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Since its invention by G. Binnig [3], the Atomic Force Microscope (AFM) has opened up new possibilities for a number

of operations at a nanoscale level, having an impact across various sciences and technologies. Today, the most popular

application of it (AFM) is in the material sciences, biology and fundamental physics, see the reviews of F. Giessibl [14],

D. Drakova [12] and R. Garcia and R. Perez [13] among others. The AFM is also used for the manipulation of an object

or materials at the nanoscale, for example the parallel Lithography of Quantum Devices [17], [5], investigations into

mechanical interactions at the molecular level in biology [6], [29], [23], manipulation of nano-objects [10], [24] and data

storage [20], [11], [18], [28], [16], [26] to cite only few of them. A number of research laboratories are now developing

large AFM Arrays which can achieve the same kind of task in parallel. The most advanced system is the Millipede from

IBM [11] for data storage, but again, a number of new architectures are emerging, see [20], [11], [18], [17], [28], [16],

[26], [4], [15], [25].

We are currently developing tools for modelling, identification and control of micro-cantilever arrays like those encoun-

tered in Atomic Force Microscope Arrays. In this chapter we report results in this direction. The thread of our approach

is to provide light computational methods for complex systems. This concern modelling as well as control. Our mechan-

ical structure model is based on a specific multi-scale technique. For control, we start with a general theory of optimal

control applied to our simple cantilever array model and we provide an approximation of the control law which may

be implemented on a semi-decentralized computing architecture. In particular it could be implemented under the form

of a periodically distributed analog electronic circuit. Even if this implementation remains to be completed, we present

in advance a general model of such periodically distributed electronic circuits. It will be applied to fast simulations of

electronic circuits realizing our control approximation. The general model has been derived with a modified form of the

multi-scale technique used for mechanical structures. In a near future, we intend to couple both multi-scale models so

that to run light simulations for matrices of electro-mechanical systems. Associated to our light models we also develop

a variety of identification tools. (A compléter par Emmanuel ou Scott).

1.1 Modelling and Identification of a Cantilever Array

We present a simplified model of mechanical behavior of large cantilever arrays with discoupled rows in the dynamic

operating regime. Since the supporting bases are assumed to be elastic, cross-talk effect between cantilevers is taken into

account. The mathematical derivation combines a thin plate asymptotic theory and the two-scale approximation theory,

devoted to strongly heterogeneous periodic systems. The model is not standard, so we present some of its features. We

explain how each eigenmode is decomposed into a products of a base mode with a cantilever mode. We explain the

method used for its discretization, and report results of its numerical validation with full three-dimensional Finite Element

simulations. A COMPLETER PAR EMMANUEL OU SCOTT

1.1.1 Geometry of the Problem

We consider a two-dimensional array of cantilevers. It is comprised of rectangle parallelepiped bases crossing the array in

which rectangle parallelepiped cantilever are clamped. Bases are supposed to be connected in the x1-direction only, so that

1



the system behaves as a set of discoupled rows. Each of them is clamped at its ends. Concerning the other ends, we report

two cases, one for free cantilevers and one for cantilevers equipped with a rigid tip, as in Atomic Force Microscopes. The

Figure 1.1: FEM and Two-Scale Model Eigenvalues (a) and Absolute Errors (b)

whole array is a periodic repetition of a same cell, in the two directions x1 and x2, see Figure 1.1 (a). We suppose that

the number of columns and of rows of the array are sufficiently large, namely larger or equal to 10. Then, we introduce

the small parameter ε∗ equals to the inverse 1/N of the number of cantilevers in a row. We underline the fact that the

technique presented in the rest of the paper can be extended to other geometries of cantilever arrays and even to other

classes of microsystem arrays.

1.1.2 Two-Scale Approximation

Each point of the three-dimensional space, with coordinates x = (x1,x2,x3), is decomposed as x = xc + εy, where xc

represents the coordinates of the center of the cell to which x belongs, ε =




ε∗ 0 0

0 ε∗ 0

0 0 1


, and y = ε−1(x− xc) is the

dilated relative position of x with respect to xc. Points with coordinates y vary in the so-called reference cell, see the two-

dimensional view on Figure 1.1 (b), that is obtained through a translation and the (x1,x2)−dilatation ε−1 of any current

cell in the array.

We consider the distributed field u(x), of elastic deflections in the array, and we introduce its two-scale transform,

ûε(x̃,y) = u(xc + εy),

for any x = xc + εy and x̃ = (x1,x2). By construction, the two-scale transform is constant, with respect to its first variable

x̃, over each cell. Since it depends on the ratio ε∗, then it may be approximated by the asymptotic field, denoted by u0,

obtained for large number of cells (in both x1 and x2-directions) or equivalently when ε∗ approaches (mathematically) 0:

ûε = u0 +O(ε∗).

The approximation u0 is called the two-scale approximation of u. We mention that, as a consequence of the asymptotic

process, the partial function x̃ 7→ u0(x̃, .) is continuous instead of being piecewise constant.

Now, we consider that the field of elastic deflections u is a solution of the Love-Kirchhoff thin elastic plate equation in the

whole mechanical structure, including bases and cantilevers. Furthermore, we assume that the ratio of cantilever thickness

hC to base thickness hB is very small, namely
hC

hB

≈ ε∗4/3. (1.1)

This assumption is formulated so that the ratio of cantilever stiffness to base stiffness be very small, namely of the order

of ε∗4. The asymptotic analysis when ε∗ vanishes shows that u0 does not depend on the cell variable y in bases and so

depends only on the spatial variable x̃.

Next, we remark that u0(x̃,y) is a two-scale field, and therefore cannot be directly used as an approximation of the field

u(x) in the actual array of cantilevers. So, an inverse two-scale transform is to be applied to u0. However, we remark

that x̃ 7→ u0(x̃,y) is continuous, and so u0 does not belong to the range of the two-scale transform operator and it has no
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preimage. Hence we introduce an approximated inverse of the two-scale transform, v(x̃,y) 7→ v(x), in the sense that for

any sufficiently regular one-scale function u(x) and two-scale function v(x̃,y),

û = u+O(ε∗) and v̂ = v+O(ε∗).

