) in a critical regularity
framework which allowed the initial density to be discontinuous. However, a smallness
condition over the jumps was required there. In the present work, we want to discard this
smallness condition. At the same time, to simplify the presentation, we do not strive for
optimal assumptions as concerns the velocity and assume the viscosity coefficient v to be
constant.

Let us recall (see in particular [13] and the textbooks [3, 20]) that, roughly, from the
qualitative viewpoint the classical results for the homogeneous Navier-Stokes equations
carry out to (0.1) : on the one hand global (possibly non unique) weak solutions with finite
energy may be constructed and on the other hand, if the density is smooth enough, bounded
and bounded away from zero, then global-in-time existence and uniqueness results are
available in dimension two for arbitrarily large data, and if the velocity is small in dimension
three. These latter results require relatively high regularity of the density, though. In
particular it has to be at least continuous, and to have some fractional derivatives in
suitable Lebesgue spaces (see e.g. [21] or [9]). It is worthwhile to emphasize that for
smooth densities one may show the existence of unique solutions even for vacuum states
[6] provided the initial data satisfy some compatibility condition. From the viewpoint
of applications such results are not so satisfactory: we wish to consider fluids with e.g.
piecewise constant densities, a pattern which is of interest to model a mixture of two
fluids.

The results of the paper are split into two groups:

e The first group concerns uniqueness and local-in-time existence results in the case
where the initial density is just an L., positive function bounded away from zero. In
particular, one may consider piecewise constant densities with arbitrary large jumps.
As regards the existence issue, we have to restrict ourselves to the (physically relevant)
dimensions n = 2, 3.

e The second group concerns the global-in-time existence issue. Here we have to make a
smallness assumption over the density which, in the case of piecewise constant initial
density, implies that the jumps have to be small. Assuming enough smoothness over
the velocity, this enables us to prove global existence for (possibly) large velocity if
n = 2, and for small velocity if n > 3 (an assumption which is also required for the
homogeneous Navier-Stokes equations, anyway).

As explained above, in the present paper, we aim at doing minimal assumptions over the
density but we do not strive for optimal regularity of the velocity function. As our method
relies on estimates for the Stokes system with merely bounded coefficients, the (rather
high) regularity of the velocity is somehow prescribed by the technique. An approach to
the issue of sharp regularity has been done in [11] in the critical Besov spaces setting.
However in [11] we were able to capture discontinuous density with small jumps only.



The rest of the paper unfolds as follows. The main results are presented in the first
section. Then, some preliminary estimates involving the evolutionary Stokes system are
proved. Section 3 is devoted to the derivation of System (0.1) in Lagrangian coordinates.
In Section 4, we concentrate on the proof of uniqueness results whereas existence results
are proved in the last two sections. Technical estimates involving the divergence equation
are presented in the Appendix.

1 Main results

Let us first recall the basic energy equality for System (0.1) which may be (formally)
derived by testing (0.1)s by v:

Lemma 1 Let (p,v) be a sufficiently smooth solution to (0.1) over Q x [0, T]. Then there
holds

/Q(p|v|2)(t,x) d:p+21//0/Q|Vv(7',:p)|2dxd7':/Q(p|v|2)(0,x) dx for all t€[0,T]. (1.1)

Subsequently if py is positive and bounded away from zero and v is in Lo (£2) then we get
a control over v in Lo (0,75 Ly(€2)) and Vv in Ly(2 x (0,7)). Under very rough regularity
assumptions (much less than assumed here), the (formal) energy equality (1.1) provides
us with an information about low norms of the velocity, which turns out to be crucial
for the proof of global results (see in particular the monograph by [20] and the references
therein, as regards the proof of global weak solutions with finite energy). Note that (1.1)
gives some regularity information over the velocity even for very rough density. We shall
see further in the paper a way to get even more regularity information over the velocity
without assuming more on the density.

Before listing the main results of the paper, let us introduce a few notation. Concerning
the derivatives of functions f depending on both the time variable ¢ and the space variable
x, we denote by f; the time derivative and by Df the Jacobian matrix of f with respect
to the space variable, namely (D f); ; = ;. The notation V f is reserved for 7(Df).

The Lebesgue spaces of measurable functions with integrable p-th power is denoted by
Ly(£2). More generally, if m € N then W)"(€2) denotes the set of L,(€2) functions with
derivatives of order less than or equal to m in L,(€2). Since the Navier-Stokes equations are
of parabolic type, it is also natural to introduce parabolic Sobolev spaces Wq%vpl(Q x (0,7))
that is the closure of smooth functions for the norm

lellwz oy = 1w Ol L0150y + lull 0wz (1.2)

Granted with parabolic spaces, one may now define Besov spaces over 2 as the following
trace space:

B;;Z/I’(Q) = {f : 0 — R measurable s.t. f = f|;—o for some feW:7 (2 x (0, 1))} (1.3)

The norm can be defined from the above definition as a suitable infimum (for more details
concerning the Besov spaces we refer to [5, 33]).



Our first result states the uniqueness of solutions with merely bounded density, provided
the initial velocity is smooth enough.

Theorem 1 Let n > 2. Assume that Q is R or a C? bounded domain of R™. Let
(p*, v, QY) and (p?,v?, Q?) be two solutions to (0.1) with the same initial data, and density
bounded and bounded away from 0. Suppose moreover that for k = 1,2,

e Case n = 2: there exists ¢ > 2 such that v* € W;’;(QX (0,7)) and VQ* €
L2<07T7 Lq<Q))7

e Casen >3: 0" € szl(Q x (0,T)), VQ* € Ly(0,T; L,(Q)) and, in addition, Vo* €

Then v = 02, VQ! = VQ? and p' = p.

Remark 1 As regards the inhomogeneous incompressible Navier-Stokes equations, to our
knowledge, the “best” uniqueness result with no smallness condition over the density is due
to P. Germain in [16]. It does not apply to solutions with piecewise constant densities,
though.

The second result complements Theorem 1. It delivers existence of local-in-time regular
and unique solutions in dimensions 2 and 3. Again, the initial density just has to be bounded
and bounded away from vacuum.

Theorem 2 Let n = 2,3 and Q be a C? bounded domain or be R™. Let py satisfy
m < pg < M (14)

for some positive constants, and vy € WZ() be such that divvy = 0 and vylsq = 0. Let
n* = 2("2). There exists a unique solution (p,v) to System (0.1) on a time interval [0, T]
for some T > 0 such that p(t,-) satisfies (1.4) for allt € [0,T] and

v e WELL(Qx(0,T)), v € Lo(0,T5La(Q)) and Vv, € Ly(Q x (0,T)).

Remark 2 The critical Sobolev embedding ensures that W(2) is continuously embedded
in the Besov space Bi_i/*n*(ﬂ) Keeping in mind the definition of this space given in (1.3),
the appearance of the parabolic Sobolev space Wiln(Q x (0,7)) in the above statement
does not come up as a surprise. The WZ(Q) assumption for vy is needed to ensure that
(O +v - V)|i—o is in La(Q). At the same time, owing to the low regularity of the density,

we do not know how to propagate the W3 (Q) regularity for the velocity.

Proofs of Theorems 1 and 2 are based on the analysis of (0.1) in the Lagrangian coordi-
nates defined by the stream lines. Since the density is merely bounded there is an obstacle
to apply any bootstrap method in order to improve the regularity of the velocity. The
main difficulty is located in the term with the time derivative. To obtain a better infor-
mation about vy, we adopt techniques from the compressible Navier-Stokes system [25, 28]
(concerning uniqueness criteria for the compressible Navier-Stokes system in Lagrangian
formulation, see also the recent work by D. Hoff). Roughly speaking, we differentiate the



(Lagrangian) velocity equation once with respect to time, then apply an energy method.
This approach via the Lagrangian coordinates requires only L., bounds (by above and
by below) for the density, provided the velocity has high regularity. That the density is
time-independent in the Lagrangian setting, hence is just a given function, is of course fun-
damental. In comparison, in [9] where the Eulerian framework is used, the initial density
has to be in the Besov space By /12(]1%") (which, roughly, means that it has n/2 deriva-
tives in Lo(R™)) but the initial velocity therein has only critical regularity, namely it is in
B;/IQ_l(R") (to be compared with B3, (R") and n = 2,3 here).

