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Diffusive Equation Subject to Boundary Disturbances

Federico Bribiesca Argomedo, Emmanuel Witrant and ChptstoPrieur

Abstract— D'-Input-to-state stability (D'ISS) of a diffusive and the norm of the input signal, but also by the norm of
equation with Dirichlet boundary conditions is shown, in the  the firstk time-derivatives of this input signal.
L*-norm, with respect to boundary disturbances. In particular, The use of Lyapunov functions to study the solutions or
the spatially distributed diffusion coefficients are alloned to - o . . .
be time-varying within a given set, without imposing any con propertles of lnflnlte.-QIme.nsmnaI _Systems Is not hew, see
straints on their rate of variation. Based on a strict Lyapunov ~ for instance [1], but it is still an active research topichét
function for the system with homogeneous boundary conditins,  interesting results involving Lyapunov functions applied
D'ISS .in.equalities are derived fOI'. the disturbed quatipn. parabo"c equations can be found in [3]’ where a Lyapunov
A heuristic method used to numerically compute weighting  5556ach js used to prove the existence of a global solution
functions is discussed. Numerical simulations are preseatl and . .
discussed to illustrate the implementation of the theoretal to the heat equation; [101_' where Lyapunov functions are
results. used to analyze the regularity and well-posedness of Bsirger
equation with a backstepping boundary control; [9], where a
|. INTRODUCTION Lyapunov function is used to analyze the heat equation with
unknown destabilizing parameters and its control exterssio
Parabolic partial differential equations (PDEs) are usegh [15] and [16]. Other results not involving parabolic equa
to model a wide array of physical phenomena. Withijons are for example [5], where a Lyapunov function is used
this class of equations, diffusion or diffusive equations a for the stabilization of a rotating beam; or more recently [6
commonly encountered. For most physical systems in whighhere the construction of stabilizing boundary controls fo
diffusive effects are present, diffusivity coefficientsnche g system of conservation laws is tackled using a Lyapunov
approximated as being constant throughout the domain ffnction. In [4] a Lyapunov function is used for the stalyilit
interest. However, in particular when dealing with nonhoanalysis of nonlinear hyperbolic systems.
mogeneous or anisotropic (direction-dependent) med®&, th There are two main contributions in this paper using
use of distributed coefficients is required. The extensibn Gne strict Lyapunov function constructed in [2]. The first
results obtained with constant-coefficients to these ca&sescontribution is to set sufficient conditions for'[$S, in the
not always easy to tackle and can be particularly complktatey,2_norm, with respect to boundary disturbances in a time-
when the coefficients are time-varying. varying nonhomogeneous diffusive equation with rapidst(y
Input-to-state stability (ISS) analysis for nonlinear i smoothly) time-varying coefficients. The second contiitnut
dimensional systems has been a long standing research togigroviding a heuristic method for numerically computing
and thorough reviews of such results can be found (see fagequate weighting functions in order to apply the thecaéti
example [17] and [8]). Nevertheless, ISS properties are n@ésults. Strict Lyapunov functions are chosen since they
restricted to finite-dimensional systems. Some partitylarprovide a natural framework for dealing with robustness
interesting examples in an infinite-dimensional frameworkssues and possibly considering some nonlinearities in the
are: [7], where a frequency-domain approach is used stem behaviour.
guarantee ISS properties; [12], where a strict LyapunoV This article is organized as follows. In Section II, the wiiff
function is constructed for semilinear parabolic PDEs; angjve equation and boundary disturbances under considerati
[14], where a strict Lyapunov function is used for time-are presented. In Section IIl the main result of the paper,
varying hyperbolic PDEs. The notion o[5S, as presented a D!|SS inequality with respect to boundary disturbances,
in [17], is similar to that of ISS. In this case however, thgs obtained and combined with the sufficient condition (14)
norm of the state is bounded not only by the initial cond#ionderived in [2] to find a strict Lyapunov function. In Section
IV, a heuristic method to find a suitable weighting function
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and¢;, respectively; given a function of time : ¢ — =(t), Remark 1: The regularity conditions in Al can be re-
the derivative of= with respect to time is denotegt given laxed if the solutionz is also allowed to be less regular,
an almost everywhere (a.e.) twice-differentiable functja  applying for example Theorem 5.1.21 [f1], but it is

r — g(r) (i.e. a function having a second derivative equabeyond the scope of this article. Hereafter, sufficientiytar

to a piecewise continuous function except, perhaps, onsalutions to(4)-(6) are assumed to exist.

