
HAL Id: hal-00676595
https://hal.science/hal-00676595v1

Submitted on 5 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New maximal regularity results for the heat equation in
exterior domains, and applications

Raphaël Danchin, Piotr Boguslaw Mucha

To cite this version:
Raphaël Danchin, Piotr Boguslaw Mucha. New maximal regularity results for the heat equation in
exterior domains, and applications. F. Colombini, D. Del Santo, M. Cicognani. Studies in Phase Space
Analysis with Applications to PDEs„ springer, Chapter 6, 2013, Progress in Nonlinear Differential
Equations and Their Applications, Vol 84. �hal-00676595�

https://hal.science/hal-00676595v1
https://hal.archives-ouvertes.fr


New maximal regularity results for the heat
equation in exterior domains, and applications

R. Danchin and P. B. Mucha

Abstract This paper is dedicated to the proof of new maximal regularity results

involving Besov spaces for the heat equation in the half-space or in bounded or ex-

terior domains of Rn. We strive for time independent a priori estimates in regularity

spaces of type L1(0,T ;X) where X stands for some homogeneous Besov space. In

the case of bounded domains, the results that we get are similar to those of the whole

space or of the half-space. For exterior domains, we need to use mixed Besov norms

in order to get a control on the low frequencies. Those estimates are crucial for

proving global-in-time results for nonlinear heat equations in a critical functional

framework.

Introduction

We are concerned with the proof of maximal regularity estimates for the heat equa-

tion with Dirichlet boundary conditions, namely,

ut −ν∆u = f in (0,T )×Ω ,
u = 0 at (0,T )× ∂Ω ,
u = u0 on Ω

(1)

in various domains Ω of Rn (n ≥ 2).

We are interested in L1-in-time estimates for the solutions to (1) with a gain of

two full spatial derivatives with respect to the data, that is
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Université Paris-Est, LAMA, UMR 8050 and Institut Universitaire de France, 61 avenue du
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‖ut ,ν∇2u‖L1(0,T ;X) ≤C
(
‖u0‖X + ‖ f‖L1(0,T ;X)

)
(2)

with a constant C independent of T.

Such time independent estimates are of importance not only for the heat semi-

group theory but also in the applications. Typically, they are crucial for proving

global existence and uniqueness statements for nonlinear heat equations with small

data in a critical functional framework. Moreover, the fact that two full derivatives

may be gained with respect to the source term allows to consider not only the −∆
operator but also small perturbations of it. In addition, we shall see below that it

is possible to choose X in such a way that the constructed solution u is L1-in-time

with values in the set of Lipschitz functions. Hence, if the considered nonlinear

heat equation determines the velocity field of some fluid then this velocity field

admits a unique Lipschitzian flow for all time. The model may thus be reformulated

equivalently in Lagrangian variables (see e.g. our recent work [4] in the slightly

different context of incompressible flows). This is obviously of interest to investigate

free boundary problems.

Let us recall however that estimates such as (2) are false if X is any reflexive

Banach space, hence in particular if X is a Lebesgue or Sobolev space (see e.g. [6]).

On the other hand, it is well known that (2) holds true in the whole space R
n if X

is a homogeneous Besov space with third index 1. Let us be more specific. Let us

fix some homogeneous Littlewood-Paley decomposition (∆̇ j) j∈Z (see the definition

in the next section) and denote by (eα∆ )α>0 the heat semi-group over Rn. Then it

is well known (see e.g. [1]) that there exist two constants c and C such that for all

j ∈ Z and α ∈ R
+ one has

‖eα∆ ∆̇ jh‖Lp(Rn) ≤Ce−cα22 j

‖∆̇ jh‖Lp(Rn). (3)

Hence if u satisfies (1) then one may write

∆̇ ju(t) = eνt∆ ∆̇ ju0 +
∫ t

0
eν(t−τ)∆ ∆̇ j f dτ.

Therefore, taking advantage of (3), we discover that

‖∆̇ ju(t)‖Lp(Rn) ≤C

(
e−cνt22 j

‖∆̇ ju0‖Lp(Rn)+
∫ t

0
e−cν(t−τ)22 j

‖∆̇ j f‖Lp(Rn) dτ

)
,

whence

‖∆̇ ju‖L∞(0,T ;Lp(Rn))+ν22 j‖∆̇ ju‖L1(0,T ;Lp(Rn))

≤C
(
‖∆̇ ju0‖Lp(Rn)+ ‖∆̇ j f‖L1(0,T ;Lp(Rn))

)
.

Multiplying the inequality by 2 js and summing up over j, we thus eventually get for

some absolute constant C independent of ν and T,
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‖u‖L∞(0,T ;Ḃs
p,1(R

n))+ ‖ut ,ν∇2u‖L1(0,T ;Ḃs
p,1(R

n))

≤C(‖ f‖L1(0,T ;Ḃs
p,1(R

n))+ ‖u0‖Ḃs
p,1(R

n)), (4)

where the homogeneous Besov semi-norm that is used in the above inequality is

defined by

‖u‖Ḃs
p,1(R

n) := ∑
j∈Z

2s j‖∆̇ ju‖Lp(Rn).

From this and the definition of homogeneous Besov space Ḃs
p,1(R

n) (see Section 1),

we easily deduce the following classical result:

Theorem 1. Let p ∈ [1,∞] and s ∈R. Let f ∈ L1(0,T ; Ḃs
p,1(R

n)) and u0 ∈ Ḃs
p,1(R

n).
Then (1) with Ω = R

n has a unique solution u in

C ([0,T ); Ḃs
p,1(R

n)) with ∂tu,∇
2u ∈ L1(0,T ; Ḃs

p,1(R
n))

and (4) is satisfied.

The present paper is mainly devoted to generalizations of Theorem 1 to the half-

space, bounded or exterior domains (that is the complement of bounded simply con-

nected domains), and applications to the global solvability of nonlinear heat equa-

tions.

Proving maximal regularity estimates for general domains essentially relies on

Theorem 1 and localization techniques. More precisely, after localizing the equation

thanks to a suitable resolution of unity, one has to estimate “interior terms” with

support that do not intersect the boundary of Ω and “boundary terms” the support of

which meets ∂Ω . In order to prove interior estimates that is bounds for the interior

terms, it suffices to resort to the theorem in the whole space, Theorem 1, for those

interior terms satisfy (1) (with suitable data) once extended by zero onto the whole

space. In contrast, the extension of the boundary terms by zero does not satisfy (1)

on R
n. However, performing a change of variable reduces their study to that of (1)

on the half-space R
n
+. Therefore, proving maximal regularity estimates in general

domains mainly relies on such estimates on R
n and on R

n
+. As a matter of fact, we

shall see that the latter case stems from the former, by symmetrization, provided s is

close enough to 0. In the case of a general domain, owing to change of variables and

localization however, we shall obtain (4) either up to low order terms or with a time-

dependent constant C. In a bounded domain, it turns out that Poincaré inequality (or

equivalently the fact that the Dirichlet Laplacian operator has eigenvalues bounded

away from 0) allows to prove an exponential decay which is sufficient to cancel out

those lower order terms. In the case of an exterior domain, that decay turns out to

be only algebraic (at most t−n/2 in dimension n). As a consequence, absorbing the

lower order terms will enforce us to use mixed Besov norms and to assume that

n ≥ 3.

The paper unfolds as follows. The basic tools for our analysis (Besov spaces on

domains, product estimates, embedding results) are presented in the next section. In
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Section 2 we prove maximal regularity estimates similar to those of Theorem 1 first

in the half-space and next in exterior or bounded domains. As an application, in the

last section, we establish global existence results for nonlinear heat equations with

small data in a critical functional framework.

1 Tools

In this section, we introduce the main functional spaces and (harmonic analysis)

tools that will be needed in this paper.

1.1 Besov spaces on the whole space

Throughout we fix a smooth nonincreasing radial function χ : Rn → [0,1] supported

in B(0,1) and such that χ ≡ 1 on B(0,1/2), and set ϕ(ξ ) := χ(ξ/2)− χ(ξ ). Note

that this implies that ϕ is valued in [0,1], supported in {1/2 ≤ r ≤ 2} and that

∑
k∈Z

ϕ(2−kξ ) = 1 for all ξ 6= 0. (5)

Then we introduce the homogeneous Littlewood-Paley decomposition (∆̇k)k∈Z over

R
n by setting

∆̇ku := ϕ(2−kD)u = F
−1

(
ϕ(2−k·)Fu

)
.

Above F stands for the Fourier transform on R
n. We also define the low frequency

cut-off Ṡk := χ(2−kD).
In order to define Besov spaces on R

n, we first introduce the following ho-

mogeneous semi-norms and nonhomogeneous Besov norms (for all s ∈ R and

(p,r) ∈ [1,∞]2):

‖u‖Ḃs
p,r(R

n) :=
∥∥2sk‖∆̇ku‖Lp(Rn)

∥∥
ℓr(Z)

‖u‖Bs
p,r(R

n) :=
∥∥2sk‖∆̇ku‖Lp(Rn)

∥∥
ℓr(N)

+ ‖Ṡ0u‖Lp(Rn).