It turns out that v(x) is a mean over the cell including x with respect to x̃ = (x1,x2) when x belongs to a cantilever

v(x) =
〈
v(.,ε−1(x− xc))

〉
x̃
,

and with respect to x2 when x belongs to a base

v(x) =
〈
v(.,ε−1(x− xc))

〉
x2

.

In total, we retain u0 as an approximation of u in the actual physical system. Note that for the model in dynamics, the

deflection u(t,x) is a time-space function. In our analysis we do not introduce a two-scale transformation in time, so the

time variable t acts as a simple parameter.

1.1.3 Model Description

Now, we describe the model satisfied by the two-scale approximation u0(t, x̃,y) of u(t,x). Remark that as the deflection in

the Kirchhoff-Love model, u is independent of x3, thus u0 is independent of y3. For further simplicity, we neglect torsions

effect i.e. the variations of y1 7→ u0(t, x̃,y) in cantilevers. Cantilever motion is governed by a classical Euler-Bernoulli

beam equation, in the microscopic variable y2,

mC∂ttu
0 + rC∂ 4

y2...y2
u0 = fC

with rC = ε∗4ECIC, where mC is a linear mass, EC the cantilever elastic modulus, IC the second moment of cantilever

section, and fC a load per unit length in the cantilever. This model represents motion of an infinite number of cantilevers

parameterized by all x̃ = (x1,x2).

Bases are also governed by an Euler-Bernoulli equation, in the macroscopic variable x1, where part of loads comes from

continuous distributions of cantilever shear forces,

mB∂ttu
0 + rB∂ 4

x1...x1
u0 = −dB∂ 3

y2...y2
u0 + f B

with rB = EBIB, where mB, EB, IB, dB and f B are a linear mass, the base elastic modulus, the second moment of section

of the base, a cantilever-base coupling coefficient and the load per unit length in the base.

In the model, cantilevers appear as clamped in bases. So at base-cantilever junctions,

u0
|cantilever = u0

|base and (∂y2
u0)|cantilever = 0, (1.2)

because ∂y2
u0 = 0 in bases. Other cantilever ends may be free, with equations,

∂ 2
y2y2

u0 = ∂ 3
y2y2y2

u0 = 0, (1.3)

or may be equipped with a rigid part (usually a tip in Atomic Force Microscopes), so their equation are

JR∂tt

(
u0

∂y2
u0

)
+ εrC

(
−∂ 3

y2y2y2
u0

∂ 2
y2y2

u0

)

=

(
f R
3

FR
3 +FR

2

)

at junctions between elastic parts and rigid parts. Here, JR is a matrix of moments of the rigid part about the junction-

plane, f R
3 is a load in the y3 direction, FR

3 is a first moment of loads about the junction-plane, and FR
2 the first moment of

loads in the y2 direction about the beam neutral plane. Finally, base ends are assumed to be clamped in a fixed support,

u0 = ∂x1
u0 = 0. (1.4)

The loads fC, f B and f R in the model are asymptotic loads which are generally not defined from the physical problem.

In practical computations, they are replaced by the two-scale transforms f̂C, f̂ B and f̂ R. To be complete, we mention that

rows of cantilevers are discoupled, this is why x2 plays only the role of a parameter.
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1.1.4 Structure of Eigenmodes

There is an infinite number of eigenvalues λ A
and eigenvectors ϕA(x1,y2) associated to the model. For convenience, we

parameterize them by two independent indices i and j, both varying in the infinite countable set N. The first indice i refers

to the infinite set of eigenvalues λ B
i and eigenvectors ϕB

i (x1) of the Euler-Bernoulli beam equation associated to a base.

The eigenvalues (λ B
i )i∈N constitutes a sequence of positive number increasing towards infinity. At each such eigenvalue

corresponds another eigenvalue problem associated to cantilevers, which has also a countable infinity of solutions denoted

by λC
i j and ϕC

i j(y2). The index i of λ B
i being fixed, the sequence (λC

i j) j∈N is a positive sequence increasing towards

infinity. In the other side, for fixed j and large λ B
i , i.e. large i, the sequence (λC

i j,ϕ
C
i j)i∈N converges to an eigenelement

of the clamped-free cantilever model. The eigenvalues λ A
i j of the model are proportional to λC

i j. Finally, each eigenvector

ϕA
i j(x1,y2) is the product of a mode in a base by a mode in a cantilever ϕB

i (x1)ϕ
C
i j(y2).

1.1.5 Model Validation

We report observations made on eigenmode computations. We consider a one-dimensional silicon array of N cantilevers

(N = 10, 15 or 20), with base dimensions 500µm× 16.7µm× 10µm, and cantilever dimensions 41.7µm× 12.5µm×
1.25µm, see Figure 1.2 for the two possible geometries, with or without tips. We have carried out our numerical study on

Figure 1.2: Cantilever Array with tips (a) and without tips (b)

both cases, but we limit the following comparisons to cantilevers without tips, because configuration including tips yields

comparable results.
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Figure 1.3: Eigenmode Density Distributions for Finite Element Model and for the Two-Scale Model

We restrict our attention to a finite number nB of eigenvalues λ B
i in the base. Computing the eigenvalues λ A

, we observe

that they are grouped in bunches of size nB accumulated around a clamped-free cantilever eigenvalues. A number of

eigenvalues are isolated far from the bunches. It is remarkable that the eigenelements in a same bunch share a same

cantilever mode shape, (close to a clamped-free cantilever mode) even if they correspond to different indices j. This is

why, these modes will be called ”cantilever modes”. Isolated eigenelements share also a common cantilever shape, which

looks like a first clamped-free cantilever mode shape excepted that the clamped side is shifted far from zero. The induced

global mode ϕA is then dominated by base deformations and therefore will be called ”base modes”. Densities of square

root of eigenvalues are reported in the sub-figures 2, 4 and 61 of Figure 1.3 for nB = 10, 15 and 20 respectively. These

1Sub-figures are counted from top to down.
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figures show three bunches with size nB and isolated modes that remain unchanged.