To highlight consequences of Theorems 1 and 2, let us consider the case where the
initial divergence-free velocity field is in WZ(f2) (and vanishes at the boundary), and the
initial density po is'

Po =M+ 0X A, (15>

where m, o are positive constants and A is a set with a C'! boundary. The velocity field

v given by Theorem 2 is Lipschitz with respect to the space variable hence generates a
unique C* flow X defined by

t
X(tw) =y+ [ v(r X(r)dr
0
Therefore, the density at time ¢ is given by
p(t,-) =m+oxaw, with A(t):= X(t, Ao). (1.6)

As the flow X is at least C, the initial regularity of the boundary of A(t) is preserved and
any geometrical catastrophe (e.g. breaking down or self-intersections of the boundary) will
not appear : if Ay is diffeomorphic to a ball, then A(t) is diffeomorphic to a ball, too. The
above case shows that the system (0.1) can model an interaction of two fluids separated by
a free interface. Although tracking the regularity of the boundary 0A(t) is not the main
topic of this paper, we see that Theorem 2 ensures that the C! or C1* regularity (with a
small enough) of OA(t) is preserved during the evolution. In other words, we have partially
solved in an indirect way a complex free boundary problem which has been left as an open
question by P.-L. Lions in his book [20]. Let us emphasize that the standard approach for
solving problems of such type requires very technical considerations (see e.g. [1, 30, 32]).
Furthermore, with our approach, there are no requirements concerning the regularity of
the boundary of the set Ay: our results hold for any measurable set Ag.

The above results concern local-in-time analysis. In order to obtain global-in-time so-
lutions, we have to assume that the jumps of the initial density are small enough. The
following theorem states that under this sole assumption over the density, and for suffi-
ciently smooth (possibly large) initial velocity fields, global existence holds true.

Theorem 3 Let ) be a C? bounded two-dimensional set, or be R2. There exists a constant
¢ depending only on Q and such that if py € Lo () satisfies

— inf
Sup po() — inf po()

. <c (1.7)
)

"Here x 4, stands for the characteristic function of the set Ay.



then for all vy € Bj,(Q) N Ly(Q) with divey = 0 and volag = 0, there exists a unique
global-in-time solution to System (0.1) such that (1.1) is satisfied and that, for all T > 0,

vEWH(Qx(0,T)), VQE Ly(0,T;Ls(Q)) and p € Log(2 x (0,T)). (1.8)

In dimension n > 3, getting global-in-time strong solutions requires also the initial
velocity to be small, (an assumption which is needed in the homogeneous case, anyway).
Here is our statement:

Theorem 4 Let Q2 be a bounded n-dimensional C? domain. Let py € Loo(Q) be positive and

9_2
bounded away from 0, and vy € By, (Q) with 1 <p <oo,n < qg<oo and2—2/p#1/q.
There exist two constants ¢ and ¢ depending only on Q, p and q and such that if

—inf
i}elgpo(x) f po(2) /

- <c and ||v 2 <cv, 1.9
inf po() I OHBE,p”m) (19)

then there exists a unique global-in-time solution to the inhomogeneous Navier-Stokes sys-
tem (0.1) such that

vEWRQXRY), VQE LRy Ly(Q) and p € Loo(Q x Ry).

Furthermore, there exist two positive constants a and C' depending only on €2, p, ¢ and of
the lower and upper bounds for py so that for all t > 0,

oz aseesny + IV Pty < Ol oog
q,p

Theorems 3 and 4 follow from classical maximal regularity techniques. The smallness
conditions (1.7) and (1.9) allow to treat the oscillations of the density as a perturbation
that may be put in the right-hand side of the estimates.

At the end we would like to underline that most of our results hold for bounded domains
and R™. The case of the whole space is easier: there is no boundary condition and solving
the divergence equation is simpler, too. One exception is Theorem 4 where the boundedness
of the domain is essential here as it provides exponential decay of the energy norm (the
whole space case is tractable under stronger conditions over the density, see our recent
work in [11]).

2 Some linear estimates

A fundamental role will be played by the Stokes system, that is the following lineariza-
tion of the velocity equation in (0.1):

mu; —vAu+VQ = f in  Qx(0,7),
divu =divR in Qx(0,7),
(2.1)
u=0 in 00 x (0,7),
Ul¢—o = ug in Q,

where m and v are positive constants.



We shall make an extensive use of the following solvability result for the Stokes system
in the L,(0,7"; L, (S2)) framework:

Theorem 5 Let Q be a C? bounded subset of R*. Let 1 < p,q < 00, ug € B;;E(Q),
f e Ly(0,T5Ly(Q)), Re W, (0,T; Ly(2)) so that div R € L,(0,T; W, (€2)). Suppose that

divug = divR|s—o and 7 - R|aax(o,r) = 0.

If2—2/p > 1/q, assume in addition that ug = 0 at the boundary, otherwise we assume only
uo-t = 0 at 0. Then there exists a unique solution to (2.1) such that u € W2 (Q2x(0,T)),
VP e L,(0,T; L,(2)), and the following estimate is valid:

11
[, vV2u, VP 1,00, +mrve’ sup [lu(t)] 5
0<t<T Bq,pp )

. 1 1
< C(If,mB| L0152, + [lvdiv Rl 0,15wp ) + mev? ||uo||327%(m)7 (2.2)

q,p
where C' is independent of m, v and T'.

Proof: In the case R = 0, this result is classical (see e.g. [17, 24] and the appendix of [7]).
The general case follows from this particular case once constructed a suitable vector-field
w:Qx(0,7) — R fulfilling

divw =divR in , w=0 at oQ. (2.3)

Taking for granted the existence of such a vector-field, the strategy is simple : we set
v =u — w and we gather that v has to satisfy

muv; — vAv +VQ = f —mw, + vAw in  Qx (0,7),
dive =0 in  Qx(0,7),
v=0 in 00 x (0,7,
V]i=0 = up — wo in Q.

Therefore, in order to reduce our study to the case R = 0, the vector-field w is required
to satisfy wy, D*>w € L,(0,T; L,(2)) (note that this will imply that wy € BS,;Z/”(Q), see
(1.3)). The fact that such a solution to (2.3) does exist is granted by the following lemma,
the proof of which is postponed in Appendix (see Proposition 3): [ ]

Lemma 2 Let R(t,-) be a family of vector-fields defined over the C? bounded domain €2,
parameterized by t € (0,T). Assume that, for some 1 < ¢ < oo and 1 < p < oo we have
div R € Ly(0,T;W/(Q)), R, Ry € Ly(0,T; Ly()) and R -7t =0 at the boundary.

Then there exists a vector-field w in L,(0,T; W2(2)) vanishing on 99, fulfilling

divw =divR and divw,=divR; in

2For simplicity we exclude the case 2 — 2/p = 1/q.



and the following estimates:

[wllz,0mwz@) < Clldiv Rz, 0r:wg @), (2.4)

lwell L, 0,520 < Cl R L,0,7:L,2) (2.5)
for some constant C' depending only on q and §2.

Remark 3 The whole space case is easier to deal with for we do not have to take care of
boundary conditions (apart from suitable decay at infinity given by the functional setting).
Indeed, in order to solve (2.3), one may set

w = —V(-A)"divR.

As the corresponding Fourier multiplier is homogenous of degree 0, we readily get (2.4)
and (2.5). Therefore, arguing as above and using the standard mazimal reqularity result
for the Stokes system in R™, we conclude to Theorem 5 in the case Q = R" if the Besov

space qu (Q) is replaced with the homogeneous Besov space qu (R™) and Wy(Q), by
its homogeneous version Wq’“(R").

Theorem 5 can be viewed as a classical result. In order to prove Theorem 2 we need to
adapt it to the case of variable coefficients. Below, we focus on the Ly case where only the
boundedness of coefficients is needed.

Lemma 3 Let Q be a bounded domain of R"™, or R™. Letn € Ly () be a time independent
positive function, bounded away from zero, and R satisfy the above boundary conditions.
Then the solution (u,VP) with u € W2221(Q x (0,7)) and VP € Ly(Q x (0,T)) to the
system

nuy —vAu+VP=f in x (0,7,

divu =divR in x (0,7, (2.6)
u=20 on GQX (0,7), '
Ul4=o = ug on Q,

fulfills
\/EOZIET IVu(t) || 2oy + llue, vV, VP || pyaxo.m)) < C (s Rell pa@x 0.1

+ v||div R”LQ(O,T;W%(Q)) + \/;”vuOHLQ(Q))7 (2.7)

where C' depends on infn and supn, but is independent of T' and v.