The nonhomogeneous Besov space Bs
p,r(R

n) is the set of tempered distributions

u such that ‖u‖Bs
p,r(R

n) is finite. Following [1], we define the homogeneous Besov

space Ḃs
p,r(R

n) as

Ḃs
p,r(R

n) =
{

u ∈ S
′

h(R
n) : ‖u‖Ḃs

p,r(R
n) < ∞

}
,

where S ′
h(R

n) stands for the set of tempered distributions u over Rn such that for all

smooth compactly supported function θ over Rn, we have limλ→+∞ θ (λ D)u = 0 in

L∞(R
n). Note that any distribution u ∈ S ′

h(R
n) satisfies u = ∑k∈Z ∆̇ku in S ′

h(R
n).
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We shall make an extensive use of the following result (see the proof in e.g.

[1, 5]):

Proposition 1. Let bs
p,r denote Ḃs

p,r(R
n) or Bs

p,r(R
n). Then the following a priori

estimates hold true:

• For any s > 0,
‖uv‖bs

p,r
. ‖u‖L∞‖v‖bs

p,r
+ ‖v‖L∞‖u‖bs

p,r
.

• For any s > 0 and t > 0,

‖uv‖bs
p,r
. ‖u‖L∞‖v‖bs

p,r
+ ‖v‖b−t

∞,r
‖u‖bs+t

p,∞
.

• For any t > 0 and s >−n/p′,

‖uv‖bs
p,r

. ‖u‖L∞‖v‖bs
p,r
+ ‖u‖

b
n/p′

p′,∞

‖v‖bs
p,r
+ ‖v‖b−t

∞,r
‖u‖bs+t

p,∞
.

• For any q > 1 and 1− n/q≤ s ≤ 1,

‖uv‖b0
q,1

. ‖u‖bs
n,1
‖v‖

b1−s
q,1

.

As obviously a smooth compactly supported function belongs to any space

Ḃ
n/p

p,1 (R
n) with 1 ≤ p ≤ ∞, and to any Besov space Bσ

p,1(R
n), we deduce from the

previous proposition and embedding that (see the proof in [5]):

Corollary 1. Let θ be in C ∞
c (Rn). Then u 7→ θ u is a continuous mapping of bs

p,r(R
n)

• for any s ∈R and 1 ≤ p,r ≤ ∞, if bs
p,r(R

n) = Bs
p,r(R

n);
• for any s ∈R and 1 ≤ p,r ≤ ∞ satisfying

−n/p′ < s < n/p
(
−n/p < s ≤ n/p if r = 1, −n/p′ ≤ s < n/p if r = ∞

)
(6)

if bs
p,r(R

n) = Ḃs
p,r(R

n).

The following proposition allows us to compare the spaces Bs
p,r(R

n) and Ḃs
p,r(R

n)

for compactly supported functions1 (see the proof in [5]):

Proposition 2. Let 1 ≤ p,r ≤ ∞ and s > −n/p′ (or s ≥ −n/p′ if r = ∞). Then for

any compactly supported distribution f we have

f ∈ Bs
p,r(R

n) ⇐⇒ f ∈ Ḃs
p,r(R

n)

and there exists a constant C =C(s, p,r,n,K) (with K = Supp f ) such that

C−1‖ f‖Ḃs
p,r(R

n) ≤ ‖ f‖Bs
p,r(R

n) ≤C‖ f‖Ḃs
p,r(R

n).

1 Without any support assumption, it is obvious that if s is positive then we have ‖ · ‖Ḃs
p,r(R

n) .

‖ · ‖Ḃs
p,r(R

n), and the opposite inequality holds true if s is negative.
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The following lemma will be useful for boundary estimates (see the proof in [5]):

Lemma 1. Let Z be a Lipschitz diffeomorphism on R
n with DZ and DZ−1 bounded,

(p,r) ∈ [1,∞]2 and s a real number satisfying (6).

• If in addition s ∈ (−1,1) and Z is measure preserving then the linear map u 7→
u ◦Z is continuous on Ḃs

p,r(R
n).

• In the general case, the map u 7→ u ◦ Z is continuous on Ḃs
p,r(R

n) provided in

addition JZ−1 ∈ Ḃ
n/p′

p′,∞ ∩L∞ with JZ−1 := |detDZ−1|.

1.2 Besov spaces on domains

We aim at extending the definition of homogeneous Besov spaces to general do-

mains. We proceed by restriction as follows2:

Definition 1. For s ∈ R and 1 ≤ p,q ≤ ∞, we define the homogeneous Besov space

Ḃs
p,q(Ω) over Ω as the restriction (in the distributional sense) of Ḃs

p,q(R
n) on Ω , that

is

φ ∈ Ḃs
p,q(Ω) ⇐⇒ φ = ψ|Ω for some ψ ∈ Ḃs

p,q(R
n).

We then set

‖φ‖Ḃs
p,q(Ω) := inf

ψ|Ω=φ
‖ψ‖Ḃs

p,q(R
n).

The embedding, duality and interpolation properties of these Besov spaces may

be deduced from those on R
n. As regards duality, we shall use repeatedly the fol-

lowing result:

Proposition 3. If −1+ 1/p< s < 1/p (with 1 ≤ p,r < ∞) then the space Ḃ−s
p′,r′(Ω)

may be identified with the dual space of Ḃs
p,r(Ω); in the limit case r = ∞ then

Ḃ−s
p′,1(Ω) may be identified with the dual space of the completion of C ∞

c (Rn) for

‖ · ‖Ḃs
p,∞(Ω). Furthermore, without any condition over (s, p,r), we have

∣∣∣∣
∫

Ω
uvdx

∣∣∣∣≤C‖u‖Ḃs
p,r(Ω)‖v‖Ḃ−s

p′,r′
(Ω).

Similarly, some product laws for Besov spaces onRn may be extended to the domain

case. We shall use the last inequality of Proposition 1 and also the following result

that is proved in [5]:

Proposition 4. Let bs
p,r(Ω) denote Ḃs

p,r(Ω) or Bs
p,r(Ω), and Ω be any domain of

R
n. Then for any p ∈ [1,∞], s such that −n/p′ < s < n/p (or −n/p′ < s ≤ n/p if

r = 1, or −n/p′ ≤ s < n/p if r = ∞), the following inequality holds true:

‖uv‖bs
p,r(Ω) ≤C‖u‖

b
n/q

q,1 (Ω)
‖v‖bs

p,r(Ω) with q = min(p, p′).

2 Nonhomogeneous Besov spaces on domains may be defined by the same token.
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A very useful feature of Besov spaces is their interpolation properties. We refer

to the books [2, 14] for the proof of the following statement.

Proposition 5. Let bs
p,q denote Bs

p,q or Ḃs
p,q; s ∈ R, p ∈ [1,∞) and q ∈ [1,∞]. The

real interpolation of Besov spaces gives the following statement if s1 6= s2:

(
bs1

p,q1
(Ω),bs2

p,q2
(Ω)

)
θ ,q

= bs
p,q(Ω)

with s = θ s2 +(1−θ )s1, and 1
p
= θ

p2
+ 1−θ

p1
·

Moreover, if s1 6= s2, t1 6= t2 and if T : b
s1
p1,q1

(Ω) + b
s2
p2,q2

(Ω) → b
t1
k1,l1

(Ω) +

b
t2
k2,l2

(Ω) is a linear map, bounded from b
s1
p1,q1

(Ω) to b
t1
k1,l1

(Ω) and from b
s2
p2,q2

(Ω)

to b
t2
k2,l2

(Ω) then for any θ ∈ (0,1), the map T is also bounded from bs
p,q(Ω) to

bt
k,q(Ω) with

s = θ s2 +(1−θ )s1, t = θ t2 +(1−θ )t1,
1

p
=

θ

p2

+
1−θ

p1

,
1

k
=

θ

k2

+
1−θ

k1

·

The following composition estimate will be of constant use in the last section of

this paper.

Proposition 6. Let f : Rr → R be a C1 function such that f (0) = 0 and, for some

m ≥ 1 and K ≥ 0,
|d f (u)| ≤ K|u|m−1 for all u ∈ R

r. (7)

Then for all s ∈ (0,1) and 1 ≤ p,q ≤ ∞ there exists a constant C so that

‖ f (u)‖Ḃs
p,q(Ω) ≤CK‖u‖m−1

L∞(Ω)‖u‖Ḃs
p,q(Ω). (8)

Proof. The proof relies on the characterization of the norm of Ḃs
p,q(Ω) by finite

differences, namely3

‖ f (u)‖Ḃs
p,q(Ω) =

(∫

Ω

(∫

Ω

| f (u(y))− f (u(x))|p

|y− x|n+sp
dy

) q
p

dx

) 1
q

. (9)

Now the mean value formula implies that

f (u(y))− f (u(x)) =

(∫ 1

0
d f (u(x)+ t(u(y)−u(x)))dt

)
· (u(y)−u(x)).

Hence using the growth assumption (7),

| f (u(y))− f (u(x))| ≤ K

(∫ 1

0
|u(x)+ t(u(y)−u(x))|m−1 dt

)
|u(y)−u(x)|. (10)

Therefore we get

3 Here we just consider the case q < ∞ to shorten the presentation.
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| f (u(y))− f (u(x))| ≤ K‖u‖m−1
L∞(Ω)|u(y)−u(x)|.

Inserting this latter inequality in (9), we readily get (8).