We discuss the comparison with the modal structure of the three-dimensional linear elasticity system for the cantilever

array discretized by a standard finite element procedure. The eigenvalues of the three-dimensional elasticity equations

constitute also an increasing positive sequence that accumulate at infinity. As for the two-scale model, its density dis-

tribution exhibits a number of concentration points and also some isolated values. Here bunch sizes equal the number

N of cantilevers, see sub-figures 1, 3 and 5 in Figure 1.3 representing eigenmode distributions for N = 10, 15 and 20.
Extrapolating this observation shows that when the number of cantilevers increases to infinity bunch size increases pro-

portionally. Since the two-scale model is an approximation in the sense of an infinitely large number of cantilevers, this

explains why the two-scale model spectrum exhibit mode concentration with infinite number of elements. This remark

provides guidelines for operating mode selection in the two-scale model. In order to determine an approximation of the

spectrum for an N-cantilevers array, we suggest to operate a truncation in the mode list so that to retain a simple infinity of

eigenvalues (λ A
i j)i=1,..,N and j∈N. We stress the fact that N−eigenvalue bunches are generally not corresponding to a single

column of the truncated matrix λ A
i j. This comes from the base mode distribution in this list. When considered in increasing
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Figure 1.4: (a) Superimposed Eigenmode Distributions of the simple Two-Scale Model with the full three-dimensional

Finite Element Model (b) Errors in logarithmic scale

order, base modes are located in consecutive lines of the matrix λ A
but not necessary in a same column. We remark that a

number of eigenvalues in the Finite Element model spectrum have not their counterpart in the two-scale model spectrum.

The missing elements correspond to physical effects not taken into account in the Euler-Bernoulli models for bases and

cantilevers.

The next step in the discussion is to compare the eigenmodes and especially those belonging to bunches of eigenvalues.

To compare an eigenvector from the two-scale model with an eigenvector of the elasticity system, we use the Modal

Assurance Criterion, see [2] which is equal to one when the shapes are identical and to zero when they are orthogonal,

see Figure 1.5. We compare some eigenmodes which have MAC value is near to 1, see Figure1.6.

This test has been applied on transverse displacement only and a further selection has been developed so that to eliminate

modes corresponding to physical effects not modeled by the Euler-Bernoulli models. Following this procedure, mode

pairing is achieved successfully. In Figure 1.4 (a) paired eigenvalues have been represented and the corresponding relative

errors are plotted on Figure 1.4 (b). Note that errors are far from being uniform among eigenvalues. In fact, the main error

source resides in a poor precision of the Euler-Bernoulli model for representing base deformations in few particular cases.

Indeed, a careful observation of Finite Element modes shows that base torsion is predominant for some modes. This is

especially true for the first mode of the first cantilever mode bunch.

1.1.6 Model Identification

Global Sensitivity Analysis (GSA)

GSA has the objective of studying the effect of the sensitivity of parameters. We denote m = [m1 m2 · · · mnp ]
T ∈ M as

the vector of parameters which describe the model and d = {d1,d2, · · · ,dnd
} ∈ D describe observable data. The exact
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Figure 1.5: MAC matrix between two-scale model modes and FEM modes

(a) B1-C1 (b) N1 (c) B2-C2 (d) N13

Figure 1.6: Eigenmode shapes of analytical mode and FEM mode

relation between m and d is d = g(m). In this model, the parameters are Young’s modulus, Poisson ratio, volume mass,

the thickness, length and width of base, cantilever and tip. All the parameters are used in GSA. The list of eigenmodes is

(ϕA
i j)i=1,..,10 and j=1,2. The index i and j represent ”base modes” and ”cantilever modes” respectively, see Figure 1.7.

(a) B1-C1 (b) B1-C2 (c) B2-C1 (d) B2-C2

Figure 1.7: Eigenmodes of model (B=base mode, C=cantilever mode)

For each parameter, the probability law is uniform and the variation between 0.8 and 1.2 times the nominal value. The

correlation coefficients matrix is presented in Figure 1.8 (a), which horizontal base are the coefficients and vertical base

are eigenmodes. Figure 1.8 (b) and (c) are figures of Singular Value Decomposition(SVD) matrix and Singular value.

(a) (b) (c)

Figure 1.8: (a)Correlation coefficients matrix, (b)Singular Value Decomposition matrix, (c)Singular values

From Figure 1.8 (a), we can see that the parameters hB and Lbeam are influential. So, we only consider these two
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parameters by following.

Updating by Sensitivity

Parameter updating through sensitivity is an iterative procedure based on eigenelements sensitivities. The convergence

algorithm is governed by the evolution of a cost function which returns the computation of the minimum of difference

between experimental data and calculated data. According to previous analysis, we note that parameters hB and Lbeam

are perturbed. We set hB to 1.3 and Lbeam to 0.8. After 9 iterations, the convergence is reached and the exact value of the

reference parameters (all equal to 1) is returned, see Figure 1.9

(a) (b)

Figure 1.9: Evolutions of (a)cost objective function (b)perturbed parameters

Inverse Identification
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Figure 1.10: Evolutions of µ̂ t
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for (a)hB and (b)observation 1; evolutions of Ŝt
ns

for (c)hB and (d)observation 1
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Figure 1.11: Results of identification for the parameters (a)hB (b)Lbeam

The inverse problem approach is to identify the characteristics parameters m in physical system and to find out effected

observable data in the model. We adopt the formulations of inverse problems approach which we use in this paper

have been developed by Tarantola since twenty years[1]. Here, we have m = {m1,m2} = {hB coe f ,Lbeam coe f}. The

observation data are the eigenvalues (λ A
i j)i=1,..,10 and j=1,2 and dobs = {dobs

1 , · · · ,dobs
20 }. If we are in the classical Bayesian

inference, the marginal probability a posteriori of the model parameters σE
M(m) represents the conditional probability of

the observations d given any m. The second case appears when the experiences and the model uncertainties are Gaussian.

In our case, it is Gaussian. It is often impossible to calculate a posteriori directly. So, we estimated the density by a Monte

Carlo simulation. As proposed in[22], an algorithm of Metropolis-Hastings[21] is utilized.