Proof: First we remove the right-hand side of (2.6), by means of Lemma 2 (or the
remark that follows if Q@ = R"): we introduce a vector-field w fulfilling (2.3) such that
w E W;;(Q x (0,7)) with the following bound

1000, v D*w|l o0.7:202)) < CUIAY Rl o 0,mm0)) + [ Rella@xory)- (2.8)

Hence we may reduce the proof to the case R = 0. Now, we observe that testing by u;

gives:
2 —
/77|ut| dx+2dt/|Vu| dx = /f ug dz.



Therefore, integrating in time yields

t t
V| Vu(t)|2, 0 + / IV uel2 0 dr < o] Vol + / VIl edr. (29)

Since 7 is a positive time independent function which is pointwise bounded from below
and above, we obtain

[well Lo @x 0,7y + OiltlgTﬁHDu(t)HLQ(m < C([If | za@x o)) + VVIIDugllLy)).  (2.10)

In order to estimate D?*u and DP, we rewrite (2.6) as

—vAu+ VP =f—nu in  Qx(0,7),
divu =0 in  Qx(0,7), (2.11)
u=0 at 00 x (0,7).

If Qis a C? bounded domain then the solvability of (2.11) in the L, framework is
clear (see e.g. [15], Th. 6.1, page 231), thus taking into account bounds (2.8) and (2.10)
we get (2.7). Lemma 3 is proved. In the R™ case, one may just notice that VP =
—V(=A)7tdiv (f —nug). As f—ug isin Ly(2 x (0,T)), we still get the result, first for VP,
and next for VZu. ]

3 The Lagrangian coordinates

A fundamental point of our analysis is the use of Lagrangian coordinates. In order to
define them we solve the following ordinary differential equation (treating y as a parameter):

dX(t,y)

— = v(t, X(t,y)), X(t,y)]e=0 = y. (3.1)

This leads to the following relation between the Eulerian coordinates x and the Lagrangian
coordinates y:

t
X(t) =y+ [ v X () dr 32
0
Let us list a few basic properties for the Lagrangian change of variables:

Proposition 1 Suppose that v € Li(0,T; WL(Q)) with v - 7ilsg = 0. Then the solution
to System (3.1) exists on the time interval [0,T], X(t,Q2) = Q for all t € [0,T), and
Dy X € Loo(0,T; Loo(€2)) with in addition

t
1D, X (Ol < exp( / T dr). (33)
0

Furthermore
t
X(t) =+ [ ulto)dt with ulty) = ol X(t.9) (3.4)
0

9



so that DX satisfies
D,X(t,y) =1d+ /t Dyu(t',y) dt'. (3.5)
Let Y (t,-) be the inverse diffeomorphism of X(i, -). Then
DY (t,x) = (D,X(t,y))"" with x = X(t,y) (3.6)

t
and, zf/ |Dyu(t,y)| dt’ < 1/2 then
0

t
DY (1) ~1d] <2 [ [Dyut,v)l . (3.7)
0
Finally, if v € L(0,T; W2 (Q)) then D, X € Loo(0,T;WL(Q)) and
Z/ [e'e] Yy [e'e]
t /
|D2X (1,y)] < o 1P XDl / D20(t!, X (¢, y))|els 1P Xa Dl qyr (3.8
0

and if v € Li(0,T; W3(Q)) with s > % + 1, then D, X —1d € Loo(0, T; W;7(Q2)).

Proof: The existence of X for (¢,y) € (0,7) x Q follows from the standard ODE theory,
a consequence of Picard’s theorem. Inequalities (3.3) and (3.8) follow from (3.2) by dif-
ferentiation and Gronwall lemma. The higher regularity stems from the fact that, under
our assumptions, W;’_l is an algebra (the reader may refer to the appendix of [11] for the
proof of similar results in a slightly different context).

Equation (3.5) follows from (3.4), by differentiation. Then (3.7) comes from (3.6)
provided D, X — Id is small enough: indeed, we have

DY = (Id+ (D,X —1d))"! = f(—m’f(/ot Dyu(t',y) dt/)k.

This yields (3.5). |

Let us now derive the Navier-Stokes equations (0.1) in the Lagrangian coordinates: we
set

n(t,y) = pt, Xt y), ult,y)=vE X(ty) and P(ty):=QE X(ty). (3.9

We claim that System (0.1) recasts in

=0 in  Qx(0,7),
nu; — vAu+ VP =0 in  Qx(0,7),
div,u =10 in  Qx(0,7), (3.10)
u=0 on 09 x (0,7T)

u‘t:to = U‘t:toa 77‘25:0 = /)|t=to in Q,

where operators A,, V,, div, correspond to the original operators A, V, div, respectively,
after performing the change to the Lagrangian coordinates. Index u underlines the depen-
dence with respect to u. Let us also notice that, as v and u vanish at the boundary, we do

have X (¢,Q) = for all ¢.

10



So let us now give a formal derivation of (3.10). First, given the definition of X it is
obvious from the chain rule that

om(t,y) = (Op+v-Vp)(t,z) and Ju(t,y) = (v +v-Vo)(t,z) with z:= X(t,y).
The chain rule also yields
DyP(t,y) = D,Q(X(t,y)) - DyX(t,y) with (D,X);; =0, X", (3.11)
Hence we have
D,Q(t,r) = D,P(t,y)- A(t,y) with A(t,y):= (D, X(t,y))"" =D, Y(t,x). (3.12)

Next, we notice that if the transform X is volume preserving then for any smooth
enough vector-field H we have

div, H(z) = div, (AH)(y) with = X(y) and H(y) = H(z). (3.13)

This stems from the following series of computations which uses the fact that det A = 1
and the change of variable z = X (y): for any smooth ¢ with compact support, we have

/ q(z)div, H(z)dr = — / Dyq(z) - H(z) da,
— / Dyq(y) - Aly) - H(y) dy,
~ [ awdiv, (AR )y

Combining (3.12) and (3.13), we thus deduce that, in Lagrangian coordinates operators
V, div and A become

V. ="A-V,, div, :=div(A) and A, := div,V,. (3.14)

In consequence, we have the following relations that will be of constant use:
(V—=V.,)P=Id-"A)VP, (3.15)
(A — A)u = div((Id — ATA)Vu). (3.16)

Let us finally emphasize that, owing to the chain rule, we have
div, (A-) = div, = A: D,. (3.17)
This algebraic relation will be of fundamental importance in our analysis.

The following statement ensures the full equivalence between (0.1) and (3.10) under
the assumptions of our results stated in Section 1.

Proposition 2 Let 1 < p,q < 00. Let py € Loo(S2) and (u, P) be a solution to (3.10) such
that u € W2 (2 x (0,T)), VP € Ly(0,T; Ly(2)) and

T
/ |Vl Lo dt < 1/2. (3.18)
0

Then
U(t, ZL‘) = U(t,’y), Q(t,i’) = P(t’ y) and p(t,l’) = PO(?/)
with © = X (t,y) given by (3.2) defines a W23 -solution to (0.1).
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Conversely, if p € Loo(Q x (0,T)) and (v,Q) with v € W2 (2 x (0,T)), Vv €
Ly(0,T; Loo(2)), and VQ € L,(0,T; Ly(S2)) is a solution to (0.1) then
ult,y) = o, X(t,y)), Plty)=Qt X({Ly)) and 1= pli=o
defines a W2 -solution to (3.10).

Proof: The proof goes along the lines of the corresponding one in the appendix of [11].
Having Du small enough in L;(0,7"; Lo (2)) is of course fundamental. |

4 Proof of Theorem 1 — uniqueness

In this part we prove the uniqueness of solutions to System (3.10) under the assumptions
of Theorem 1. Here € is a C? bounded domain, or the whole space. The proof is a
straightforward application of Lemma 3 to the equations in the Lagrangian form. The
important fact is that we have

Vo' € Li(0,T; Lo(Q)  i=1,2.