In [3, 5], we proved that:

Proposition 7. Let Ω be the half-space, or a bounded or exterior domain with C1

boundary. For all 1 ≤ p,q < ∞, and −1+ 1/p< s < 1/p, we have

Bs
p,q(Ω) = C ∞

c (Ω)
‖·‖Bs

p,q(Ω) . (11)

Remark 1. In any C1 domain Ω and for 0 < s < n/p the space Ḃs
p,q(Ω) embeds in

Ḃ0
m,q(Ω) with 1/m = 1/p− s/n. Therefore, if q ≤ min(2,m), it also embeds in the

Lebesgue space Lm(Ω). So finally if s ∈ (0, 1
p
) and q ≤ min(2,m) with m as above

then Proposition 7 allows us to redefine the space Ḃs
p,q(Ω) by

Ḃs
p,q(Ω) = C ∞

c (Ω)
‖·‖Ḃs

p,q(Ω) . (12)

Remark 2. In particular under the above hypotheses, both classes of Besov spaces

admit trivial extension by zero onto the whole space. Combining with Proposition

2, we deduce that

Bs
p,q(Ω) = Ḃs

p,q(Ω) if − 1+ 1/p< s < 1/p and Ω is bounded.

Note also that, for obvious reasons, the above density result does not hold true if

q = ∞, for the strong topology. However, it holds for the weak ∗ topology.

2 A priori estimates for the heat equation

This section is the core of the paper. Here we prove generalizations of Theorem 1 to

more general domains. First we consider the half-space case, then we consider the

exterior and bounded cases. We shall mainly focus on the unbounded case which is

more tricky and just indicate at the end of this section what has to be changed in the

bounded domain case.

2.1 The heat equation in the half-space

The purpose of this paragraph is to extend Theorem 1 to the half-space case R
n
+,

namely
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ut −ν∆u = f in (0,T )×R
n
+,

u|xn=0 = 0 on (0,T )× ∂Rn
+,

u|t=0 = u0 on R
n
+.

(13)

Theorem 2. Let p ∈ [1,∞) and s ∈ (−1 + 1/p,1/p). Assume that f belongs to

L1(0,T ; Ḃs
p,1(R

n
+)) and that u0 is in Ḃs

p,1(R
n
+). Then (13) has a unique solution u

satisfying

u ∈ C ([0,T ); Ḃs
p,1(R

n
+)), ut ,∇

2u ∈ L1(0,T ; Ḃs
p,1(R

n
+))

and the following estimate is valid:

‖u‖L∞(0,T ;Ḃs
p,1(R

n
+))

+ ‖ut ,ν∇2u‖L1(0,T ;Ḃs
p,1(R

n
+))

≤C(‖ f‖L1(0,T ;Ḃs
p,1(R

n
+))

+ ‖u0‖Ḃs
p,1(R

n
+)
), (14)

where C is an absolute constant with no dependence on ν and T .

Proof. We argue by symmetrization. Let ũ0 and f̃ be the antisymmetric extensions

over Rn to the data u0 and f . Then, given our assumptions over s and Proposition 7,

one may assert that ũ0 ∈ Ḃs
p,1(R

n), f̃ ∈ L1(0,T ; Ḃs
p,1(R

n)) and that, in addition

‖ũ0‖Ḃs
p,1(R

n) ≈ ‖u0‖Ḃs
p,1(R

n
+)

and ‖ f̃ ‖L1(0,T ;Ḃs
p,1(R

n)) ≈ ‖ f‖L1(0,T ;Ḃs
p,1(R

n
+))

.

Let ũ be the solution given by Theorem 1. As this solution is unique in the cor-

responding functional framework, the symmetry properties of the data ensure that

ũ is antisymmetric with respect to {xn = 0}. As a consequence, it vanishes over

{xn = 0}. Hence the restriction u of ũ to the half-space satisfies (13). In addition,

• ũt coincides with the antisymmetric extension of ut ,
• ∇2

x′
ũ coincides with the antisymmetric extension of ∇2

x′
u,

• ∇x′∂xn ũ coincides with the symmetric extension of ∇x′∂xnu,

• ∂ 2
xn,xn

ũ = (∆ −∆x′)ũ hence coincides with ũt − f̃ −∆x′ ũ.

Hence one may conclude that

‖u‖L∞(0,T ;Ḃs
p,1(R

n
+))

+ ‖ut ,ν∇2u‖L1(0,T ;Ḃs
p,1(R

n
+))

≤ ‖ũ‖L∞(0,T ;Ḃs
p,1(R

n))+ ‖ũt ,ν∇2ũ‖L1(0,T ;Ḃs
p,1(R

n)).

This implies (14).

Remark 3. The case of non-homogeneous boundary conditions where u equals some

given h at the boundary, reduces to the homogeneous case : it is only a matter

of assuming that h admits some extension h̃ over (0,T )×R
n
+ so that h̃t − ν∆ h̃ ∈

L1(0,T ; Ḃs
p,1(R

n
+)).
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2.2 The exterior domain case

Here we extend Theorem 1 to the case where Ω is an exterior domain (that is the

complement of a bounded simply connected domain). Here is our main statement:

Theorem 3. Let Ω be a C2 exterior domain of Rn with n ≥ 3. Let 1 < q ≤ p < ∞
with q < n/2. Let −1+ 1/p< s < 1/p and −1+ 1/q< s′ < 1/q− 2/n. Let

u0 ∈ Ḃs
p,1 ∩ Ḃs′

q,1(Ω) and f ∈ L1(0,T ; Ḃs
p,1 ∩ Ḃs′

q,1(Ω)).

Then there exists a unique solution u to (1) such that

u ∈ C ([0,T ]; Ḃs
p,1 ∩ Ḃs′

q,1(Ω)), ut ,∇
2u ∈ L1(0,T ; Ḃs

p,1 ∩Bs′

q,1(Ω))

and the following inequality is satisfied:

‖u‖
L∞(0,T ;Ḃs

p,1∩Ḃs′
q,1(Ω))

+‖ut ,ν∇2u‖
L1(0,T ;Ḃs

p,1∩Ḃs′
q,1(Ω))

≤C
(
‖u0‖Ḃs

p,1∩Ḃs′
q,1(Ω)

+ ‖ f‖
L1(0,T ;Ḃs

p,1∩Ḃs′
q,1(Ω))

)
, (15)

where the constant C is independent of T and ν.

Proving this theorem relies on the following statement (that is of independent inter-

est and holds in any dimension n ≥ 2), and on lower order estimates (see Lemma 2

below) which will enable us to remove the time dependency.

Theorem 4. Let Ω be a C2 exterior domain of Rn with n ≥ 2. Let 1 < p < ∞, −1+
1/p < s < 1/p, f ∈ L1(0,T ; Ḃs

p,1(Ω)), and u0 ∈ Ḃs
p,1(Ω). Then equation (1) has a

unique solution u such that

u ∈ C ([0,T ]; Ḃs
p,1(Ω)), ∂tu,∇

2u ∈ L1(0,T ; Ḃs
p,1(Ω))

and the following estimate is valid:

‖u‖L∞(0,T ;Ḃs
p,1(Ω))+‖ut ,ν∇2u‖L1(0,T ;Ḃs

p,1(Ω))

≤CeCT ν
(
‖u0‖Ḃs

p,1(Ω)+ ‖ f‖L1(0,T ;Ḃs
p,1(Ω))

)
, (16)

where the constant C depends only on s, p, and Ω .

Additionally if K is a compact subset of Ω such that dist(∂Ω ,Ω \K) > 0, there

holds

‖u‖L∞(0,T ;Ḃs
p,1(Ω))+‖ut ,ν∇2u‖L1(0,T ;Ḃs

p,1(Ω))

≤C
(
‖u0‖Ḃs

p,1(Ω)+ ‖ f‖L1(0,T ;Ḃs
p,1(Ω))+ν‖u‖L1(0,T ;Ḃs

p,1(K))

)
, (17)

where C is as above.
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Proof. We suppose that we have a smooth enough solution and focus on the proof

of the estimates. We shall do it in three steps: first we prove interior estimates, next

boundary estimates and finally global estimates after summation.

Note that performing the following change of unknown and data:

unew(t,x) = νuold(ν
−1t,x), u0,new(x) = νu0,old(x), fnew(t,x) = fold(ν

−1t,x)

reduces the study to the case ν = 1. So we shall make this assumption in all that

follows.

Throughout we fix some covering (B(xℓ,λ ))1≤ℓ≤L of K by balls of radius λ and

take some neighborhood Ω 0 ⊂ Ω of Rn \K such that d(Ω 0,∂Ω) > 0. We assume

in addition that the first M balls do not intersect K while the last L−M balls are

centered at some point of ∂Ω .
Let η0 : Rn → [0,1] be a smooth function supported in Ω 0 and with value 1 on a

neighborhood of Ω \K. Then we consider a subordinate partition of unity (ηℓ)1≤ℓ≤L

such that:

1. ∑0≤l≤L ηℓ = 1 on Ω ;

2. ‖∇kηℓ‖L∞(Rn) ≤Ckλ−k for k ∈ N and 1 ≤ ℓ≤ L;

3. Suppηℓ ⊂ B(xℓ,λ ).

We also introduce another smooth function η̃0 supported in K and with value 1 on

Supp∇η0 and smooth functions η̃1, · · · , η̃L with compact support in Ω ℓ and such

that η̃ℓ ≡ 1 on Suppηℓ.
Note that for ℓ ∈ {1, · · · ,L}, the bounds for the derivatives of ηℓ together with

the fact that
∣∣Supp∇ηℓ

∣∣ ≈ λ n and Proposition 5 implies that for k = 0,1 and any

q ∈ [1,∞], we have

‖∇ηℓ‖
Ḃ

k+n/q

q,1 (Rn)
. λ−1−k. (18)

The same holds for the functions η̃ℓ. Throughout, we set U ℓ := uηℓ.