With the utilization of MCMC algorithm, the convergence of average µ̂ t
ns

and partial differences Ŝt
ns

is reached after 124

iterations. The densities are estimated with 500 samples. The vertical indicate the nominal values of the parameters from
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which the observations of dobs have been simulated, see Figure 1.10 and Figure 1.11. The dispersion diagrams a posteriori
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Figure 1.12: Dispersion diagrams between (a)observation 1 and parameters (c)parameters

between hB, Lbeam and observation 1 or between hB and Lbeam are also presented in Figure 1.12

The applications of model identification are still to be improved. The correlation coefficients matrix will be different with

the one we presented in this paper when the parameters and the geometry of model have been changed. For instance,

the number of cantilevers N is changed 15 or 20. We also interest in the consequent results of cost function and inverse

identification.

1.2 Semi-Decentralized Approximation of an Optimal Control applied to a

Cantilever Array

We apply a recently developed general theory of optimal control approximation to the cantilever array model. The theory

applies to the field of finite length distributed systems where actuators and sensors are regularly spaced. It yields approx-

imations implementable on semi-decentralized architectures. Our result is limited to the Linear Quadratic Regulator, but

its extension to other optimal control theories for linear distributed systems like LQG or H∞ controls is in progress. We

focus on illustrating the method more than on providing a mathematically rigorous treatment. In the sequel, we begin

with transforming the two-scale model of cantilever arrays into an appropriate form. Then, all construction steps of the

approximate Linear Quadratic Regulator are fully presented. Finally, we report numerical simulation results.

1.2.1 General Notations

The norm and the inner product of an Hilbert space E are denoted by ‖.‖E and (., .)E . For a second Hilbert spaces F ,

L (E,F) denotes the space of continuous linear operators defined from E to F . In addition, L (E,E) is denoted by

L (E). One says that Φ ∈ L (E,F) is an isomorphism from E to F if Φ is a one-to-one continuous mapping with a

continuous inverse.

1.2.2 Reformulation of the Two-Scale Model of Cantilever Arrays

We reformulate the two-scale model presented in Section 1.1 in a set of notations which is more usual in control theory

of infinite dimensional systems. We adopt the configuration of the cantilevers without tip, see Figure 1.13. The model

Figure 1.13: Array of Cantilevers

expressed in the two-scale referential appears as posed in a rectangle Ω = (0,LB)× (0,LC). The parameters LB and LC

represent respectively the base length in the macroscale direction x and the scaled cantilever length in the microscale

variable y. The base is modeled by the line Γ = {(x,y) | x ∈ (0,LB) and y = 0}, and the rectangle Ω is filled by an
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infinite number of cantilevers. We recall that the system motion is described by its bending displacement only. The

base being governed by an Euler-Bernoulli beam equation, here we consider two kind of distributed forces, one exerted

by the attached cantilevers and the other, denoted by uB(t,x), originating from an actuator distribution. The bending

displacement, the mass per unit length, the bending coefficient and the width being denoted by wB(t,x), ρB, RB and ℓC,
the base governing equation states

ρB∂ 2
tt wB +RB∂ 4

x···xwB = −ℓCRC∂ 3
yyywC −∂ 2

xxuB. (1.5)

The base is still assumed to be clamped, so the boundary conditions are unchanged

wB = ∂xwB = 0 (1.6)

at both ends. Cantilevers are oriented in the y-direction, and we recall that their motions are governed by an infinite

number of Euler-Bernoulli equations distributed along the x-direction. Here, each cantilever is subjected to a control

force uC(t,x) taken, for simplicity, constant along cantilevers. This choice does not affect the method presented hereafter,

so it can be replaced by any other realistic force distribution. Denoting by wC(t,x,y), ρC and RC cantilever bending

displacements, mass per unit length, and bending coefficient, the governing equation in (x,y) ∈ Ω is

ρC∂ 2
tt wC +RC∂ 4

y···ywC = uC,

endowed with the boundary conditions

{
wC = wB and ∂ywC = 0 at y = 0

∂ 2
yywC = ∂ 3

yyywC = 0 at y = LC
(1.7)

representing an end clamped in the base, and a free end. Finally, both equations are supplemented with initial conditions

on displacements and velocities,

wB = wB,0, ∂twB = wB,1,

wC = wC,0, and ∂twC = wC,1.

The LQR problem is set for control variables (uB,uC) ∈U = H2 ∩H1
0 (Γ)×L2(Γ) and for the cost functional

J (wB,0,wB,1,wC,0,wC,1;uB,uC) =
∫ ∞

0 ‖wB‖
2
H2

0 (Γ) +
∥∥∂ 2

yywC

∥∥2

L2(Ω)

+‖uB‖
2
H2∩H1

0 (Γ) +‖uC‖
2
L2(Γ) dt.

(1.8)

1.2.3 Model Reformulation

The first step, in applying the method, consists in transforming the control problem into a control problem into another

problem with internal distributed control and observation. To do so, we are lead to make additional assumptions yielding

model simplifications. We set w̄C = wC −wB, solution of an Euler-Bernoulli equation in cantilevers with homogeneous

boundary conditions 



ρC∂ 2
tt w̄C +RC∂ 4

y···yw̄C = uC −ρC∂ 2
tt wB in Ω,

w̄C = ∂yw̄C = 0 at y = 0,
∂ 2

yyw̄C = ∂ 3
yyyw̄C = 0 at y = LC.

(1.9)

We introduce the basis of normalized eigenfunction (ψk)k, solution of the corresponding eigenvalue problem





∂ 4
y···yψ = λCψ in (0,LC) ,

ψ (0) = ∂yψ (0) = 0,

∂ 2
yyψ (LC) = ∂ 3

yyyψ (LC) = 0,

‖ψk‖L2(0,LC) = 1.

(1.10)

It is well known that, in most practical applications, a very small number of cantilever modes is sufficient to properly

describe the system. For the sake of simplicity, we take into account only the first one, keeping in mind that the method

can handle more than one mode. Therefore, we adopt the approximation

w̄C (t,x,y) ≃ w̄1
C (t,x)ψ1 (y) ,

where w̄1
C is the coefficient of the first mode ψ1 in the modal decomposition of w̄C. Introducing the mean ψ̄1 =

∫ LC
0 ψ1dy,

and u1
C =

∫ LC
0 uCψ1dy, we find that w̄1

C is solution of

ρC∂ 2
tt w̄

1
C +RCλC

1 w̄1
C = u1

C −ρCψ̄1∂ 2
tt wB.