zero-measure set)/(r) represents an absolutely continuous Our goal is to solve the following problem:

function equal a.e. to the first derivative gfwith respect Problem 1: Given a bounded time-varying disturbance
to r. Analogously,g”(r) represents a piecewise continuoussignal ¢ — ¢(¢t) with bounded derivative(¢), find some
function equal a.e. to the second derivativegyafith respect bounds for thel.>-norm of the solutior: of (4)-(6).

. 5 Ly .
tor. For a functiony € 1L ((0,1]), its L* norm will be noted [1l. STRICT LYAPUNOV FUNCTION AND SUFFICIENT

llgllz2 = (fol gQ(p)dp) ? CONDITIONS FORD!-INPUT-TO-STATE STABILITY

Consider the following candidate Lyapunov function, for
II. MODEL AND PROBLEM STATEMENT e LQ([O, 1):
Consider the following two-dimensional equation e
with  symmetric coefficients (defined in = Vi(z) == / f(r)22dr (7
{# = (z1,22) € R? | 2 + 23 < 1}) expressed in Cartesian 2 Jo
coordinates: wheref : [0,1] — R" is an a.e. twice-differentiable positive
function with piecewise-continuous second derivative.
G, 1) = n(z, )A¢(x, 1), ¥(z, 1) € @ x [0,T) (1) Following [17] and other referencek, is said to be a strict
whereA is the Laplacian operator. The symmetric, disturbegyapunov function for the undisturbed version of system (4)
boundary condition is: (6) if, when settinge(t) = 0 for all ¢ € [0,7"), there exists
some positive constant such that, for every initial condition
Cu(w,t) =e(t),V(x,t) € 02 x [0,T) (2) 2 as defined in (6):

where (, is the derivative of¢ in the outward normal V < —aV(z(-,t)),vt € [0,T) (8)
direction to0f2, and symmetric initial condition belonging

to C1(Q): where V' stands for the time derivative o along the

trajectory of the undisturbed system stemming fregn

((2,0) = Go(2), Vo € ®) Hereafter, we define foy € L2([0,1]) its weighted L

1
Under the revolution symmetry condition, system (1)-(3)orm as|g|| = (V(g))". o
can be reduced to a one-dimensional representation, im polaA useful technical assumption is introduced:
coordinates. Throughout this article, we are interestettién A2: There exists a weighting functiofi as defined in (7)

evolution of the variable = V¢ - 7 (where 7 is the unit such thatV is a strict Lyapunov function for system
vector in the radial direction an¥ the gradient operator), (4)-(6) if e(t) =0 for all ¢ € [0,T).
given by: The next theorem constitutes the main contribution of this

article:
t . .
2t = [@ [rz]T} V(r,t) € (0,1) x [0,T) (4) Theorem 2: Under Assumptions Al and A2, the following

T inequality is satisfied, for alt; € [0,T"), by the state of the
with disturbed Dirichlet boundary condition: disturbed systen@)-(6):
z(0,t) = 0, Vte[0,T) 2,82 < cem 30 [|z(~,to)||L2 + L letto)
A1) = <), Ve [0,T) (5) t V3
where the condition at the center is given by the symmetry +C/¢ e 2D E(, )| p2dr

and regularity of the solutions, and with initial condition
Z(T7 0) = ZO(T)7VT € [Oa 1] (6)

wherezg = Vo - 7
The following assumption is used for the analysis of th

+%|€(t)| )

wherez(r,t) = 2n,(r,t)e(t) — ré(t), for all (r,¢) € [0,1] x
ét(),T), c= \/ % and fmzn = mian[O,l] {f(?")}, fmax =

well-posedness of the problem: maXTS[Oal]f_{fé”}'_d ternative definition of the stat
Al: 7 is positive and belongs t6°(Q x [0, 7). ¢ belongs . ro.o - Lonsider-an afternative definition of the state
variable:
to C*°([0,T)).
Based on Theorem 6.2 in [13] (page 228), and using the Z2(r,t) = z(r,t) —re(t),¥(r,t) € [0,1] x [to,T)  (10)
same procedure as in Section Il of [2] we have that: Using (10) and its time derivative in (4), the evolution of
Proposition 1: Under assumption Al, for everys : the new state variable is obtained as:

[0,1] = Rin LP([0,1]), 1 < p < oo, the evolution equations n. . '
(4)-(6) have a unique solution in C>([0,1] x (0,T)). 2 = [; [TZ]T-L + 2ne — 1€, V(r,t) € (0,1) x [to, T')



where[Z [rZ],] +2n,¢ is equivalent taz (r, ), with Dirich-
let boundary conditions:

2(0,t) = 2(1,t) = 0,Vt € [to,T) (11)
and initial condition:
2(r, to) = 2z(r, tg) — re(to), Vr € (0,1) (12)

Consider the functioi/ defined in (7) with a weighting

Recalling (10) and after some rearrangements, this im-
plies:

Iz 8)llp < e 2T [l to) I + leCto) 7l 4]

t

+ / e EEDNE( 1) | pdr
0

He®)llIrly, Ve € [to, T)

Using the equivalence between thé and|| - ||; norms,

function satisfying Assumption A2, applied to the reformuyzng simply majorating and minorating by fm.. and

lated system (11)-(12):

3) = % /01 f(r)z2dr

From the definition ofz in (10), we compute for alk €

[to, T):
/ flr [rZ] } dr +

o edr —
24 f(r)in.edr
/ f(r)éredr
0

Using inequality (8) this implies:
vV < —aV(2) +

/f Vineedr —
/Of(r)érs'dr

The definition of Z(r,t) in Theorem 2, provides the
compact form:

V< —aV(z / f(r)z&dr, ¥t € [to,T)
where, by the boundedness «ft) and£(¢) in Problem 1,

g(r, t) is uniformly bounded if0, 1] x [to, T).
The last equation implies that:

V< —aV(: /|f VZE|dr, Yt € [to,T) (13)

Using the Cauchy-Schwarz inequality in (13), we have:

V < —aV(2) + IVF) 2l IV F (el e
which implies:
V < —aV () + 2|2l s
from which:
[0
g2l < =5 lI2ls + 12l

We consequently get for all€ [to, T):

t
12C. D7 < 6_%(t_t”)|\5(vto)|\f+/t e 20D NE(, )| pdr
9

fmin respectively, the previous inequality implies (9) and
completes the proof. ]

A simple application of Theorem 2 yields the following
corollary:

Corollary 3: If there is a non-negative constaty such
that for all ¢t > tq, € is zero, the state of the systdd)-(6)
converges exponentially fast to zero in the topology of the
L?-norm.

To give a sufficient condition for Assumption A2 to hold,
it is useful to apply Theorem 3.2 from [2] as follows:

Proposition 4: If there existf, as defined in(7), and a
positive constantv such that, for all(r,t) € (0,1] x [0,T):

frm + f'(r) [777 - —} + f(r) {7 — 5 +a| <0 (14)

then Assumption A2 holds.

Remark 2: Up to this point, no assumption on the shape
or behaviour ofy has been made other than some regularity
requirements. In the next section a particular shapenpf
motivated by a physical application, is used to illustrate o
result.

IV. FINDING A WEIGHTING FUNCTION

The objective of this section is to propose a heuristic for
numerically computing an adequate weighting function such
that Assumption A2 holds. This is done by verifying the
conditions of Proposition 4 for a particular set of diffusiv
coefficients. In the rest of this article, thhgprofile is assumed
to be of the form:

n(r,t) = a(t)els ?EDE y(r 1) € 0,1 x [0,T)  (15)

where 0 < a < at) < @ o(rt) € & =
{o(r,t) € C=(0,1] x [0,T]) | V¢ € [0, T, (1) € A},
andA = {\(r) € C>=([0,1]) | Vr € [0,1], A < A(r) < A}

This choice of profiles is physically motlvated by the
application of magnetic flux profile control in Tokamak
plasmas, see Section V of [2] for a more detailed discussion.