First step: the interior estimate

The vector-field U0 satisfies the following modification of (1):

U0
t −∆U0 = η0 f − 2∇η0 ·∇u− u∆η0 in (0,T )×R

n,

U0|t=0 = u0η0 on R
n.

(19)

Theorem 1 thus yields the following estimate:

‖U0‖L∞(0,T ;Ḃs
p,1(R

n))+ ‖U0
t ,∇

2U0‖L1(0,T ;Ḃs
p,1(R

n)) . ‖η0 f‖L1(0,T ;Ḃs
p,1(R

n))

+‖∇η0 ·∇u‖L1(0,T ;Ḃs
p,1(R

n))+ ‖u∆η0‖L1(0,T ;Ḃs
p,1(R

n))+ ‖η0u0‖Ḃs
p,1(R

n).

Let us emphasize that as ∇η0 ·∇u and u∆η0 are compactly supported, we may

replace the homogeneous norms by non-homogeneous ones in the first two terms.
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As a consequence, because the function ∇η0 is in C ∞
c (Rn) and η̃0 ≡ 1 on Supp∇η0,

Corollary 1 ensures that

‖U0‖L∞(0,T ;Ḃs
p,1(R

n))+ ‖U0
t ,∇

2U0‖L1(0,T ;Ḃs
p,1(R

n))

. ‖η0u0‖Ḃs
p,1(R

n))+ ‖η0 f‖L1(0,T ;Ḃs
p,1(R

n))+ ‖η̃0u‖
L1(0,T ;Bs+1

p,1 (Rn)). (20)

Now, by interpolation,

‖η̃0u‖
B1+s

p,1 (Ω) ≤C‖η̃0u‖
1
2

B2+s
p,1 (Ω)

‖η̃0u‖
1
2

Bs
p,1(Ω)

. (21)

As Supp η̃0 ⊂ K and as homogeneous and nonhomogeneous norms are equivalent

on K, one may thus conclude that

‖U0‖L∞(0,T ;Ḃs
p,1(R

n))+ ‖U0
t ,∇

2U0‖L1(0,T ;Ḃs
p,1(R

n)) . ‖ f‖L1(0,T ;Ḃs
p,1(Ω))

+T 1/2‖u‖
L1(0,T ;Ḃ2+s

p,1 (K))∩L∞(0,T ;Ḃs
p,1(K))+ ‖u0‖Ḃs

p,1(Ω). (22)

Note that starting from (21) and using Young’s inequality also yields for all ε > 0:

‖U0‖L∞(0,T ;Ḃs
p,1(R

n))+ ‖U0
t ,∇

2U0‖L1(0,T ;Ḃs
p,1(R

n)) ≤C
(
‖u0‖Ḃs

p,1(Ω)

+ ‖ f‖L1(0,T ;Ḃs
p,1(Ω))

)
+ ε‖u‖

L1(0,T ;Ḃ2+s
p,1 (K))+ c(ε)‖u‖L1(0,T ;Ḃs

p,1(K)). (23)

The terms U ℓ with 1 ≤ ℓ≤ M may be bounded exactly along the same lines because

their support do not meet ∂Ω , hence their extension by 0 over Rn satisfies

U ℓ
t −∆U ℓ = f ℓ in (0,T )×R

n,
U ℓ|t=0 = u0ηℓ on R

n

with

f ℓ :=−2∇ηℓ ·∇u− u∆ηℓ+ηℓ f . (24)

Arguing as above and taking advantage of the fact that the functions ηℓ are localized

in balls of radius λ (that is we use (18)), we now get

‖ f ℓ‖L1(0,T ;Ḃs
p,1(Ω)) . ‖ηℓ f‖L1(0,T ;Ḃs

p,1(Ω))

+λ−2‖η̃ℓu‖L1(0,T ;Ḃs
p,1(Ω))+λ−1‖η̃ℓ∇u‖L1(0,T ;Ḃs

p,1(Ω)). (25)

Using again (21) (with η̃ℓ instead of η̃0), we get

‖U ℓ‖L∞(0,T ;Ḃs
p,1(R

n))+ ‖U ℓ
t ,∇

2U ℓ‖L1(0,T ;Ḃs
p,1(R

n)) . ‖ηℓ f‖L1(0,T ;Ḃs
p,1(Ω))

+
(
λ−1T 1/2 +λ−2T

)
‖u‖

L1(0,T ;Ḃ2+s
p,1 (K))∩L∞(0,T ;Ḃs

p,1(K))+ ‖u0ηℓ‖Ḃs
p,1(Ω), (26)
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‖U ℓ‖L∞(0,T ;Ḃs
p,1(R

n))+ ‖U ℓ
t ,∇

2U ℓ‖L1(0,T ;Ḃs
p,1(R

n)) ≤C
(
‖u0ηℓ‖Ḃs

p,1(Ω)

+ ‖ηℓ f‖L1(0,T ;Ḃs
p,1(Ω))

)
+λ−1‖u‖

1/2

L1(0,T ;Ḃ2+s
p,1 (K))

‖u‖
1/2

L1(0,T ;Ḃs
p,1(K))

. (27)

Second step: the boundary estimate

We now consider an index ℓ ∈ {L+ 1, · · · ,M} so that B(xℓ,λ ) is centered at a point

of ∂Ω . The localization leads to the following problem:

U ℓ
t −∆U ℓ = f ℓ in (0,T )×Ω ,

U ℓ = 0 on (0,T )× ∂Ω ,
U ℓ

t |t=0 = u0ηℓ on Ω ,
(28)

with f ℓ defined by (24), hence satisfying (25).

Let us now make a change of variables so as to recast (28) in the half-space. As

∂Ω is C2, if λ has been chosen small enough then for fixed ℓ we are able to find a

map Zℓ so that

i) Zℓ is a C2 diffeomorphism from B(xℓ,λ ) to Zℓ(B(x
ℓ,λ ));

ii) Zℓ(x
ℓ) = 0 and DxZ(xℓ) = Id;

iii) Zℓ(Ω ∩B(xℓ,λ ))⊂ R
n
+;

iv) Zℓ(∂Ω ∩B(xℓ,λ )) = ∂Rn
+∩Zℓ(B(x

ℓ,λ )).

Setting ∇xZℓ = Id +Aℓ then one may assume in addition that there exist constants

C j depending only on Ω and on j ∈ {0,1} such that

‖D jAℓ‖L∞(B(xℓ,λ ))
≤C j, (29)

a property which implies (by the mean value formula) that

‖Aℓ‖L∞(B(xℓ,λ ))
≤C1λ , (30)

hence by interpolation between the spaces Lq(B(x
ℓ,λ )) and W r−1

q (B(xℓ,λ )),

‖Aℓ‖
B

n
q
q,1(B(x

ℓ,λ ))
≤Cλ for all 1 ≤ q < ∞ such that n/q < r− 1. (31)

Let V ℓ := Z∗
ℓU ℓ :=U ℓ ◦Z−1

ℓ . The system satisfied by V ℓ reads

V ℓ
t −∆zV

ℓ = Fℓ in (0,T )×R
n
+,

V ℓ|zn=0 = 0 on (0,T )× ∂Rn
+,

V ℓ|t=0 = Z∗
ℓ (U

ℓ|t=0) on ∂Rn
+,

(32)

with

Fℓ := Z∗
ℓ f ℓ+(∆x −∆z)V

ℓ.

According to Theorem 2, we thus get
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‖V ℓ‖L∞(0,T ;Ḃs
p,1(R

n
+))

+ ‖V ℓ
t ,∇

2
zV ℓ‖L1(0,T ;Ḃs

p,1(R
n
+))

. ‖Z∗
ℓ f ℓ‖‖L1(0,T ;Ḃs

p,1(R
n
+))

+(∆x −∆z)V
ℓ)‖L1(0,T ;Ḃs

p,1(R
n
+))

+ ‖Z∗
ℓ (U

ℓ|t=0)‖Ḃs
p,1(R

n
+)
.

Note that the first and last terms in the right-hand side may be dealt with thanks to

Lemma 1: we have

‖Z∗
ℓ f ℓ‖L1(0,T ;Ḃs

p,1(R
n
+))

. ‖ f ℓ‖L1(0,T ;Ḃs
p,1(Ω))

‖Z∗
ℓ (U

ℓ|t=0)‖Ḃs
p,1(R

n
+)

. ‖U ℓ|t=0‖Ḃs
p,1(Ω).

Compared to the first step, the only definitely new term is (∆x − ∆z)V
ℓ. Explicit

computations (see e.g. [5]) show that (∆z −∆x)V
ℓ is a linear combination of com-

ponents of ∇2
z Aℓ⊗V ℓ and ∇zAℓ⊗∇zV

ℓ. Therefore

‖(∆x −∆z)V
ℓ)‖L1(0,T ;Ḃs

p,1(R
n
+))

. ‖Aℓ⊗∇2
zV ℓ‖L1(0,T ;Ḃs

p,1(R
n
+))

+‖∇zAℓ⊗∇zV
ℓ‖L1(0,T ;Ḃs

p,1(R
n
+))

.

Now, according to Proposition 4 and owing to the support properties of the terms

involved in the inequalities,, we have

‖Aℓ⊗∇2
zV ℓ‖L1(0,T ;Ḃs

p,1(R
n
+))

. ‖Aℓ‖
Ḃ

n
q
q,1(B(x

ℓ,λ ))
‖∇2

zV ℓ‖Ḃs
p,1(R

n
+)

with q=min(p, p′).