9



In order to avoid the term ∂ 2
tt wB, we introduce w̃C = w̄1

C + ψ̄1wB, so as to make w̃C be solution of

ρC∂ 2
tt w̃C +RCλC

1 w̃C −RCλC
1 ψ̄1wB = u1

C. (1.11)

Since,

∂ 3
y wC = ∂ 3

y (w̄C +wB) = ∂ 3
y

[
w̄1

Cψ1 +wBψ1

]
= ∂ 3

y ψ1w̃C,

we set c1 = ∂ 3
y ψ1 (0), and obtain that the couple (wB, w̃C) is solution of the system of equations posed on Γ,

{
ρB∂ 2

tt wB +RB∂ 4
x···xwB + ℓCRCc1w̃C = −∂ 2

xxuB in Γ,

ρC∂ 2
tt w̃C +RCλC

1 w̃C −RCλC
1 ψ̄1wB = u1

C in Γ,
(1.12)

with the boundary conditions (1.6). The cost functional is simplified accordingly,

J ≃
∫ ∞

0

∥∥∂ 2
xxwB (t,x)

∥∥2

L2(Γ)
+

∥∥∥λC
1 w̃C (t,x)

∥∥∥
2

L2(Γ)

+
∥∥∂ 2

xxuB

∥∥2

L2(Γ)
+

∥∥u1
C

∥∥2

L2(Γ)
dt.

(1.13)

1.2.4 Classical Formulation of the LQR Problem

Now, we write the above LQR problem in a classical abstract setting, see [8]. We set zT =
(
wB w̃C ∂twB ∂t w̃C

)

the state variable, uT =
(
uB u1

C

)
the control variable, A =




0 0 I 0

0 0 0 I

−RB∂ 4
x···x/ρB −ℓCRCc1/ρB 0 0

RCλC
1 ψ̄1/ρC −RCλC

1 /ρC 0 0


 the state operator,

B =




0 0

0 0
−∂ 2

xx

ρB 0

0 I
ρC


 the control operator, C =




I 0 0 0

0 λC
1 I 0 0

0 0 0 0

0 0 0 0


 the observation operator, S = I the weight operator

and the functional J(z0,u) =
∫ +∞

0 ‖Cz‖2
Y + (Su,u)U dt. Consequently, the LQR problem, consisting in minimizing the

functional under the constraint (1.12), may be written under its usual form as

dz

dt
(t) = Az(t)+Bu(t) for t > 0 and z(0) = z0,

minu∈U J (z0,u) .
(1.14)

Here, A is the infinitesimal generator of a continuous semigroup on the separable Hilbert space Z = H2
0 (Γ)×L2 (Γ)3

with

dense domain D(A) = H4 (Γ)∩H2
0 (Γ)×L2 (Γ)×H2

0 (Γ)×L2 (Γ). It is known that the control operator B ∈ L (U,Z),
the observation operator C ∈ L (Z,Y ) , and S ∈ L (U,U), where Y = Z. We also know that (A,B) is stabilizable and that

(A,C) is detectable, in the sense that there exist G ∈ L (Z,U) and F ∈ L (Y,Z) such that A−BG and that A−FC are the

infinitesimal generators of two uniformly exponentially stable continuous semigroups. It follows that for each z0 ∈ Z, the

LQR problem (1.14) admits a unique solution

u∗ = −Kz (1.15)

where K = S−1B∗Pz, and P ∈ L (Z) is the unique self-adjoint nonnegative solution of the operational Riccati equation

(
A∗P+PA−PBS−1B∗P+C∗C

)
z = 0, (1.16)

for all z ∈ D(A). The adjoint A∗ of the unbounded operator A is defined from D(A∗) ⊂ Z to Z by the equality (A∗z,z′)Z =
(z,Az′)Z for all z ∈ D(A∗) and z′ ∈ D(A). The adjoint B∗ ∈ L (Z,U) of the bounded operator B is defined by (B∗z,u)U =
(z,Bu)Z , the adjoint C∗ ∈ L (Y,Z) being defined similarly.

1.2.5 Semi-Decentralized Approximation

This section is devoted to formulate, step by step, the method of approximation.

Matrices of Functions of a Self-Adjoint Operator

Since the approximation method of P is based on the concept of matrices of functions of a self-adjoint operator, this

section is devoted to their definition. We discuss only the simplest case of compact operators which avoid spectral theory
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technicalities, because it is enough for the present example, see [9] for the general theory. From now on, we denote by X

the separable Hilbert space L2(Γ) and by Λ the self-adjoint operator
(
∂ 4

x···x

)−1
with domain

D(Λ) = H4 (Γ)∩H2
0 (Γ) in X .

As Λ is self-adjoint and compact, its spectrum σ (Λ) is discrete, bounded and made up of real eigenvalues λ k. They are

solutions of the eigenvalue problem Λφ k = λ kφ k with ‖φ k‖X = 1. In the sequel, Iσ = (σmin,σmax) refers to an open

interval that includes σ (Λ).

For a given real valued function f , continuous on Iσ , f (Λ) is the linear self-adjoint operator on X defined by

f (Λ)z =
∞

∑
k=1

f (λ k)zkφ k

where zk = (z,φ k)X , with domain

D( f (Λ)) = {z ∈ X |
∞

∑
k=1

| f (λ k)zk|
2 < ∞}.

Then, if f is a n1 × n2 matrix of real valued functions fi j, continuous on Iσ , f (Λ) is a matrix of linear operators fi j (Λ)
with domain

D( f (Λ)) = {z ∈ Xn2 |
∞

∑
k=1

n2

∑
j=1

∣∣ fi j (λ k)(z j)k

∣∣2
< ∞ ∀i = 1..n1}.

Factorization by a Matrix of Functions of Λ

The second step in the semi-decentralized control approximation method is the factorization of K under the form of a

product of a function of Λ with operators admitting a natural semi-decentralized approximation. To do so, we introduce

three isomorphisms ΦZ ∈ L
(
X4,Z

)
, ΦU ∈ L

(
X2,U

)
, and ΦY ∈ L

(
X4,Y

)
mapping a power of X into Z, U, and Y

respectively, so that

a(Λ) = Φ−1
Z AΦZ , b(Λ) = Φ−1

Z BΦU ,

c(Λ) = Φ−1
Y CΦZ , and s(Λ) = Φ−1

U SΦU

be some matrices of functions of Λ. In the present example, we propose

ΦZ =




Λ
1
2 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I


 , ΦU =

((
−∂ 2

xx

)−1
0

0 I

)
, and ΦY = ΦZ .