Hence, taking T small enough, one may assume with no loss of generality that

T _ 1
/ V' || Lo (o) dt < > (4.1)
0

so that Propositions 1 and 2 apply. In particular the regularity properties of those solutions
in Lagrangian coordinates are the same as those of Theorem 1. Hence it suffices to consider
two solutions (u', P') and (u?, P?) to System (3.10) with the same initial data and satisfying
the conditions of Theorem 1.

Then, denoting A’ := A(u’) (see (3.12)), du := u' — u? and so on, we get

nouy — vAdu + VOP = —v[(A — A )u — (A = Ape)u?]
HY V)P — (V- V)P i 9x(07)
divéu = div [(Id — AYu! — (Id — A?)u?] in Qx(0,T), (4.2
u=0 at 00 x (0,7),
Suli—g =0 in Q.

Let us underline that the boundary condition on R from Lemma 3 is fulfilled, since by
definition u!' and w? are zero at the boundary. Therefore, keeping (3.17) in mind, we
obtain for some constant C' depending only on v, inf n, supn and €2 the inequality

ol o ravyce) + N, V261, VOP | nyaxory < CLh+ L+ I+ 1) (43)
with
L= (V= Va)P' = (V = Vi) P00y,
I = [(Id—A"): Dul — (Id — A%) - Du?|| 10, mwp ()
Iy = (A = Auw)u! = (A = A2)e? | @,
I = [6]dd = AY)u' — (Id — A)u?]|| Lo(x(0.1))-

12



In the following computations, we shall use repeatedly the fact that A = A% — Al
satisfies

t . .
SA(t) = ( / Déudr) : (Z > C{C;“—l—ﬂ) with  Cy(t / Du' dr. (4.4)
0 k>10<j<k

We concentrate on the case n > 3. We shall indicate how our arguments have to be
modified if n = 2, at the end of the section.
In order to bound Iy, we write

L(t) < (A" = A%)VP [ ry@xo) + [(1d = A V(P! = P*)|[Ly@xoey.  (4.5)

It is clear that
I(Id — A%V (P = P?)[|y0x (0. < CE2 VPl o0 0 1 DU | aoinmeiey.  (4.6)
Let us notice that, according to (3.7),(4.4) and to the critical Sobolev embedding of W, ()

in Lo«(§2) (that is 1/2* +1/n = 1/2), we have

||5A||Loo(0,t;Lz*(Q)) < C||/ |V éu|dt’ ||L000tL2 Q)
< C’tl/QHDQ&LHLQ(Qx (0,t))

with C' depending only on the norm of the two solutions on [0, 7]. Therefore,

[(AY = A2)VPY | Lyox00) < ClOAl Lo 0,525 @) | VP La020 (2))
< Ctl/QHDQ&LHLz(Qx(O,t))HVP1|’L2(0¢;Ln(Q))'

Let us now bound I,. Note that it suffices to bound the norm in Ly (€2 x (0,7")) of the
gradient of the corresponding term. If €2 is bounded this is a consequence of the Poincaré-
Wirtinger inequality as div du has 0 average over €2, and if {2 = R" this stems from the fact
that only the norm in W (R") is involved (see Remark 3). Now, we notice that

(Id — AY) : Du' — (Id — A?) : Du? = —6A : Du' + (A* —1d) : Déu.
First, using the embedding of W3 () in Lg«(€2), and keeping in mind (4.1) and that
Du' € Ly(0,T; Loo(Q)) and D?*u’ € Ly(0,T; L,(Q)) for i=1,2, (4.7)

we get for all ¢ € [0, T,

||D(5A3DU1)||L2(Qx(o,t)),§H|Du1|/ | D?6u| d7’
0

o [ 1ot
< 2 (10200 a0 1D a0

Dol L. (0,62,- ) | D0t ||L2(07t;Ln(ﬂ)>)
S 2] D% Lyx0.)-

L2 (92x(0,¢)) L2 (£2x(0,t))

13



Second, we have
ID((A? = 1d): Déu) [ paex (o) S I1DA*®@ Déul| 0% 0,y + [1(A* = Id)®@ D?0u) || £y (0.0)
< 2 (HD2U2 | 220,62 (@) [ DO £ 0,652 (2))
D 2y 01| PPl ot 00y )
So finally for all ¢ € [0,T],
Ly(t) < Ct2||V20ul| Lyx (0.) (4.8)

with C' depending only the norm of the solutions over [0, T]. The term I3 may be handled
along the same lines. Indeed we have

= i (- 2 - 7

La(Qx(0,0))

Finally, we examine I. Using again (4.4), we get (with the convention that Du'* denotes
the components of Du' and Du?):

1064 W | Laax oy S 1D | 1o + H/ | Déu| dr'| Du?| |

+H/ |Déu| dr’ Jul
0

La(Qx(0,t))

La(Qx(0,t))

~ HD?U/QHLOO(Qt?[Q(Q)) Hul ”LQ(O,t;foo (Q)) 1 1.2
A2 Dou| 10,620 ) (11t | 20,850 (2 + 1 (DU 20,620 ()

S 2 D%60ul| Ly o) + EB DO Lo 0,622 (2))
with lim;_,oe(t) = 0 because
o', u' ® Du' and u? ® Du' arein Ly (0,T; L,(9)). (4.9)
At the same time, we have, for all t € [0, T,
10:((Id — A*)du) || Lyx0.)) S 1DU?0| Lyx (0.0 + [1(Td — A?)Osdul| £, (0.0))

< ||5u||Loo<o,t;Ln*<Q)%||Du2||L2<o,t;Ln<Q)>
H[Du|| L, (0,8 Lo (2)) | O | Ly 2 (0,8)) -

So one may conclude that
Ly(t) < 2| D26ul| oox(0,0) + () (1 DUl o022 + 10080 Lgx 0.07)) -

So finally in the case n > 3, putting together all the previous inequalities yields for all
€ (0,7),

16l oo 0,20 + 10, V20U, VOP || Ly (0.0
< 5(t)(||&l||Loo(o,t;w;(Q)) + |0y, VZ6u, V5P||L2(Q><(O,t))>

for some positive function e going to 0 at 0. Uniqueness follows on a sufficiently small time
interval, then on the whole interval [0, 7] thanks to a standard connectivity (or bootstrap)
argument.
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Let us now explain how the arguments have to be modified in the two-dimensional case.
One cannot follow exactly the above approach owing to the failure of the embedding of
W) in Loo(€). So we have to assume slightly higher regularity, namely VP! VP?
Ly(0,T; Ly(£2)) with ¢ > 2, and so on. For instance, setting m € (2,00) such that 1/m +
1/q =1/2, we may write

[(AY = AV P yaxony < CE2V6ul| Lyt m@) |V P2 o000 )
< Ot D%l Lyx 0 IV P2l Ly -

The other terms of (4.3) may be handled similarly. The details are left to the reader.
Theorem 1 is thus proved.

Remark 4 Here we would like to explain the reason why we use the W2221 reqularity for the
velocity to establish uniqueness. Concentrate our attention on n = 3. A direct Lo-energy
method (i.e. testing (4.2) by du) requires our bounding (V — V)Pl — (V — V,2)P? in
L1(0,T; La(2)), hence the following computation:

T
/ / 5AVP15ud:cdt‘ < ClAlworiza@) IV P 2025 10 20,5260
0 Q
< T2V PY|nygo,ia0 IV Oull aox 0,y

So we need VP! € Ly(0,T; L3(Q)) which is naturally related to u' € W;zl In addition
integrating by parts in the left-hand side of the above inequality, we need to keep track of
V20 as well as of VOP in Ly(Q2 X (0,T)). Those two terms are out of control if resorting
only to the basic energy inequality.

5 Proof of Theorem 2 — existence

The uniqueness property of the system is important, but to have the full picture of the
well-posedness issue, we now have to show that there exist solutions with merely bounded
density for which Theorem 1 applies. With the method that is proposed below, much more
regularity is needed for the initial velocity. However the assumption over the initial density
stays that same: it just has to be bounded and bounded away from zero.

5.1 A priori estimates

We first concentrate on the proof of a priori estimates for a smooth solution (u, P) to
(3.10). To simplify the presentation, we consider the case where € is a C? bounded domain
of R™. The whole space case may be achieved by similar arguments : this is just a matter

of using homogeneous norms || - [|yj1gn) and [+ || go-2/n- (& and resorting to Remark 3.