Therefore we have, thanks to (30) and to (31),

‖Aℓ⊗∇2
zV ℓ‖L1(0,T ;Ḃs

p,1(R
n
+))

. λ‖∇2
zV ℓ‖Ḃs

p,1(R
n
+)
.

Similarly, we have

‖∇zAℓ⊗∇zV
ℓ‖L1(0,T ;Ḃs

p,1(R
n
+))

. ‖∇zV
ℓ‖L1(0,T ;Ḃs

p,1(R
n
+))

.

Therefore

‖(∆x −∆z)V
ℓ‖L1(0,T ;Ḃs

p,1(R
n
+))

. λ‖∇2
zV ℓ‖L1(0,T ;Ḃs

p,1(R
n
+))

+ ‖∇zV
ℓ‖L1(0,T ;Ḃs

p,1(R
n
+))

.

Putting together the above inequalities and remembering of (25) and Lemma 1, we

finally get, taking λ small enough

‖V ℓ‖L∞(0,T ;Ḃs
p,1(R

n
+))

+ ‖V ℓ
t ,∇

2
zV ℓ‖L1(0,T ;Ḃs

p,1(R
n
+))

. ‖U ℓ|t=0‖Ḃs
p,1(Ω)+ ‖ηℓ f‖L1(0,T ;Ḃs

p,1(Ω))

+λ−2‖η̃ℓu‖L1(0,T ;Ḃs
p,1(Ω))+λ−1‖η̃ℓ∇u‖L1(0,T ;Ḃs

p,1(Ω))+ ‖∇V ℓ‖L1(0,T ;Ḃs
p,1(R

n
+))

.

By interpolation, we have
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‖∇V ℓ‖L1(0,T ;Ḃs
p,1(R

n
+))

. ‖∇2V ℓ‖
1/2

L1(0,T ;Ḃs
p,1(R

n
+))

‖V ℓ‖
1/2

L1(0,T ;Ḃs
p,1(R

n
+))

.

Therefore using Young’s inequality enables us to reduce the above inequality to

‖V ℓ‖L∞(0,T ;Ḃs
p,1(R

n
+))

+ ‖V ℓ
t ,∇

2V ℓ‖L1(0,T ;Ḃs
p,1(R

n
+))

. ‖U ℓ|t=0‖Ḃs
p,1(Ω)+ ‖ηℓ f‖L1(0,T ;Ḃs

p,1(Ω))+ ‖V ℓ‖L1(0,T ;Ḃs
p,1(R

n
+))

+λ−2‖η̃ℓu‖L1(0,T ;Ḃs
p,1(Ω))+λ−1‖η̃ℓ∇u‖L1(0,T ;Ḃs

p,1(Ω)).

In order to handle the last term, there are two ways of proceeding depending on

whether we want a time dependent constant or not. The first possibility is to write

that, by interpolation and Hölder’s inequality,

‖η̃ℓ∇u‖L1(0,T ;Ḃs
p,1(Ω)) ≤ T 1/2‖u‖

L1(0,T ;Ḃs+2
p,1 (K))∩L∞(0,T ;Ḃs

p,1(K)).

This yields

‖V ℓ‖L∞(0,T ;Ḃs
p,1(R

n
+))

+ ‖V ℓ
t ,∇

2V ℓ‖L1(0,T ;Ḃs
p,1(R

n
+))

. ‖ηℓu0‖Ḃs
p,1(Ω)+ ‖ηℓ f‖L1(0,T ;Ḃs

p,1(Ω))+T‖V ℓ‖L∞(0,T ;Ḃs
p,1(R

n
+))

+
(
λ−1T 1/2 +λ−2T

)
‖u‖

L1(0,T ;Ḃs+2
p,1 (K))∩L∞(0,T ;Ḃs

p,1(K)). (33)

The second possibility is to write that

‖η̃ℓ∇u‖L1(0,T ;Ḃs
p,1(Ω)) ≤ ‖u‖

1
2

L1(0,T ;Ḃs+2
p,1 (K))

‖u‖
1
2

L1(0,T ;Ḃs
p,1(K))

.

We eventually get

‖V ℓ‖L∞(0,T ;Ḃs
p,1(R

n
+))

+ ‖V ℓ
t ,∇

2V ℓ‖L1(0,T ;Ḃs
p,1(R

n
+))

. ‖ηℓu0‖Ḃs
p,1(Ω)

+ ‖ηℓ f‖L1(0,T ;Ḃs
p,1(Ω))+λ−1‖u‖

1/2

L1(0,T ;Ḃ2+s
p,1 (K))

‖u‖
1/2

L1(0,T ;Ḃs
p,1(K))

+λ−2‖u‖L1(0,T ;Ḃs
p,1(K))+ ‖∇V ℓ‖L1(0,T ;Ḃs

p,1(R
n
+))

. (34)

Third step: global a priori estimates

Now, in view of Lemma 1, we may write

‖u‖L∞(0,T ;Ḃs
p,1(Ω)) ≤ ∑

ℓ

‖U ℓ‖L∞(0,T ;Ḃs
p,1(Ω))

. ∑
0≤ℓ≤M

‖U ℓ‖L∞(0,T ;Ḃs
p,1(R

n))+ ∑
M<ℓ≤L

‖V ℓ‖L∞(0,T ;Ḃs
p,1(R

n
+))

,
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and similar inequalities for the other terms of the l.h.s of (33). Of course, Proposition

1 ensures that

‖uℓ0‖Ḃs
p,1(Ω) . ‖u0‖Ḃs

p,1(Ω) and ‖η̃ℓ f‖L1(0,T ;Ḃs
p,1(Ω)) . ‖ f‖L1(0,T ;Ḃs

p,1(Ω)).

So using also (22) and (26) and assuming that T is small enough, we end up with

‖u‖L∞(0,T ;Ḃs
p,1(Ω))+ ‖(ut ,∇

2u)‖L1(0,T ;Ḃs
p,1(Ω)) . ‖u0‖Ḃs

p,1(Ω)

+‖ f‖L1(0,T ;Ḃs
p,1(Ω))+(λ−1T 1/2 +λ−2T )‖u‖

L1(0,T ;Ḃs+2
p,1 (K))∩L∞(0,T ;Ḃs

p,1(K)).

Hence if in addition λ−2T is small enough,

‖u‖L∞(0,T ;Ḃs
p,1(Ω))+ ‖ut,∇

2u‖L1(0,T ;Ḃs
p,1(Ω)) ≤C

(
‖u0‖Bs

p,1(R
n)+ ‖ f‖L1(0,T ;Ḃs

p,1(Ω))

)
.

Repeating the argument over the interval [T,2T ] and so on, we get exactly Inequality

(16).

If we want to remove the time-dependency then it is just a matter of starting

from (34) and (27) instead of (33) and (22). After a few computation and thanks to

Young’s inequality, we get for some constant C depending on λ ,

‖ut ,∇
2u‖L1(0,T ;Ḃs

p,1(Ω)) ≤C(‖u0‖Ḃs
p,1(Ω)+ ‖ f‖L1(0,T ;Ḃs

p,1(R
n
+))

+ ‖u‖L1(0,T ;Ḃs
p,1(K))).

For completeness, let us say a few words about the existence, which is rather stan-

dard issue (see e.g. [11]). If the domain is smooth then the easiest approach is via

the L2-framework and Galerkin method. We may consider smooth approximations

of data f and u0, such that to keep them in the space Hm with sufficiently large

m ∈ N. Then the energy method provides us with approximate solutions in Sobolev

spaces Hm with large m. In particular, the above a priori estimates (16) may be

derived for such solutions. It is then easy to pass to the limit.

Remark 4. Let us emphasize that the term ‖u‖L1(0,T ;Ḃs
p,1(K)) may be replaced by other

lower order norms such as ‖u‖
L1(0,T ;Ḃs′

p,1(K))
with s′ 6= s close to 0. In particular s′

may be put to zero.

In order to complete the proof of Theorem 3, we now have to bound the last

term of (17), namely ‖u‖L1(0,T ;Ḃs
p,1(K)), independently of T. This is the goal of the

next lemma (where we keep the assumption that ν = 1). We here adapt to the heat

equation an approach that has been proposed for the Stokes system in [13].

Lemma 2. Assume that n ≥ 3 and that 1 < p < n/2. Then for any s ∈ (−1 +
1/p,1/p− 2/n) sufficiently smooth solutions to (1) fulfill

‖u‖L1(0,T ;Ḃs
p,1(K)) ≤C(‖ f‖L1(0,T ;Ḃs

p,1(Ω))+ ‖u0‖Ḃs
p,1(Ω)),

where C is independent of T .
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Proof. Thanks to the linearity of the system, one may split the solution u into two

parts, the first one u1 being the solution of the system with zero initial data and

source term f , and the second one u2, the solution of the system with no source

term and initial data u0. In other words, u = u1 + u2 with u1 and u2 satisfying

u1,t −∆u1 = f in (0,T )×Ω , u2,t −∆u2 = 0 in (0,T )×Ω ,
u1 = 0 on (0,T )× ∂Ω , u2 = 0 on (0,T )× ∂Ω ,
u1|t=0 = 0 on Ω , u2|t=0 = u0 on Ω .