This choice yields

a(λ ) =




0 0 λ−1/2
0

0 0 0 1

−RB

ρB λ−1/2 − ℓCRCc1

ρB 0 0

RCλC
1 ψ̄1

ρC λ 1/2 −
RCλC

1

ρC 0 0




,

b(λ ) =




0 0

0 0
1

ρB 0

0 1
ρC


 , c(λ ) =




1 0 0 0

0 λC
1 0 0

0 0 0 0

0 0 0 0


 , and s(λ ) = 1.

Endowing Z, U and Y with the inner products (z,z′)Z =
(
Φ−1

Z z,Φ−1
Z z′

)
X4 , (u,u′)U =

(
Φ−1

U u,Φ−1
U u′

)
X2 , and (y,y′)Y =(

Φ−1
Y y,Φ−1

Y y′
)

X4 , we find the subsequent factorization of the controller K in (1.15) which plays a central role in the

approximation.

Proposition 1 The controller K admits the factorization

K = ΦU q(Λ)Φ−1
Z ,

where q(λ ) = s−1 (λ )bT (λ ) p(λ ) , and where for all λ ∈ σ , p(λ ) is the unique self-adjoint nonnegative matrix solving

the algebraic Riccati equation

aT (λ ) p+ pa(λ )− pb(λ )s−1 (λ )bT (λ ) p

+cT (λ )c(λ ) = 0.
(1.17)
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Sketch of the proof The algebraic Riccati equation can be found after replacing A, B, C and S by their decomposition

in the Riccatti equation (1.16).

In the sequel, we require that the algebraic Riccati equation (1.17) admits a unique solution for all λ ∈ Iσ which is checked

numerically.

Remark 2 In this example, ΦZ is some matrix of function of Λ, and so is Φ−1
U K,

k(Λ) = Φ−1
U K. (1.18)

Thus, the approximation is developed directly on k(Λ), but we emphasize that in more generic situations it is pursued on

q(Λ).

Remark 3 Introducing the isomorphisms ΦZ , ΦY , and ΦU allows to consider a broad class of problems where the

operators A, B, C and S are not strictly functions of a same operator. In this particular application, the control operator

B is composed with the operator −∂ 2
xx. This is taken into account in ΦU in a manner in which Φ−1

Z BΦU is a function of Λ
only.

Remark 4 We indicate how the isomorphisms ΦZ , ΦY , and ΦU have been chosen. The choice of ΦZ and ΦY comes di-

rectly from the expression of the inner product (z,z′)Z =
(
Φ−1

Z z,Φ−1
Z z′

)
X4 and from (z1,z

′
1)H2

0 (Γ) =
((

∆2
) 1

2 z1,
(
∆2

) 1
2 z′1

)
L2(Γ)

.

For ΦY , we start from B = ΦZb(Λ)Φ−1
U and from the relation (u,u′)Y =

(
Φ−1

U u,Φ−1
U u′

)
X2 which implies that −∂ 2

xx/ρB =

b3,1 (ΦU )1,1 and I/ρC = b4,2 (Λ)(ΦU )2,2 . The expression of ΦU follows.

Approximation of the Functions of Λ

The third step in the method consists in an approximation of a general function of Λ by a simpler function of Λ easily

discretized and implemented in a semi-decentralized architecture. The strategy must be general, and in the same time

the approximation must be accurate. A simple choice would be to adopt a polynomial or a rational approximation, but

their discretization yields very high errors due to the powers of Λ. This can be avoided when using the Dunford-Schwartz

formula, see [27], representing a function of an operator, because it involves only the operator (ζ I −Λ)−1
which may be

simply, and accurately approximated. However, this formula requires the function be holomorphic inside an open vicinity

of σ . Since the function is generally not known, this set cannot be easily determined, so we prefer to proceed within two

steps. First, the function is approximated through a highly accurate rational approximation, then the Dunford-Schwartz

formula is applied to the rational approximation, with a path tracing out an ellipse including Iσ but no poles.

Since the interval Iσ is bounded, each function ki j (λ ) have a rational approximation over Iσ , that we write under a global

formulation,

kN (λ ) =
∑NN

m=0 dmλ m

∑ND

m′=0 d′
m′λ

m′ , (1.19)

where dm, d′
m′ are matrices of coefficients and N =

(
NN ,ND

)
is the couple comprised of the matrix NN of numerator

polynomial degrees and the matrix ND of denominator polynomial degrees. The path C , in the Dunford-Schwartz formula,

kN (Λ) =
1

2iπ

∫

C
kN (ζ )(ζ I −Λ)−1

dζ ,

is chosen to be an ellipse parameterized by

ζ (θ) = ζ 1(θ)+ iζ 2(θ), with θ ∈ [0,2π].

The parametrization is used as a change of variable, so the integral is rewritten on the form I (g) =
∫ 2π

0 g(θ) dθ , and may

be approximated by a quadrature formula involving M nodes (θ l)l=1,..,M ∈ [0,2π], and M weights (wl)l=1,..,M ,

IM (g) =
M

∑
l=1

g(θ l)wl .

For each z ∈ X4 and ζ ∈ C , we introduce the four-dimensional vector field

vζ = −iζ ′
kN (ζ )(ζ I −Λ)−1

z.

Decomposing vζ into its real part v
ζ
1 and its imaginary part v

ζ
2 , the couple (v

ζ
1 ,v

ζ
2 ) is solution of the system

{
ζ 1v

ζ
1 −ζ 2v

ζ
2 −Λv

ζ
1 = Re

(
−iζ ′

kN (ζ )
)

z,

ζ 2v
ζ
1 +ζ 1v

ζ
2 −Λv

ζ
2 = Im

(
−iζ ′

kN (ζ )
)

z.
(1.20)
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Thus, combining the rational approximation kN and the quadrature formula yields an approximate realization kN,M (Λ) of

k (Λ) ,

kN,M (Λ)z =
1

2π

M

∑
l=1

v
ζ (θ l)
1 wl . (1.21)

This formula is central in the method, so it is the center of our attention in the simulations. A fundamental remark is

that, a ”real-time” realization, kN,M (Λ)z, requires solving M systems like (1.20) corresponding to the M nodes ζ (θ l).
The matrices kN (ζ (θ l)) could be computed ”off-line” once and for all, and stored in memory, so their determination

would not penalize a rapid real-time computation. In total, the ultimate parameter responsible of accuracy in a real-time

computation, apart from spatial discretization discussed in next Section, is M the number of quadrature points.