Proposition 5: With n defined as in(15), a sufficient
condition to apply Proposition 4 is the existence of an
a.e. twice-differentiable positive functioh: [0,1] — RT
with piecewise-continuous second derivative such that the
following inequality is verified:

7o)+ 00 [0 - 34700 [ - L] <o

(16)
for every(r, \) € (0,1] x A and some positive constaat



Proof: This  proposition  results  from to tackle this problem. In order to compute a weight verifyin

multiplying (16) by efo &4 and setting « = condition ii of Proposition 6, boundary conditions are set a
einf(,. \ye(0,1)xA {Qef(fk(&)di >0 m o= 1 and _the equation is solved backwards uprte= 0
An a.e. twice-differentiable positive function with Using Algorithm 1.
piecewise-continuous second derivatife: [0,1] — R* Algorithm 1:
satisfies (16) if there exista(r, \) < 0 such that, for all 1: Setnumerical values for the boundary conditions at
(r,A) € (0,1] x A the following equation is verified: 1, f(1) and f'(1), and fore.
Bk 0 1 f 0 2: Evaluate@ + f'(r) and fix the value of the dynamic
[ /} = {1 A(r) 1 ] [ ,} + H w(r, \) matrix A(f,r) accordingly, using18).
f mo e s A LS (17) 3: Find a numerical solution going backwards until hitting

a zero-crossing o@ + f'(r), settingws(r) = 0, and
verifying thatf(r) remains positive. Otherwise, change
the boundary conditions or the value af

Use the values of (r) and f’(r) at the zero-crossings
of @ + f’(r) as initial values for the next step in
solving the equation, switching the dynamic matrix but
keepingws(r) = 0, always verifying thatf () remains
positive and bounded.

Repeat 3-4 until either reaching= 0 or finding a point
such that both elements in the lower row of thenatrix

In order to avoid testing the condition for all € A, the
following result is used:
Proposition 6: Given an a.e. twice-differentiable positive
function with piecewise-continuous second derivatfve
[0,1] — R, the following two conditions are equivalent:
i: there existsw(r, \) < 0 such that(17) is verified for
all (r,\) € (0,1] x A;
ii: there existavs(r) < 0 such that the following equation 5
is verified for allr € (0, 1]: '

! are positive, as well ag and f/, with f(r) —rf/'(r) >
[ﬂ = A(f,r) [;/] + m wa(r) (18) 0. If no such point exists before = 0, change the
boundary conditions or the value efand start over.
where: 6: If r = 0 has not been reached yet, complete the solution
0 1 . by settingw(r) to have f”(r) = 0 for the remaining
[TLQ - % —e 1- A] i sw(f,r) <0 interval, in ogdzar to avoid éir)mgularities in the solution
Alfor) = 0 , near zero.
[Lz S X] if sw(f,r) >0 Remark 4: Although this heuristic does not guarantee
oo " finding an adequate weighting function, it does provide a
where swWf,r) = @ + f'(r). methodic framework to solve the nonlinear boundary value

Proof: The proof stems from the fact that the left-handproblem(18) and yields good results in practice, as shown

side of (16), which is equivalent to (17), is linear k{r) in the next section.
and and) is bounded by and \. It is easy to verify that ~ The conclusion of this section is that Algorithm 1 gives
the switching condition in matrixi(f,r) corresponds to the a practical way for numerically testing condition ii in
sign of the coefficient oA(r) (at any given point) in (16). Proposition 6, which in turn, by Proposition 5 implies that
Thereforews(r) = supaea {w(r,\)} for all » € [0,1]. W the conditions of Proposition 4 are verified fgrdefined

Remark 3: The easiest way to find a functiofi that as in (15). Proposition 4 being a sufficient condition for
satisfies conditior(18) is to fix some boundary conditions Assumption A2, Theorem 2 follows and Problem 1 is solved.
for f and f/, setwy(r) = 0 for all » € [0, 1], and solve It should be noted that this results also hold for any convex
the resulting equation backwards from the valy&#d) and combination of functiong satifying (15).
f/(1). Nevertheless, this yields solutions with a singularity

at the origin, as can be seen in Figure 1 far= X = 4. V. NUMERICAL APPLICATION
A. Weighting Function