(35)

Let us first focus on u1. Recall that up to a constant we have (see Proposition 3):

‖u1(t)‖Ḃs
p,1(K) = sup

∫

K
u1(t,x)η0(x)dx, (36)

where the supremum is taken over all η0 ∈ Ḃ−s
p′,∞(K) such that ‖η0‖Ḃ−s

p′,∞
(K) = 1. Of

course, by virtue of Remark 2, any such function η0 may be extended by 0 over Rn,
and its extension still has a norm of order 1. So we may assume that the supremum

is taken over all

η0 ∈ Ḃ−s
p′,∞(R

n) with ‖η0‖Ḃ−s
p′,∞

(Rn) = 1 and Suppη0 ⊂ K. (37)

Consider the solution η to the following problem:

ηt −∆η = 0 in (0,T )×Ω ,
η = 0 on (0,T )× ∂Ω ,
η |t=0 = η0 on Ω .

(38)

Testing the equation for u1 by η(t −·) we discover that

∫

Ω
u1(t,x)η0(x)dx =

∫ t

0

∫

Ω
f (τ,x)η(t − τ,x)dxdτ. (39)

The general theory for the heat operator in exterior domains implies the following

estimates:

‖η(t)‖La(Ω) ≤C‖η0‖Lb(Ω)t
− n

2 (
1
b−

1
a ) for 1 < b ≤ a < ∞, (40)

as well as

‖∆η(t)‖La(Ω) ≤C‖∆η0‖Lb(Ω)t
− n

2 (
1
b
− 1

a ) for 1 < b ≤ a < ∞. (41)

In the case Ω = R
n, those two inequalities may be derived easily from the (ex-

plicit) heat kernel. To prove (40) in the case of an exterior domain, it is enough to

look at solutions to (38) as subsolutions to the problem in the whole space. More

precisely, if we assume that η0 ≥ 0 (this is not restrictive for one may consider the

positive and negative part of the initial data separately), we get a solution to (38) de-

fined over (0,∞)×Ω such that η ≥ 0. Then we consider an extension Eη : Rn →R
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of η , such that Eη = η for x ∈ Ω and Eη = 0 for x /∈ Ω . We claim that Eη is a

subsolution to the Cauchy problem

η̄t −∆η̄ = 0 in (0,T )×R
n with η̄ |t=0 = Eη0. (42)

It is sufficient to show that η ≤ η̄ , since η̄ is always nonnegative. It is clear that

(η − η̄)t −∆(η − η̄) = 0 in (0,T )×Ω . (43)

Consider (η − η̄)+ := max{η − η̄,0}. It is obvious that (η − η̄)+ vanishes at the

boundary, because η is zero and η̄ is nonnegative there. Hence we conclude

1

2

d

dt

∫

Ω
(η − η̄)2

+dx+

∫

Ω
|∇(η − η̄)+|

2dx = 0. (44)

Thus, (η − η̄)+ ≡ 0, since (η − η̄)+|t=0 = 0. So η is bounded by η̄ .

To prove (41) we observe that for the smooth solutions the equation implies that

∆η |∂Ω = 0, so we can consider the problem on ∆η instead of η . Now, as η vanishes

at the boundary, we have (see e.g. [8])

‖∇2η‖Lc(Ω) ≤ ‖∆η‖Lc(Ω) for all 1 < c < ∞. (45)

Hence, interpolating between (40) and (41) yields for 0 < s < 1/b.

‖η(t)‖Ḃs
b,r(Ω) ≤C‖η0‖Ḃs

a,r(Ω)t
− n

2 (
1
p−

1
q ) for 1 < a ≤ b < ∞ and 1 ≤ r ≤ ∞. (46)

In order to extend this inequality to negative indices s, we consider the following

dual problem:

ζt −∆ζ = 0 in (0,T )×Ω ,
ζ = 0 on (0,T )× ∂Ω ,
ζ |t=0 = ζ0 on Ω ,

(47)

where ζ0 ∈ B−s
b′,r′(Ω).

Now, testing (47) by η(t −·) yields

∫

Ω
η(t,x)ζ0(x)dx =

∫

Ω
η0(x)ζ (t,x)dx. (48)

Let us observe that

‖η(t)‖Ḃs
b,r(Ω) = sup

ζ0

∫

Ω
η(t,x)ζ0(x)dx, (49)

where the supremum is taken over all ζ0 ∈ Ḃ−s
b′,r′(Ω) such that ‖ζ0‖Ḃ−s

b′,r′
(Ω) = 1. Thus

by virtue of (48), we get:
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‖η(t)‖Ḃs
b,r(Ω) = sup

ζ0

∫

Ω
η0(x)ζ (t,x)dx ≤ sup

ζ0

(
‖η0‖Ḃs

a,r(Ω)‖ζ (t)‖Ḃ−s

a′,r′
(Ω)

)
. (50)

Since −s is positive we can apply (46) and get if 0 <−s < 1/a′,

‖η(t)‖Ḃs
b,r(Ω) ≤C‖η0‖Ḃs

a,r(Ω)t
− n

2 (
1
a′
− 1

b′
)
sup
ζ0

‖ζ0‖Ḃ−s

b′,r′
(Ω).

Since 1
a′
− 1

b′
= 1

b
− 1

a
, we conclude that

‖η(t)‖Ḃs
a,r(Ω) ≤C‖η0‖Ḃs

b,r(Ω)t
− n

2 (
1
b
− 1

a ) if s >−1+ 1/a. (51)

In order to get the remaining case s = 0, it suffices to argue by interpolation

between (46) and (51). One can thus conclude that for all 1 < b ≤ a < ∞, q ∈ [1,∞]
and −1+ 1/a< s < 1/b, we have

‖η(t)‖Ḃs
a,r(Ω) ≤C‖η0‖Ḃs

b,r(Ω)t
− n

2 (
1
b−

1
a ). (52)

Now we return to the initial problem of bounding u1. Starting from (39) and

using duality, one may write

∣∣∣∣
∫

Ω
u1(t,x)η0(x)dx

∣∣∣∣.
∫ t

0
‖ f (τ)‖Ḃs

p,1(Ω)‖η(t − τ)‖Ḃ−s
p′,∞

(Ω) dτ.

Hence splitting the interval (0, t) into (0,max(0, t − 1)) and (max(0, t − 1), t) and

applying (52) yields for any ε ∈ (0,1+ s),

∣∣∣∣
∫

Ω
u1(t,x)η0(x)dx

∣∣∣∣.
∫ t

max(0,t−1)
‖ f (τ)‖Ḃs

p,1(Ω)‖η0‖Ḃ−s

p′,∞
(Ω) dτ

+

∫ max(0,t−1)

0
‖ f (τ)‖Ḃs

p,1(Ω)‖η0‖Ḃ−s
1

1−ε ,∞
(Ω)(t − τ)−

n
2 (

1
p−ε)

dτ.

Now, as η0 is supported in K, one has ‖η0‖Ḃ−s
a,∞(Ω) ≤C|K|

1
p+

1
a−1‖η0‖Ḃ−s

p′,∞
(Ω). This

may easily proved by introducing a suitable smooth cut-off function with value 1

over K and taking advantage of Proposition 1. A scaling argument yields the depen-

dency of the norm of the embedding with respect to |K|. Hence we have for some

constant C depending on K:

‖η0‖Ḃ−s
1

1−ε ,∞

≤C‖η0‖Ḃ−s

p′,∞
(Ω).

So, keeping in mind (39) and the fact that the supremum is taken over all the func-

tions η0 satisfying (37), we deduce that
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‖u1(t)‖Ḃs
p,1(K) ≤C

(∫ t

max(0,t−1)
‖ f (τ)‖Ḃs

p,1(Ω) dτ

+

∫ max(0,t−1)

0
(t − τ)−

n
2 (

1
p−ε)‖ f (τ)‖Ḃs

p,1(Ω) dτ

)
.

Therefore,

∫ T

1
‖u1‖Ḃs

p,1(K) dt ≤C

(
1+

∫ T

1
τ−

n
2 (

1
p−ε)

dτ

)∫ T

0
‖ f‖Ḃs

p,1(Ω) dt. (53)

For the time interval [0,1], we merely have

∫ 1

0
‖u1‖Ḃs

p,1(K) dt ≤C

∫ 1

0
‖ f‖Ḃs

p,1(Ω) dt.

Now, provided that one may find some ε > 0 such that

n

2

(1

p
− ε

)
> 1, (54)

a condition which is equivalent to p < n/2, the constant in (53) may be made inde-

pendent of T. Hence we conclude that

∫ T

0
‖u1‖Ḃs

p,1(K) dt ≤C

∫ T

0
‖ f‖Ḃs

p,1(Ω) dt (55)

with C independent of T .

Let us now bound u2. We first write that

‖u2(t)‖Ḃs
p,1(K) ≤C‖u0‖Ḃs

p,1(Ω) (56)

and, if −1+ ε < s < 1/p,

‖u2(t)‖Ḃs
p,1(K) ≤C|K|

1
p−ε‖u2(t)‖Ḃs

1
ε ,1

(K) ≤C|K|
1
p−ε‖u0‖Ḃs

p,1(Ω)t
− n

2 (
1
p−ε).