Spatial Discretization

The final step consists in a spatial discretization of Equation (1.20), it does not represent a specific novelty, so we do not

discuss it through numerical simulations. For the sake of simplicity, the interval Γ being meshed with regularly spaced

nodes separated by a distance h, we introduce Λ−1
h the finite difference discretization of Λ−1,

Λ−1
h =

1

h4




h4 0 0 0 0 0 · · · 0

− 3
2
h3 2h3 − 1

2
h3 0 0 0 · · · 0

1 −4 6 −4 1 0 · · · 0

0
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
. . .

...

0 · · · 0 1 −4 6 −4 1

0 · · · 0 0 0 − 1
2
h3 2h3 − 3

2
h3

0 · · · 0 0 0 0 0 h4




.

In practice, the discretization length h is chosen small compared to the distance between cantilevers. Then, zh denoting

the vector of nodal values of z, for each ζ we introduce (v
ζ
1,h,v

ζ
2,h), a discrete approximation of (v

ζ
1 ,v

ζ
2 ), solution of the

discrete set of equations, {
ζ 1v

ζ
1,h −ζ 2v

ζ
2,h −Λhv

ζ
1,h = Re

(
−iζ ′

kN (ζ )
)

zh,

ζ 2v
ζ
1,h +ζ 1v

ζ
2,h −Λhv

ζ
2,h = Im

(
−iζ ′

kN (ζ )
)

zh.

Finally, an approximate optimal control, intended to be implemented in a set of spatially distributed actuators, could be

estimated from the nodal values,

ΦU,hkN,M,hzh = ΦU,h
1

2π

M

∑
l=1

v
ζ l

1,hwl ,

estimated at mesh nodes, where ΦU,h is the discretization of ΦU which requires the discretization of −∂ 2
xx which can be

done as for Λ by using a finite difference method.

1.2.6 Numerical Validation

To build a rational interpolation kN of the form (1.19) over Iσ , we mesh the interval with L + 1 distinct nodes λ 0, ...,λ L.

Then all p(λ n) solutions of the algebraic Riccati equation are accurately computed with a standard solver. Computing the

rational approximation start by imposing L+1 conditions

kN(λ n) = k(λ n),

or equivalently that
NN

∑
m=0

dmλ m
n − k(λ m)

ND

∑
m′=0

d′
m′λ

m′

n = 0,

for n = 0, ..,L+1. Then, when L is large enough, the resulting system with NN +ND +2 unknowns, [d,d′] = [d0, ...,dNN ,d′
0, ...,d

′
ND ],

is overdetermined, so it is solved in the mean square sense.

In a numerical experiment, we have set all coefficients RB, ρB, ℓC, RC, ρC and LC to one, and LB = 4.73. Thus, all

eigenvalues of Λ turns to be included in (0,1), the first cantilever eigenvalue turns to be equal to λC
1 = 12.36, ψ̄1 =−0.78

and c1 = 9.68. Moreover, we have chosen L = 100 nodes logarithmically distributed along Iσ =
(
10−2,1

)
. We remark

that the shapes of all spectral functions ki j involved in K, represented in Figure 1.14, exhibit a singular behavior at the

13
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Figure 1.14: Shapes of the Spectral Functions k

Table 1.1: Errors in Rational Approximations

(i, j) Ni j ei j ×10−7

(1,1) (7,19) 4.78

(1,2) (7,20) 0.69

(1,3) (13,8) 3.83

(1,4) (7,19) 1.19

(2,1) (8,20) 1.81

(2,2) (7,19) 1.19

(2,3) (20,10) 0.89

(2,4) (19,7) 0.53
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origin. This shows that this example is by no means trivial. In Table 1.1, we report polynomial degrees N =
(
NN ,ND

)

and relative errors

ei j =
||ki j,N − ki j||L2(Iσ )

||ki j||L2(Iσ )

,

between the exact k and its rational approximation kN . The degrees NN and ND can be chosen sufficiently large so

that errors are sufficiently small, since this has no effect on on-line control computation time. Numerical integrations
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Figure 1.15: Errors between k and kN,M

have been performed with a standard trapezoidal quadrature rule. Relative errors, between the exact functions and final

approximations,

Ei j =
||ki j,N,M − ki j||L2(Iσ )

||ki j||L2(Iσ )

are reported in Figure 1.15, in logarithmic scale, for M varying from 10 to 103. The results are satisfactory. Accuracy

is proportional to the number of nodes. So it may be easily tuned without changing spatial complexity governed by the

operator Λ.

1.3 Simulation of Large-Scale Periodic Circuits by a Homogenization Method

This section focuses on the simulation of spatially periodic circuits that may come, for instance, from realization of our

control approximations. The periodic unit cell is limited to linear and static components but its number can be very large.

Our theory allows one to simulate arrays of electronic circuits which are far away from the possibility of regular circuit

simulators like Spice. It is an adaptation of the two-scale approach used in Section 1.1 and has been introduced in [19].

The resulting model consists in a partial differential equations (PDE), related to a macroscopic electric potential, coupled

with local circuit equations. In the following, we present the general framework illustrated through a simple example.

The numerical resolution of the PDE can be done with usual computational tools. Soving this PDE and postprocessing

its solution leads to an approximation of all voltages and currents. Theoretically, more the number of cells is large, more

the model is accurate. The method is illustrated on a basic circuit to allow hand calculations, which are mostly matrix

multiplications.

1.3.1 Linear Static Periodic Circuits

We consider the class of periodic circuits in d space dimensions. An example of such circuit in two space dimensions is

shown in Figure 1.16. The circuit cell is detailled on Figure .1.17. Some voltage or current sources, whose value may be

zero, are placed on the boundary to realize specific boundary conditions. We assume that the number of cells is large in

all the d directions. Mathematically, it is easier to formalize the problem by considering that the whole circuit occupies

a unit square Ω = (0,1)d
and that the period lengths, in all directions, are equal to an identical small parameter ε (cf.