In order to prove a priori estimates for (u, P), let us assume in addition that 7" has
been chosen so that (say)

/ |Vl Lo dt < 1/2. (5.1)

0

15



This enables us to go from (0.1) to (3.10) (and conversely). For any (possibly large) initial

velocity vy € BZ:%/”(Q), and pp € Ly(f2) bounded away from zero, we want to find a

bound for a solution (u, P) given by Theorem 2. In other words, we want to control the
following quantity:

Ewr)(T) = gl 0,15 + | Vel a@x o)) + e, VU, VP 1, . x (0,7 (5.2)

with n* = 2("7”), if T is small enough.

Let us first notice that, by standard Sobolev embedding

T
| IVl i < T 2 (D) (5.

which guarantees (5.1) for small times.

In order to use Lemma 3 we restate System (3.10) as follows (of course n = po and
Uy = vp):

nuy — vAu+ VP = —v(A - A )u+ (V—-V,)P in  Qx(0,7),
dive = div ((Id — A)u) in  Qx(0,7), (5.4)
u=0 on 09 x (0,7),
U|4—o = ug in Q.

Then keeping (3.15), (3.16), (3.17), and Proposition 1 in mind, we get for some constant
C=CQ),

sup_[[u(t)llwy ) + llue, V2, VPl @xor)
0<t<T

< C(I1d — Al Lo x oy [, Vi, VP Lyax o))
+ IVAVu, Ay ull Lyax o) + uollwiey)- (5.5)

The I/V22 5 (2 x (0,7)) regularity of the velocity, coming from (5.5), is not sufficient to
control the Lagrangian coordinates, namely the terms containing A in the right-hand side
of (5.5), because VW;;(Q x (0,T)) is not embedded in L1(0,7T; Ly (€2)). Hence, to close
the estimates, higher regularity is needed. Differentiating (5.4) once with respect to time
is the easiest way to achieve it, because it does not affect the irregular density which is
time independent in the Lagrangian setting. We get

Ny — vAu + Vo, Py =

—v(A = Ay + V(AL — (Vo) P in  Qx(0,7),
div, u; = —div Au in  Qx(0,7), (5.6)
u =0 on 00 x (0,7).

At this stage the question of the regularity of w;|,—o arises. This information can be
found out only from the equations. At time ¢ = 0 the Eulerian and Lagrangian coordinates
coincide (that is A = Id), so the regularity of u|;— is just that of 71 (VP — vAu)|i—o.
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However the regularity of VP|;—¢ is unknown, so we rather have to use the fact that
differentiating (5.4), with respect to ¢ implies that

Nugli=o + V Pli=o = vAuy, div uy|i—g = —div (Ag|i=ouo). (5.7)

Note that A;|;—o need not be trivial so in order to bound wu;|;—¢ in Ly(2), we first have to
remove its potential part. For that, we use the Bogovskii operator B (see Lemma 5) setting

¢ = B[—div (A¢|i=—oup)]  so that  dive = —div (As]i=ouo) in Q, ¢ =0 at 0.

Let us notice that, because
t
A(t,y)- DX(t,y) =1d and DX|i—o=1d with X(t,y)=1d +/ u(T,y) dr,
0

we have A;|—o = —Duyg, hence A;|i—oug = —(uo - Vug) = —div (ug ® up).
Now, W2(€) is an algebra if n = 2,3. Hence A;|;—oup is in W} () and the function ¢
defined above is in W3 (2)? and satisfies:

18llwz0) < Clluolliyz - (5.8)
Therefore System (5.7) recasts in

N(ugli=0 — @) + VP|i—o = vAug — n¢ in €
div (uglg—o — @) =0 in Q
(Ut]t=0 — @)|oo =0 on 0.

Now, testing the first equation by (w0 — @) we get:

/ n‘ut|t:0 — ¢‘2 dr < / 'r]’l}uAuo - 'r]gb}Q dzx. (5.9)
Q Q
Thus, due to (5.8), we discover that u|;—¢ is in Ly(Q2) and that

[ueliollza@) < Comllluollwziy + lluollvzy)- (5.10)

At this point, we would like to apply an energy method to (5.6). However, as div, u,
may be nonzero, one cannot eliminate the term coming from P, (which is out of control).
So we modify (5.6), by introducing a vector-field £ so that

div, & = —div (Au) in Q,

£E=0 on 0. (5.11)

We need ¢ to satisfy suitable estimates (in terms of the right-hand side) in L, (0, T’; Lo(£2))N
Ly(0, T; WHQ)) and & to be bounded in Ly(2 x (0,7)). This may be done by means of
a Bogovskil type operator construction as in [12]. Here we shall define ¢ (treating t as
parameter) according to Lemma 6 in the Appendix.

3In fact, the function ¢ is in WZ(Q2) but we shall not take advantage of this in what follows.
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Let us start with the bound in L. (0,7"; L2(€2)): we have

1€l oo iza@) S 1Al LosoiLa02)-
Therefore, using the fact that
+ k
A = (Z(k+1)(—1)’“+1 (/ DyudT) ) - D,yu, (5.12)
£>0 0

we get (remember (5.1))

1€l oo o,:L20)) S U @ VullL 0,1:22(2))
S U] Lo 0,7 Lo @) | VUl Lo (0,75 20(02)) - (5.13)

In order to bound the right-hand side of (5.13), we apply the following classical parabolic
estimate (which is related to our definition of Besov spaces in (1.3)):

HUHL o0.T:B2=2/? () < C(HUQHB%z/p Q + Hut, V2U/HLP(QX(O7T))>. (5.14)
0 (0,T;Bpp™ " (82)) b (2)

Now, owing to Sobolev embedding, it is clear that the left-hand side of (5.14) controls the
L., norm whenever 2 — 2/p > n/p, that is p > (n + 2)/2. The constant in (5.14) is time
independent. Therefore, for any m € ((n +2)/2,n*), we have

[ul[ Lo @x0m) < Cm(|fuo’\33nj3{m(g) + [Jue, V2|1, @x(0.19)
< cm(||u0||3i$* @+ T Zap(T)). (5.15)
Inequality (5.14) with p = 2 also yields
IVullzooriza@ S luollwg o) + lue, Vil oo

< ol + T2 Zqp)(T). (5.16)

So, putting (5.13), (5.15) and (5.16) together, we get for some ¢ > 0,
1€l 2acto.r:2a0)) S Hluollyzgy + T° Efu,py (1) (5.17)

Next, in order to bound £ in Ly(0,T; W1(Q2)), we use the fact that
div, & = —A; : Du.

In effect, owing to (3.13), one may write div (Au;) = A : Du,, hence the above relation
may be obtained by taking the time derivative of div (Au) = A : Du. So, using Lemma 6
and remembering that n* > n, we get, for some § > 0,

”f”LQ(o,T;Wg(Q)) < CHWU‘?”LQ(QX(O,T))
< OV Lo 0,122 [| VU Lo 0,7 Loo (02))
< C(HVUOHLz(ﬂ) + Tl/Q”VUtHLz(QX(O,T)))”VUHLQ(O,T;W;*(Q))
< OT°Z(u,p) (1) ([uollwa @) + T°Z.p)(T)).
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Finally, let us bound & in Ls(2 x (0,7")). For that, we apply the last part of Lemma 6
which yields
[€ell Loax 0.1y < CllAL, Awu, Avue|| Ly @x(0,1)) - (5.18)

Using (5.13), (5.15) and (5.17), we get

1Al axory < ClIVUll Ly, Lo @) €] Lo 0,7:L2(02))
< C(HUOH%@(Q) + T(SE%MP) (T)) ||Vu||L2(0,T;Loo(Q))>
|Awull Ly oxor) < [Vl y@x ) U Lo 075200 (9)

< C”vut”L2(QX(07T))<|’u0HW2;2/"*(Q) + T(SE(u,P)<T>>7

[Avut]| Lo x01)) < ClIVU ® uel| 1y 2x(0,1)
< C\\Vull 0,700 ) (e = Ell o 0,752002)) + 1€l oo 0,7:2502)) ) -

So one may conclude that

1€l Laox o) S (luollziay + T°Efpy (TDIVUl L0700 )) + ol 220m% g

+ T°E ) (T Ve || Lao,7510(2)) + IVl Lo0.7: L) 0t — Ell 052000 (5.19)

Note that in (5.19), there is no factor T° for the leading order terms ||u; — &||1..(0.7:2(2)
and || V|| £, @x0,1))-

Once the vector-field ¢ has been constructed, one may recast System (5.6) in

n(ue — &) — vA(uy — §) + Vo By

= —v(A— A Du+v(A)wu— (Vo) P—n&+vAE in Qx(0,7),
div, (uy — &) =0 in  Qx(0,7), (5.20)
u—&=0 on 00 x (0,7),
(uy — &)|i=0 € La(£2) in Q.