We aim at finding an adequate weighting function for
a(t) € [0.0093,0.0121], A = 4 and \ = 7.3 (see (15)). This
would imply a 55% increase in the allowable rangerfr, t)
with respect to the objective set in [2] if we considerkd
constant in-. However, it should be noted that a much more
general form of\(r) is being considered in this article.
The boundary conditions at= 1 were chosen ag(1) =
i MRS 0.15, f’(1) = —15, and a suitable weighting function was
Fig. 1. Function f obtained by numerically solving the homogeneousfound for a maximum value of = 5.3. Given the values of
equation (17) for a single value of = 4. the boundary conditions, the solution was obtained firstgisi
the dynamic matrix withA and then switching dynamics at
Since settingwz(r) = 0 does not suffice to find adequater ~ 0.52. Forr € [0,0.015], f” was set to O using)(r). The
weighting functions, a more structured approach is deweop resulting weighting function, numerically computed using
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Fig. 4. Numerical test of the conditions of Proposition 5. :

Mathematic®, can be seen in Figure 2. The piecewise
continuous and bounded second derivative of the weighting '
0 1 2 3 4 5

function is also shown in Figure 3. The maximum value of
fis ~ 12.40 and its minimum i9.15, which means that the
constantc used for the norm equivalence and in (9) has &ig. 7. Exponential convergence rate foi(z) with no disturbance and
value of~ 9.09. Other functions with a much lower value of minimum diffusivity.
¢ can be found, but usually there is a compromise between
this constant and the guaranteed valuecdor

In order to illustrate the fact that this function verifiesSimulations is an explicit finite-difference method with
the conditions of Proposition 5, the value of the left-hangpPace and time steps chosen such that the CFL condition,
side of inequality (16) was plotted for values 6f, \) € maX(r,t)e[o,l]x[o,T){n}(AA—j)z < 0.5, is verified.
[0,1] x [4,7.3] (with constant) throughoutr). The result First, choosing the minimum values for the diffusion
can be seen in Figure 4. It is interesting to note that for eadiPefficients and without disturbances, the evolution of the
value of r, the critical value of) in the inequality is the distributed state can be seen in Figure 5. With this sim-
one used to compute the weighting function. For values of ulation, the evolution of the Lyapunov function and the
close to zero however, the slack variablds different from equivalent rate of convergence are shown in Figures 6 and
zero for all values of\, thus avoiding the Singu|arity |m(r) 7, respectively. For this initial condition, the guaramteate

=}
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o o
=
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Lyapunov Function V(z)

drdtf Ln(V(2)) ]
A &
LodoL &
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o
o
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)

Time

as desired. of convergence is- 23 times smaller than the obtained one.
. ) Considering the fact that the condition imposed in Proposi-
B. Simulations tion 4 was verified at every point and that the diffusivity at

The evolution of the diffusion equation was simulatedhe right boundary is- 55 times the one at the center, this
using Matla® and the weighting function found in the level of conservatism is not unexpected.
previous subsection. The numerical scheme used for theNext, introducing a boundary disturbaneg) = 0.1 +



Cartesian and polar coordinates. Thél$5 condition is

05, e , obtained by means of a strict Lyapunov function for the
. 03 \ ‘ « undisturbed system. Another contribution of this articei
€ 0125, detailed account of the method used to numerically find suit-
T oo able weighting functions in order to implement the obtained
£ results for some diffusivity profiles. Simulation resultene
= 03754 ‘ : obtained by discretizing the system using a finite-diffesen
N v ' ‘ method.
O'Zo.l;?;\ RS e Further works will tackle the problem of reducing the
‘ 0»8\50/7/’2/ 3 ¢ conservatism of this approach in order to better estimae th
Radius (normalized) Time convergence rates, thus refining thél®S inequalities for

the system. Also, extensions to other forms of diffusivity

Fig. 8. Evolution of the state with disturbance acting umti= 4s and profiles is desirable.

time-varying diffusivity.
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