Then decomposing the integral over [0,T ] into an integral over [0,min(1,T )] and

[min(1,T ),T ], we easily get

∫ T

0
‖u2(t)‖Ḃs

p,1(K) dt ≤C

(
1+

∫ T

min(1,T )
t
− n

2 (
1
p−ε)

dt

)
‖u0‖Ḃs

p,1(Ω). (57)

The integrant in the r.h.s. of (57) is finite whenever (54) holds. Hence,

∫ T

0
‖u2(t)‖Ḃs

p,1(K) dt ≤C‖u0‖Ḃs
p,1(Ω). (58)

Putting this together with (53) and (2.2) completes the proof of the lemma.
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We are now ready to prove Theorem 3. Granted with Theorem 4, it is enough to

show that ‖u‖
L1(0,T ;Ḃs

p,1(K)∩Ḃs′
q,1(K))

may be bounded by the right-hand side of (15).

As a matter of fact ‖u‖
L1(0,T ;Ḃs′

q,1(K))
may be directly bounded from Lemma 2, and

the same holds for ‖u‖L1(0,T ;Ḃs
p,1(K)) if p < n/2.

If p ≥ n/2, then we use the fact so that

Ḃs+2
q,1 (Ω)⊂ Ḃs

q∗,1(Ω) with
1

q∗
=

1

q
−

2

n
·

Therefore, if q < n/2 ≤ p < q∗ then one may combine interpolation and Lemma 2

so as to absorb ‖u‖L1(0,T ;Ḃs
p,1(K)) by the left-hand side of (15), changing the constant

C if necessary.

If p ≥ q∗ then one may repeat the argument again and again until the all possible

values of p in (n/2,∞) are exhausted. Theorem 3 is proved.

2.3 The bounded domain case

We end this section with a few remarks concerning the case where Ω is a bounded

domain of Rn with n ≥ 2. Then the proof of Theorem 4 is similar : we still have to

introduce some suitable resolution of unity (ηℓ)0≤ℓ≤L. The only difference is that,

now, η0 has compact support. Hence Theorem 4 holds true with K = Ω .

In order to remove the time dependency in the estimates, we use the fact (see e.g.

[7]) that the solution η to (38) satisfies for some c > 0,

‖η(t)‖Lp(Ω) ≤Ce−ct‖η0‖Lp(Ω),

which also implies that

‖∇2η(t)‖Lp(Ω) ≤Ce−ct‖∇2η0‖Lp(Ω).

Hence we have for any 1 < p < ∞ and −1+ 1/p< s < 1/p,

‖η(t)‖Ḃs
p,1(Ω) ≤Ce−ct‖η0‖Ḃs

p,1(Ω). (59)

Defining u1 and u2 as in (35), one may thus write

∣∣∣∣
∫

Ω
u1(t,x)η0(x)dx

∣∣∣∣ . ‖η0‖Ḃ−s

p′,∞
(Ω)

∫ t

0
‖ f (τ)‖Ḃs

p,1(Ω)e
−c(t−τ) dτ,

thus giving

‖u1‖L1(0,T ;Ḃs
p,1(K)) . ‖ f‖L1(0,T ;Ḃs

p,1(Ω)).

Of course, we also have
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‖u2‖L1(0,T ;Ḃs
p,1(K)) . ‖u0‖Ḃs

p,1(Ω).

So one may conclude that Lemma 2 holds true for any 1 < p < ∞ and −1+ 1/p <
s < 1/p. Consequently, we get:

Theorem 5. If 1 < p < ∞ and −1+ 1/p < s < 1/p then the statement of Theorem

2 remains true in any C2 bounded domain.

3 Applications

In this last section, we give some application of the maximal regularity estimates

that have been proved hitherto. As an example, we prove global stability results

(in a critical functional framework) for trivial/constant solutions to the following

system:

ut −ν∆u+P ·∇2u = f0(u)+ f1(u) ·∇u in (0,T )×Ω ,
u = 0 at (0,T )× ∂Ω ,
u|t=0 = u0 on Ω .

(60)

Above, ν is a positive parameter, u stands for a r-dimensional vector and P =
(P1, · · · ,Pr) where the Pk’s are n×n matrices with suitably smooth coefficients. The

nonlinearities f0 : Rr → R
r and f1 : Rr → Mr,n(R) are C1 and satisfy

f0(0) = 0, d f0(0) = 0 and f1(0) = 0, (61)

together with some growths conditions that will be detailed below.

As we have in mind applications to Theorem 3, we focus on the case where

Ω is a smooth exterior domain of Rn with n ≥ 3. Of course, based on our other

maximal regularity results, similar (and somewhat easier) statements may be proved

for bounded domains, Rn
+ or Rn.

Here are two important examples entering in the class of equations (60). The first

one is the nonlinear heat transfer equation (see [16] and the references therein):

ut −ν∆u = f (u). (62)

A classical form of the nonlinearity is f (u) = Ku2(u− u∗). However one may con-

sider more complex models describing a flame propagation like in [12].

The second example is the viscous Burgers equation [9, 10]

ut + u∂x1
u−ν∆u = 0. (63)

which enters in the class of models like

ut −ν∆u = B(u,∇u). (64)
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In the case where B(u,∇u) = −u · ∇u, this is just the equation for pressureless

viscous gases with constant density.

Below, based on Theorem 3, we shall prove two global-in-time results concerning

the stability of the trivial solution of System (60). In the first statement, to simplify

the presentation, we only consider the case where the data belong to spaces with

regularity index equals to 0. To simplify the notation, we omit the dependency with

respect to the domain Ω in all that follows.

Theorem 6. Let 1 < q < n/2 and Ω be an exterior domain of Rn (n ≥ 3). There

exist two positive constants η and cν such that for all P : [0,∞)×Ω →R
n×R

n×R
k

satisfying4:

‖P‖L∞(0,∞;M (Ḃ0
n,1∩Ḃ0

q,1))
≤ ην, (65)

for all nonlinearities f0 and f1 fulfilling (61) and

|d f0(w)| ≤C|w|, |d f1(w)| ≤C, (66)

and for all u0 ∈ Ḃ0
n,1 ∩ Ḃ0

q,1 such that

‖u0‖Ḃ0
n,1∩Ḃ0

q,1
≤ cν , (67)

System (60) admits a unique global solution u in the space

Cb(0,∞; Ḃ0
n,1 ∩ Ḃ0

q,1)∩L1(0,∞; Ḃ2
n,1 ∩ Ḃ2

q,1). (68)

Proof. Granted with Theorem 3, the result mainly relies on embedding, composi-

tion and and product estimates in Besov spaces. We focus on the proof of a priori

estimates for a global solution u to (60). First, applying Theorem 3 yields

‖u‖L∞(0,∞;Ḃ0
n,1∩Ḃ0

q,1)∩L1(0,∞;Ḃ2
n,1∩Ḃ2

q,1)
. ‖P‖L∞(0,∞;M (Ḃ0

n,1∩Ḃ0
q,1))

‖u‖L1(0,∞;Ḃ2
n,1∩Ḃ2

q,1)

+ ‖u0‖Ḃ0
n,1∩Ḃ0

q,1
+ ‖ f0(u)‖L1(0,∞;Ḃ0

n,1∩Ḃ0
q,1)

+ ‖ f1(u) ·∇u‖L1(0,∞;Ḃ0
n,1∩Ḃ0

q,1)
. (69)

Bounding the last two terms follows from Propositions 1 and 6. More precisely, for

p = q,n, we have

‖ f1(u) ·∇u‖Ḃ0
p,1

. ‖ f1(u)‖
Ḃ

1/2
n,1

‖∇u‖
Ḃ

1/2
p,1

. ‖u‖
Ḃ

1/2
n,1

‖∇u‖
Ḃ

1/2
p,1

.

Therefore, applying Hölder inequality,

‖ f1(u) ·∇u‖L1(0,∞;Ḃ0
p,1)

. ‖u‖
L4(0,∞;Ḃ

1/2
n,1 )

‖∇u‖
L4/3(0,∞;Ḃ

1/2
p,1 )

,

4 Below M (X) denotes the multiplier space associated to the Banach space X , that is the set

of those functions f such that f g ∈ X whenever g is in X endowed with the norm ‖ f ‖M (X) :=
infg ‖ f g‖X where the infimum is taken over all g ∈ X with norm 1.
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whence, using elementary interpolation,

‖ f1(u) ·∇u‖L1(0,∞;Ḃ0
n,1∩Ḃ0

q,1)
. ‖u‖2

L∞(0,∞;Ḃ0
n,1∩Ḃ0

q,1)∩L1(0,∞;Ḃ2
n,1∩Ḃ2

q,1)
. (70)

Bounding f0(u) is slightly more involved. To handle the norm in L1(0,∞; Ḃ0
n,1(Ω)),

we use the following critical embedding:

Ḃ1
n/2,1 →֒ Ḃ0+

n−,1 →֒ Ḃ0
n,1.

Hence Proposition 1 enables us to write that

‖ f0(u)‖Ḃ0
n,1

. ‖ f0(u)‖Ḃ0+

n−,1

,

. ‖u‖L∞‖u‖
Ḃ0+

n−,1

,

. ‖u‖L∞‖u‖Ḃ1
n/2,1

,

. ‖u‖Ḃ1
n,1
‖u‖Ḃ1

q,1∩Ḃ1
n,1
.

The last inequality stems from the embedding Ḃ1
n,1 →֒ L∞ and from the fact that

q < n/2 < n, whence

Ḃ1
q,1 ∩ Ḃ1

n,1 →֒ Ḃ1
n/2,1.