Note that, now, div, (u; — &) = 0 and that (u; — £)|i=o is in L2(2) with
(e = O)le=oll Loy < Clluollwza) + l1uollyz ) - (5.21)

So taking the Ly(€Q)-inner product of (5.20); with u; — &, there is no term generated by
V.P; and we thus get

1 2 ’ 2 1 2 .
ifgzn\ut—ﬂ dx)t:TjLz//O/Q\V(ut—{ﬂ dxdt < §/ﬂfr]|ut—£| dx‘t:0+j;[j
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with

Lo cy//\ 1) [V [V (g — )] dx dt,

I, = CV//|VU|2|V(ut—§)|dxdt,
0Jo

T
I; = C//|Vu||VP| |uy — €| dx dt,

L = //mgt wp — )| dadt,
I; = I//O/Q|V§-V(ut—§)|d$dt,

In order to bound terms Iy, I, I3 and I5, we use Holder and Young inequalities. We
get for all € > 0,

5.22
5.23
0.24
5.25

I < ev||V(u — f)H%Q(Qx(O,T)) + CeullA - IdH%OO(QX(O,T)) HVUtH%Q(Qx(O,T))a
Iy < ev||V (ur — I, 0x 0.0y + CenllIVUl?[1Z,@x 0.1

Iy < eflu — SH%OO(QT;LQ(Q)) + CéHVuH%g(O,T;LOO(Q))||VP||%2(Q><(O,T))’

Is < ev|[V(u — 5)”%g(ﬂx(o,T)) + CE,V"V§|’%2(Q><(O,T))'

(5.22)
(5.23)
(5.24)
(5.25)

Inequality (5.24) deserves a remark : in order to “close the estimates”, we have to factor
out the last term in the right-hand side by a quantity which is small enough when 7' goes
to 0. Here this follows from the embedding Wsln C L2(0,T; Lo (R2)) which gives, because
n* > 2, .

IVullza07: 20y < CT2777

U”W%} L« (2x(0,7))" (5.26)

Finally, taking m € (1,2) so that 1 = .- + L and § := 2 — 1, we may write

Iy |we = &l 1, . cx 0.0 1t o (@x (0,7)) 5

<
< ellu - f”%n*(QX(O,T)) + CET&”&”%Q(QX(O,T))'
Combining interpolation and Sobolev embedding, we may write for all p € (2, c0),
1-2 2
[ue = 0z @) S llue — fHLoo(/Oz,)T;LQ(Q))”D< )HL/QPQX(OT
with n/q =n/2 —2/p. So taking p = ¢ = n* :=2(n+ 2)/n, we get
[ue = €]l L, @x0.r) < Clllue = EllLaorsLa) + IV (e = &)l a@x0:1))- (5.27)
Therefore, the above estimates for I; to I5 (with ¢ small enough) eventually imply that

lur — €7 omzacay + VIV (e = )2, ax 0y < 20 (e — O)le=oll?, ()
+C (VI 0.7 2wty IV 07,2y + IV P gereomy)

+Hvu”%1(0,T;Lw(Q))HvutH%Q(QX(O,T)) + Tg”ft”%g(nx(om) + ”véH%Q(QX(O,T)))’
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whence, using also the estimates for &, & and for Vu in Ly(0,T; Lo (£2)), we end up with

—_ 3
]| oo 015220 + | Vtte|| zyx0.7)) < Cuo (14 T°Z,p)(T)) " (5.28)

Here 6 > 0. Let us also stress that C',, depends only on [[ug|lwz(q), [P0l L), 106 | £oe ()
Q2 and v. In particular, it is time-independent.

Remark 5 At this stage, we find a limitation on the dimension of the domain: as we
need to have Vu € Ly(0,T; Loo(R2)), embedding requires that n* > n. This is fulfilled if
n = 2 (because 2* = 4) or n = 3 (because 3* = 10/3) but this is no longer satisfied
in higher dimension. So we see that our method cannot be directly applied for n > 4
unless we differentiate the system with respect to time, more times. Physical motivation
for considering dimension n > 4 is unclear, though.

Keeping (5.27) in mind, we see that in order to close the estimates, it suffices to bound
the terms ||V2ul|L, . @x (1) and [V P| L, .@x,r) which appear in the right-hand side of
(5.28). For that, we rewrite System (5.4) as a stationary Stokes system, treating nu; as a
source term, and the time variable as a parameter. So we consider

—vAu+ VP =—-nu—v(A-—A)u+(V-V,)P in Qx(0,7),
divu =div ((Id — A)u) = —A : Du in  Qx(0,7), (5.29)
u=>0 on 00 x (0,7).

Note that one may use Proposition 3 so as to handle the potential part of u. Therefore
using standard results for the stationary Stokes equation (see [15]) enables us to get

vV, VP 1, . coxor) < C(llullr,. ox©m)
+ [v(A = Ayu, (V = Vo) P,vV(A: Du)l|r,.ox@or))- (5.30)

The key to bounding the right-hand side is that, because n* > n, we have by embedding
and Holder’s inequality

CT' ==
< OTY

IN

Vu | | L+ (0,T;Lo0 ()

t
|| / Du(t',y) dt| 1 axory
0

VullL,. x0.1))-
In particular, this allows to write that

(A = Avullr,.oxor) S IDAA) | LworiL,. @I DullL,.07:0 0
+[]Id — ATA|| 1 (ox 0, || D?*u| 1. cox (0.7))

< ||D2UI|L1(0,T;LM(Q>||DUI|Ln*(0,T;LEO(m>
| Dull 1y 0.7:200 ) | D*ul 1, (2x 0,7))

S e E%U,P) (7).

Similar estimates hold true for the other terms of the right-hand side of (5.30). So finally,
putting together all the above inequalities leads to

—_ — 3
Ew,p)(T) < Cug (1 + T2, p)(T)) (5.31)

for some § = d(n) € (0,1) which may be computed explicitly.
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Then we are able to close the estimate, namely to write that

[1]

(w.P)(T') < 8Cy, (5.32)
whenever 1" has been chosen so that

8Cy, T < 1. (5.33)

5.2 The proof of existence

In this short subsection, we explain how the proof of existence may be achieved from
the above a priori estimates.

Taking for granted the proof of the existence of a solution in the smooth case is the
shortest way. Under the assumptions of Theorem 2, one may for instance smooth out the
initial density pg by convolution by a positive mollifier. This provides us with a family
of smooth approximate densities (pf)->0 satisfying the same lower and upper bound as
po- Then applying the local and existence and uniqueness statement of e.g. [6] (bounded
domain case) or [8] (whole space case), one obtains a family of solutions (p, v, VQ*) for
System 0.1 with data (pf,vo). This family of solutions has the required regularity. In
addition, the possible blow-up of (p°,v®, VQ*) at time T is controlled by the norm of Dv®
in Loo(0,7; La(2)) N L1(0,T; Lo (€2)). Note that Proposition 2 ensures that (p°, v°, VQF)
corresponds to a solution (7%, u®, VP?) of (3.10) with the same regularity.

Now, the computations that have been performed in the previous section, combined
with the aforementioned blow-up criterion ensure that the lifespan of (n°, u®, V.P?) (or of
(p°,v%,VQ*)) may be bounded by below as in (5.33), and that (5.32) is satisfied. The
important point is that all those bounds depend on the density only through its infimum
and supremum. So eventuallly, (p°, v®, VQ?) is uniformly bounded in

Loo(2 % (0,7)) x W2 (2% (0,T)) x Ly (2 x (0, 7)),

and in addition, d;v° is bounded in Lo, (0, T; Ly(2)) N Ly (0, T; W3 (2)).

By resorting to standard compactness argument, it is now easy to conclude that this
family converges, up to extraction, to some (p,v, V@Q) with the same regularity and satis-
fying the same bounds. The regularity is so high that the it is clear that it satisfies (0.1).
Uniqueness then follows from Theorem 1.

Remark 6 An alternative approach to the issue of existence can be done by an iterative
scheme performed in the same way as in our recent work [11], or as in [27, 31] for the
homogeneous Navier-Stokes equations in the Lagrangian coordinates.

6 Global existence

This section is dedicated to the proof of global-in-time solutions. As pointed out in the
introduction, in the case of smooth data, this is a classical issue that has been solved by
different authors in the Eulerian framework : if there is no vacuum initially then global
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existence may be achieved for general (smooth) data in the two-dimensional case and if
the velocity is small in the three-dimensional case (see e.g. [8, 21]).

As for us, in order to show the global existence, one may adopt the Eulerian approach,
too. However the very low regularity of the density will enforce us to treat the inhomogene-
ity of the fluid as a perturbation (hence to assume (1.7) or (1.9)) and to use the Lagrangian
framework to prove the uniqueness.

6.1 The two-dimensional case

Here we prove Theorem 3. We concentrate on the proof of global a priori estimates.
Indeed, existence can be established by an elementary approximation with smooth density
exactly as in the previous section : for smooth enough densities, the existence of global
solutions with velocity (locally) in Wi 5 (2 x R,) is ensured by [7] (bounded case) or by [8]
(whole space case). In addition, let us emphasize that, in dimension two, this regularity
guarantees that we are allowed to change coordinates between the Eulerian and Lagrangian
ones. So the uniqueness follows from Theorem 1.

For getting the global existence, the computations are simpler in the Eulerian frame-
work. We aim at getting a control over v; in Lo (0,77 Lo(€2)) in terms of the data and of T
only. Even though it is classical (see e.g. [3, 8, 21]) we here recall how to proceed. First,
we test the momentum equation of System (0.1) by v;. We get:

d
/p|vt|2d:p+z—/|Vv|2dx+/\/ﬁvt-(\/ﬁv-Vv)dx:O

Hence Holder and Young inequalities imply that

d
H\//_)UtH%Q(Q) + VEHVUH%Q(Q) < "\//_)U"%4(Q)"VU"%4(Q)- (6.1)
On the other hand, using maximal regularity for the stationary Stokes equation
—vAv +VQ = \/ﬁ<\/ﬁvt +/pv - Vv) in

dive =10 in €
v=20 on 012,

gives (omitting the time-dependency)

v V20llLa) + V@l Lae) S ||\/5||Loo(ﬂ>(||\/ﬁvt||L2(Q) + ||\/ﬁv||L4(Q>||VU||L4(Q)>- (6.2)
Now applying Ladyzhenskaya inequality |[Vvl|7, ) S VllLo@ | V0| 1y(), vields

VIV Ly@) + [IVQl o) S VPN L@ Iv/PVt ]| Lot

N ol e IOl VU 20
1%

(6.3)

Making use of Ladyzhenskaya inequality in (6.1), also leads to
||V21’||%2(Q)

ol Lo (2
oz Q) +CTH‘/ﬁvH%zz(ﬂ)||VU||%2(Q)- (6.4)

d
IVpvellZ ) + V@HVUH%Q(Q) <2
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Finally, adding up (6.4) and (6.3), using that |[p(¢)||z..@) = [/pollLe(@) and performing a
time integration yields

t 2 9 2.,112
v v V2
||V'U(t)||%2(ﬂ) / (H\/_ tHLQ(Q) ” Q”L2 + I/H HL2(Q)) dr
0

2v V”/)OHLOO(Q) HPOHLOO(Q)

Clovln [
< [Vl + 2= [ Bl o V0l 0
0

and Gronwall lemma implies that

t
VHVv(t)H%Q(Q)ﬂL/O (IVPvellL, ) + looll7 @ IV QL) + v N00ll7 @ IV*VIIL, 0 ) 7

— t
< V]| Vo, gy ¢ I B Vet (6.5)

Note that the exponential term is controlled thanks to the basic energy equality (1.1)
(combined with Ladyzhenskaya’s inequality).

Since W, (R?) is not embedded into L., (R?) we still do not control the change of co-
ordinates so that we cannot apply Theorem 1 to get uniqueness. So we are required to
improve the regularity of the solution to (0.1). In fact, it turns out to be possible to obtain
Wq%’pl smoothness for any 1 < p < co and n < ¢ < oo via bootstrap method. To avoid
technicality, we focus on the case p = 2 and ¢ = 4 which suffices both to perform the
change of coordinates and to apply the uniqueness result stated in Theorem 1. We rewrite
System (0.1) as

mu; — vAv +VQ = (m—plyy,—pv-Vo in Qx(0,7),
dive =0 in  Qx(0,7), (6.6)
v=0 in 90 x (0,T).

where m = inf,cq po(y). Note that the method of characteristics ensures that the initial
density controls lower and upper pointwise bounds of the density over Q x (0, 7).
Then using Theorem 5 we get:

Sup v mu|v(t)|lp1 ) + Mo, vV?0, VQ| L. L4)
<< ’

< C(H(P — m)V|| Ly 0.1:0402) + 1V - V|| Ly0.1:0400) + \/WH'UOHBL}Q(Q))' (6.7)
Now, we have
1pv - VUl o007 L09) < CllvllLaorLe@) VOl Li@x©.1))- (6.8)
The right-hand side of (6.7) is bounded by means of (6.5) as
Wyy C La(0,T; Lo () N TWE(R)).

The first term of the right-hand side of (6.7) can be absorbed by the left-hand side provided
c is sufficiently small in (1.7). This enables us to justify that the velocity v remains in
W4221(Q x (0,7)) for all T'> 0.

Finally, as 4 > 2 = dim (), we are allowed to apply Theorem 1 in order to get the
uniqueness of our constructed solutions. Theorem 3 is proved.
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6.2 Global existence in the n-dimensional case

In this part we address the global solvability issue in bounded n-dimensional domains
with n > 3. We adopt the Lagrangian framework (however the Eulerian framework may
be used as well, as regards the existence theory). The result is based on the technique for
the homogeneous system performed in [26].

In contrast with the other sections, working in bounded domains is important: this is
due to the following result which ensures the exponential decay of the energy norm.

Lemma 4 Let u be a sufficiently smooth solution to (3.10). Then

- d V.oul2dy = .
5 Q77|U| y+V/Q| wu|“dy =0, (6.9)

as long as the Lagrangian coordinates are defined. In addition if ) is bounded then
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a7, < e

t

|uoll7 - (6.10)
where \; stands for the first eigenvalue of the Laplace operator, and n* = ||n||L.(«)-

Proof: The proof is similar to that of Lemma 1 : testing (3.10)s by u we get (6.9).
In order to get (6.10), it suffices to notice that, owing to incompressibility, we have

/'r]|u|2dy:/p\v|2dx and /\Vuu\Qdy:/|Vv|2d:c.
Q 0 Q 0

Hence using (1.1) and Poincaré’s inequality, we readily get (6.10). ]

Proof of Theorem 4:

We focus on the proof of global a priori estimates for smooth solutions to (3.10). Indeed,
from those estimates, it is easy to proceed as in Section 5 so as to prove the existence of
a global solution under the assumptions of Theorem 4: this is only a matter of smoothing
out the initial density so as to construct a sequence of smooth solutions (given by e.g. [7])
with uniform norms.

So given a global solution (n,u, VP) to (3.10) with data py € Lo (Q2) satisfying (1.9)

and ugy € BqQ,ZQ/p(Q) with divug = 0 and ug|ag = 0, we introduce the following quantities:

M_1 = ml/pyl/p/ ||u0||Bg;2/p(Q) + m||u0||L2(Q),

My i= m! PVl sy, + Ime v92u, VPl ki, @)

where m :=inf py and £ € N. Recall 1 < p < o0, n < g < 0.

Let us notice that setting
u(t,z) = vi(vt,z) and P(t,z) = 1*P(vt, )

reduces our study to the case v = 1. Hence we shall assume from now on that v = 1.
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Define a smooth function ¢ : R — [0, 1] such that
e 1 t>0,

and set *(t) :==C(t — k) for k >0, and I} := [k — 1,k + 1] for k > 1.
We recast System (3.10) with ¢ = k£ — 1 as follows:

m(CFul, — A[¢Mu] + V[CFP] = ¢F(m — n)u,

(A= A[CRu) + (V= VP +m(Fhu i 9 x (0,7),

div [¢Fu] = div [¢Fu] — div, [¢Fu] in  Qx(0,7), (6.12)
CPu =0 on 0 x (0,7),
CFuli—pp1 =0 in Q.