Therefore, using Hölder inequality and elementary interpolation, we deduce that

‖ f0(u)‖L1(0,∞;Ḃ0
n,1)

. ‖u‖2
L∞(0,∞;Ḃ0

n,1∩Ḃ0
q,1)∩L1(0,∞;Ḃ2

n,1∩Ḃ2
q,1)

. (71)

Finally we have to bound f0(u) in L1(0,∞; Ḃ0
q,1). For that it suffices to estimate it in

L1(0,∞; Ḃ0+

q,1) and in L1(0,∞;Lq−). Indeed we observe that Lq− →֒ Ḃ0−

q,∞, and thus

L1(0,∞; Ḃ0+

q,1)∩L1(0,∞;Lq−) →֒ L1(0,∞; Ḃ0
q,1). (72)

Now, on the one hand, according to Proposition 6 and Hölder inequality we have

‖ f0(u)‖L1(0,∞;Ḃ0+
q,1)

. ‖u‖L1+ (0,∞;L∞)‖u‖
L∞− (0,∞;Ḃ0+

q,1)
.

By interpolation, we easily get

‖u‖
L∞− (0,∞;Ḃ0+

q,1)
. ‖u‖L∞(0,∞;Ḃ0

q,1)∩L1(0,∞;Ḃ2
q,1)

and because q < n/2,

‖u‖L
1+ (0,∞;L∞) . ‖u‖L1(0,∞;Ḃ0

∞,1)∩L2(0,∞;Ḃ0
∞,1)

,

. ‖u‖L1(0,∞;Ḃ2
n/2,1

)∩L2(0,∞;Ḃ1
n,1)

,

. ‖u‖L1(0,∞;Ḃ2
q,1∩Ḃ2

n,1)∩L1(0,∞;Ḃ2
n,1)∩L∞(0,∞;Ḃ0

n,1)
.
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Therefore we have,

‖ f0(u)‖L1(0,∞;Ḃ0+
q,1)

. ‖u‖2
L1(0,∞;Ḃ2

q,1∩Ḃ2
n,1)∩L∞(0,∞;Ḃ0

q,1∩Ḃ0
n,1)

. (73)

On the other hand, using the fact that | f0(u)| ≤C|u|2 and Hölder inequality, we may

write

‖ f0(u)‖L1(0,∞;L
q− ) ≤ ‖u‖L∞(0,∞;Lq)‖u‖L1(0,∞;L∞− ).

We obviously have Ḃ0
q,1 →֒ Lq and, because 2− n/q< 0,

Ḃ2
q,1 ∩ Ḃ2

n,1 →֒ L∞− .

Therefore

‖ f0(u)‖L1(0,∞;Lq− ) . ‖u‖L∞(0,∞;Ḃ0
q,1)

‖u‖L1(Ḃ
2
q,1∩Ḃ2

n,1)
. (74)

So putting (73) and (74) together and taking advantage of (72), we end up with

‖ f0(u)‖L1(0,∞;Ḃ0
q,1)

. ‖u‖2
L∞(0,∞;Ḃ0

n,1∩Ḃ0
q,1)∩L1(0,∞;Ḃ2

n,1∩Ḃ2
q,1)

. (75)

It is now time to plug (70), (71) and (75) in (69). We get

‖u‖L∞(0,∞;Ḃ0
n,1∩Ḃ0

q,1)∩L1(0,∞;Ḃ2
n,1∩Ḃ2

q,1)

≤C(‖P‖L∞(0,∞;M (Ḃ0
n,1∩Ḃ0

q,1))
‖u‖L1(0,∞;Ḃ2

n,1∩Ḃ2
q,1)

+ ‖u‖2
L∞(0,∞;Ḃ0

n,1∩Ḃ0
q,1)∩L1(0,∞;Ḃ2

n,1∩Ḃ2
q,1)

+ ‖u0‖Ḃ0
n,1∩Ḃ0

q,1
). (76)

Obviously, the above estimate enables us to get a global-in-time control of the

solution in the desired functional space whenever (65) and (67) are satisfied. Starting

from this observation and using the existence part of Theorem 3, it is easy to prove

Theorem 6 by means of Banach fixed point theorem as in [3] for instance. The

details are left to the reader.

Theorem 7. Assume that P ≡ 0 and that f1 ≡ 0. Suppose that f0 satisfies (61) and

|d f0(w)| ≤C(|w|m−1 + |w|) for some m ≥ 2.

Let 1 < q < n
2

and q ≤ p < ∞. Assume that

sp :=
n

p
−

2

m− 1
∈

(
0,

1

p

)
and 0 < sq <

1

q
−

2

n
·

Then there exists a constant cν such that if

‖u0‖Ḃ
sp
p,1∩Ḃ

sq
q,1

≤ cν (77)

then System (60) admits a unique global-in-time solution u such that
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u ∈ Cb(0,∞; Ḃ
sp

p,1 ∩ Ḃ
sq

q,1)∩L1(0,∞; Ḃ
2+sp

p,1 ∩ Ḃ
2+sq

q,1 ). (78)

Proof. Once again, we start from Theorem 3 which implies the following inequality:

‖u‖
L∞(0,∞;Ḃ

sp
p,1∩Ḃ

sq
q,1)∩L1(0,∞;Ḃ

2+sp
p,1 ∩Ḃ

2+sq
q,1 )

. ‖ f0(u)‖L1(0,∞;Ḃ
sp
p,1∩Ḃ

sq
q,1)

+‖u0‖Ḃ
sp
p,1∩Ḃ

sq
q,1
.

(79)

Now (a slight generalization of) Proposition 6 ensures that for s = sp,sq and for

r = p,q,
‖ f0(u)‖Ḃs

r,1
.
(
‖u‖L∞ + ‖u‖m−1

L∞

)
‖u‖Ḃs

r,1
.

Therefore,

‖ f0(u)‖L1(0,∞;Ḃ
sp
p,1∩Ḃ

sq
q,1

≤C
(
‖u‖L1(0,∞;L∞)

+ ‖u‖m−1
Lm−1(0,∞;L∞)

)
‖u‖

L∞(0,∞;Ḃ
sp
p,1∩Ḃ

sq
q,1)

. (80)

Hence it is only a matter of proving that the norm of u in L1(0,∞;L∞) and in

Lm−1(0,∞;L∞) may be bounded by means of the norm in L1(0,∞; Ḃ2
q,1 ∩ Ḃ2

n,1)∩

L∞(0,∞; Ḃ0
q,1 ∩ Ḃ0

n,1). Now, we notice that Ḃ
sp+2/(m−1)
p,1 embeds continuously in L∞

and that, by interpolation,

‖u‖
Lm−1(0,∞;Ḃ

sp+2/(m−1)
p,1 )

≤ ‖u‖
L∞(0,∞;Ḃ

sp
p,1)∩L1(0,∞;Ḃ

sp+2

p,1 )
.

Hence we do have

‖u‖Lm−1(0,∞;L∞) . ‖u‖
L∞(0,∞;Ḃ

sp
p,1)∩L1(0,∞;Ḃ

sp+2

p,1 )
. (81)

Finally, we notice that Ḃ2
sq+2,1 →֒ Ḃ

2+sq−n/q

∞,1 and that 2+ sq − n/q < 0. At the same

time Ḃ
sp+2

p,1 →֒ Ḃ1
∞,1, therefore

Ḃ
sq+2

q,1 ∩ Ḃ
sp+2

p,1 →֒ L∞.

Hence we have

‖u‖L1(0,∞;L∞) . ‖u‖
L1(0,∞;Ḃ

sp+2

p,1 )∩L1(0,∞;Ḃ
sq+2

q,1 )
. (82)

Putting (81) and (82) into (80) and then into (79) we get

‖u‖
L∞(0,∞;Ḃ

sp
p,1∩Ḃ

sq
q,1)∩L1(0,∞;Ḃ

2+sp
p,1 ∩Ḃ

2+sq
q,1 )

. ‖u0‖Ḃ
sp
p,1∩Ḃ

sq
q,1

+(‖u‖m−2

L∞(0,∞;Ḃ
sp
p,1∩Ḃ

sq
q,1)∩L1(0,∞;Ḃ

2+sp
p,1 ∩Ḃ

2+sq
q,1 )

+ 1)‖u‖2

L∞(0,∞;Ḃ
sp
p,1∩Ḃ

sq
q,1)∩L1(0,∞;Ḃ

2+sp
p,1 ∩Ḃ

2+sq
q,1 )

.
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The smallness of the initial data in (69) enables to close the estimate for the left-hand

side of the above inequality. The existence issue is just a consequence of Banach

fixed point theorem. This completes the proof of the theorem.

Remark 5. Even though System (60) does not have any scaling invariance in general,

our two statements are somewhat critical from the regularity point of view. Indeed,

in the functional framework used in Theorem 6 and under the growth condition (66),

the nonlinearity f0(u) is lower order compared to f1(u) ·∇u. Now, we notice that if

f0 ≡ 0 and P ≡ 0 then the initial value problem for System (60) (in the R
n case) is

invariant for all λ > 0 under the transform:

(u(t,x),u0(x)) −→ λ (u(λ 2t,λ x),u0(λ x)).

At the same time, the norm ‖ · ‖Ḃ0
n,1(R

n) is invariant by the above rescaling for u0.

As regards Theorem 7, the nonlinearity f0(w) is at most of order m. Now, if (the

coefficients of) f0(w) are homogeneous polynomials of degree m then the system is

invariant by

(u(t,x),u0(x))−→ λ
2

m−1 (u(λ 2t,λ x),u0(λ x)).

Hence the regularity Ḃ
sp

p,1 is critical.
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