Let m* := sup pg. We claim that there exist two positive constants K and « depending

only on m*, n, <, p,q, so that, under Condition (1.9), we have
M, < KM_e=®* forall keN. (6.13)

Let us observe that, by Sobolev embedding (here we use that ¢ > n), we have

k

k+1 k
/ D10y ds < C D ID*u|l 1z < C Y My (6.14)
0 =0 (=0

So, given that

> KM et = KMy

11—’
>0

if we assume that M_; is small enough —a condition which is equivalent to the smallness
of ¢ in (1.9)—- then (5.1) is satisfied on [0, k + 1] if (6.13) is satisfied up to k.

Proving (6.13) will be done by induction on k. The first step, £ = 0, is clear. This
is a direct consequence of Theorem 5 applied to (3.10) on the time interval [0,1], and of
estimates for A.

Let us now take for granted Inequality (6.13) up to £ — 1. In order to prove it for k,
we shall estimate (¢*u,(*P) on the interval Ij. For that, one may resort once again to
Theorem 5. First, we bound the right-hand side of (6.12) in L, (Ix; L,(€2)): we readily have

ICF(m — M|, izg@) < (M = m) ||l L, 1:L09)

1A = AW [CFulllz, sz, < |ATA — IdHLToo(flek) IV2ull (1)
VAT A 1 (520 @) VUl Ly (115200 (92)

(V= V.,)[¢*P] 2y (rsze@) < A = 1d][ 2@ 1) IV Pl 1, (105249
M (CF)eul| Ly (1 Lq () < m*ull L, (1 Lq0))-

Let us notice that, by interpolation and because € is bounded, we have for some 6 € (0, 1),

2 110 1-0
[l LyrLq@) < ClID™ UL, iy Lo@p Ul L sy
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Therefore, taking advantage of (6.10) and of the definition of Mj;_; and of My, we get for
some 3 > 0 (depending only on 2, p, ¢, m, and for all € € (0, 1),

mull L, ng @) < (My—y + M) + C-M_qe ™%, (6.15)
Next, we have to bound the left-hand side of (6.12),: we have

|div ((Id—A)[Cku])]\Lp(zk;w;(g)) < A = 1A o (x| V2| £,y (120 92
FIVA[ Lo tisza@) VUl (1 Lo @)

10 (Id — A)CFu) |,y < 1A =1d]| Lo @x 0, 1 (CF0)e | L, (14 Lo ()
Al 2 (21 Lo () 1% l| Lo (15 q (2)) -

Let us look at the quantities depending on the matrix A. Recall that
t
Al =1d —i—/ Du(s) ds,
0

so taking advantage of (6.14) and of the hypothesis that follows, one may write that

|1d — AHLOO(QX(O,kJrl)) < 2||DU||L1(0,k+1;Loo(Q))’

and a similar inequality for Id — ATA. Likewise, we have

k k

IDA| 1ctriny) < C Y 1Dl sz, < C Y Mo (6.16)
=0 /=0
and
Al L1 Lo @) < ClDU| (1000 () < C (M1 + My). (6.17)

So finally, putting together all the previous inequalities and applying Theorem 5 to (6.12),
we end up with

[m(¢Fuy), V2(CFu), V(CP) |1, (100

< O(My_y + M) ((m T; m) + (i Mg) + a) + C.M_je 7",
£=0

At this point, it is clear that one has to take a« = (. Note also that if M_; and the
oscillations of the density are small enough then, taking ¢ small enough too, the above
inequality implies, up to a change of C|

My < C(cMy_q + M_1e™%),

Now, using the induction hypothesis (6.13) for My_1, we deduce that

cCe® C
M, < KM_,e — .
k= 1€ (K’WJ

Therefore, we see that if we take K = 2C and assume that ¢ has been chosen so that
cCe® < 1/2 then we get (6.13) for M.
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Note that our proof is not quite rigorous as we did use (6.13) at rank % in the above
inequalities. To make the argument work, it is just a matter of replacing the interval I}
with [k — 1, 7). By continuity of the norms with respect to time, it is clear that (6.13) at
rang ¢ < k — 1 ensures that the desired inequality is satisfied on [k, T] for any T close
enough to k. Then resorting to a standard bootstrap argument allows to conclude to the
desired inequality for Mj. This completes the proof of Theorem 4.

7 Appendix

Throughout this paper, we used repeatedly the following well-known result for the
divergence equation (see e.g. [15] and the references therein):

Lemma 5 Let Q be a bounded Lipschitz domain of R™. There exists a linear operator B
which, is bounded from Lq(Q) to W () for all ¢ € (1,00) and such that for any f € Lq(S)
the vector-field uw := B(f) satisfies

divu=f in Q and  ulgo =0 on ON. (7.1)

This result may be proved by means of an explicit formula — the Bogovskii formula — that
provides a solution to the above divergence equation in the case where () is star-shaped.
In our paper, we had to use a more elaborate version of the above lemma, namely the
following statement that has been established in [12]:

Proposition 3 Let Q be a C? bounded domain. There exists a linear operator B acting
on couples (R, () with R : Q — R™ and ¢ : 9 — R which is continuous from L,(€2; R™) x

qul/q(ﬁQ,R) to Ly(Q,R™) for all ¢ € (1,400) and such that u := B(R,() satisfies the
generalized divergence equation:

—/U'V¢de‘:—/R'v¢dl‘+/ Cpdo for all ¢ € C(Q). (7.2)
Q Q o9
If in addition div R € L, () and R -7 =0 then u := B(R,0) satisfies
divu =divR in and ulgo =0 on 09,

and the following inequality holds true:

[ullwy @) < Clldiv Rz, @)- (7.3)
Furthermore, if we also have div R € W, () then u is in W}(Q) and we have

[ullwz) < Clldiv Rllwg)- (7.4)

We claim that this statement implies Lemma 2. Indeed, we set v := B(R,0). Then it
is is clear that (2.4) holds true. Then differentiating u with respect to time yields

Uy = B(Rt, 0)

Hence applying the first part of the above statement yields (2.5).
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In Section 5, owing to our use of Lagrangian coordinates, it was natural to extend
Lemma 2 and Proposition 3 to the twisted divergence equation, namely

divqu=divR in and u=0 on 0f)
with divs u := div (Au). In particular, we used the following statement:

Lemma 6 Let Q be a C* bounded domain. Let A € Loo(Q;R™ ™) be such that det A = 1.
There exists a positive constant ¢ such that if

[A—Td|| L@ < ¢ (7.5)

then there exists a map By acting on couples (R,() with R : @ — R"™ and ( : 02 — R
which is continuous from Ly (£2; R™) X qul/q(ﬁQ,R) to Ly(2,R™) for all ¢ € (1,4+00) and
such that uw := Ba(R, () satisfies the generalized twisted divergence equation:

—/Au-V¢dx:—/R-V¢dx+/ Cpdo for all ¢ € C(Q). (7.6)
Q Q o9

If in addition div R € L () and R -7 =0 then u:= B4(R,0) satisfies
divju=A:Du=divR in € and w=0 on 0, (7.7)

and (7.3) with a constant independent of A.

Finally, in the smooth case, if the data R and A depend on a parameter t in some
interval of R with Ry in L, () and (7.5) satisfied for almost all t, then u fulfills:

ullz, ) < C (1Al @) + 1Rl L) (7.8)

Proof: The proof follows from Proposition 3: we consider the linear operator T" defined
by

T(§) =&, where & := B((Id — A)§ + R, (). (7.9)
Note that this definition and the fact that det A = 1 imply that any fixed point of T’
satisfies (7.6) (or (7.7) in the smooth case with ¢ = 0). Next, under Condition (7.5) with ¢
small enough, one may apply the Banach fixed point theorem to T so as to get a solution
to our problem. The reader may refer to [12] for more details.

Concerning the proof of inequality (7.8), it suffices to differentiate once the equality
u=B((Id — A)u+ R,0).

We get
Ut = B(—Atu —+ (Id — A)Ut + Rt, O)
So it is a mere consequence of the first part of Proposition 3. [ ]
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