Figure 1.16).

We limit ourselves to the study of circuits whose cell is linear and static. Precisely, the components of a cell are limited

to the Spice elements R, V, I, E, F, G, H. All ports of any multiport component E, F, G, H must belong to a same cell.
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Figure 1.16: Circuit example.

The expanded cell is arbitrarily defined in a unit cell Y = (−1/2,+1/2)d
(see Figure 1.17). We map any discrete node n

onto a continuous coordinates (y1, . . . ,yd). The vector y(n) ∈ R
d is the coordinate vector of a node n. For example, the

coordinates of the nodes in Figure 1.17 are y(1, . . . ,6),

y(1, . . . ,6) =

(
−1/2 0 1/2 0 0 1/4

0 0 0 1/2 −1/2 −1/4

)
.

In particular, the coordinates of the node n = 3 is the vector (1/2,0)T
.

6

1 2

5

1

4

3

5

2

4

3 r

r

r

r y1

y2

1/2

1/2

−1/2

−1/2

is

Figure 1.17: Expanded cell of the circuit.

The maps of voltages and currents from the whole circuit (global network) to the cell circuit (local network) are defined

as follows. First, we denote by

E = the branch set of the whole circuit,

N = the node set of the whole circuit,

E = the branch set of the unit cell circuit,

N = the node set of the unit cell circuit,

and we define three indices

• the global index I references all the branches of the whole circuit,

• the multi-integer µ = (µ1, ..,µd) ∈ {1, ..,m}d enumerates all the cells Y ε
µ in the circuit Ω,

• the local index j ∈ {1, ..|E|} enumerates all the branches of the unit cell Y .

Each branch voltage or current can then be referenced by the index I or by the couple (µ, j). This is a one–to–one

correspondence denoted by I ∼ (µ , j). Using this correspondence, for each vector u ∈ R
|E |, one may define a unique

tensor Uµ j with (µ, j) ∈ {1, ..,m}d ×{1, .., |E|} by Uµ j = uI for (µ, j) ∼ I .
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1.3.2 Circuit Equations

The electrical state of a circuit can be charaterized [7] by the vectors (ϕ,v, i) where,

ϕ ∈ R
|N | = the nodal voltages (or electric potentials),

v ∈ R
|E | = the branch voltages,

and i ∈ R
|E | = the branch currents.

We can formulate the circuit equations under the form

v = A T ϕ, (1.22)

Ri+M v = us, (1.23)

iT w = 0, (1.24)

for all w = A T ψ with ψ ∈ Ψ. (1.25)

where us ∈R
|E | represents voltage and current sources merged in single vector completed by some zeros. Equation (1.22)

is the Kirchhoff’s Voltage Law. Equation (1.23) represents the constitutive equations and Equations (1.24, 1.25) corre-

spond to the Tellegen theorem. Here Ψ is the set of admissible potentials for the circuit problem, that is to say

Ψ =
{

ψ ∈ R
|N | such that ψI = 0 for all ground nodes nI

}
.

As the matrices M ∈ R
|E | ×R

|E |, R ∈ R
|E | ×R

|E | and the vector us ∈ R
|E | are exclusively deduced from the branch

equations of the circuit, they can be expressed in terms of two reduced matrices M ∈ R
|E|×R

|E| and R ∈ R
|E|×R

|E| and

a reduced vector us ∈ R
|E|. The reduced matrices and vector are simply derived from the constitutive equations of the unit

cell, which are in the example,

−v1 + ri1 = 0,

−v2 + ri2 = 0,

−v3 + ri3 = 0,

−v4 + ri4 = 0,

i5 = is.

The transpose A T ∈ R
|E |×R

|N | of the incidence matrix can also be expressed in terms of a reduced matrix noted by AT

(with a little abuse of notation). Notice that we cannot find a reduced matrix for the incidence matrix itself. We introduce

the local (complete) incidence matrix A ∈ R
|N|×R

|E|,

Ai j =





+1 if branch j leaves node i,
−1 if branch j enters node i,
0 if branch j does not touch node i.

The solution of the simplified model introduced in this section realizes an approximation of the solution of (1.22–1.25)

for small values of ε (ε << 1). It is derived as a limit of the latter when the cells length ε diminishes towards zero.

1.3.3 Direct Two–scale Transform TE

The general idea of the two–scale transform rests on gathering the voltages or currents both denoted by û of a same branch

j of all cells. Indeed, the voltages or currents of all branches j are defined by a function x 7→ û j(x), which depends on the

parameter ε and whose limit when ε → 0 will be calculated.

Let us first denote by χY ε
µ
(x) the characteristic function of the cell Y ε

µ equals to 1 when x ∈ Y ε
µ and 0 otherwise. As an

exemple, the characteristic function χY ε
32

of the cell µ = (3,2) is represented in Figure 1.18.

The two–scale transform û of the branch vector u∈R
|E | is the vector of Y ε

µ –piecewise constant functions û∈P
0(Ω)|E|,

û j(x) = ∑
µ∈{1,..,m}d

χY ε
µ
(x)Uµ j. (1.26)

where Uµ j = uI with (µ, j) ∼ I . For example, v̂ j(x) is the voltage Vµ j of the branch referred by the local index j of

the cell µ to which x belongs. By construction, the function x 7→ v̂ j(x) is constant on all cells. Figure 1.19 illustrates this

concept by representing a component of an arbitrary vector v̂. It indicates that the voltage v̂2(x) related to the branch j=2

(cf. Figure 1.17) of the cell (µ1,µ2) = (1,4) is equal to 2V.

We denote by TE the linear map u 7→ û from R
|E | to P

0(Ω)|E| ⊂ L2(Ω)|E|, with P
0(Ω) the set of piecewise constant

functions over the cells. Our model is derived for the limit, when ε → 0, of all vectors involved in the circuit equations.

The actual circuit voltages and currents are then computed by inverting the two–scale transform with the physical value

of ε . Next Section is devoted the construction of T−1
E .
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Figure 1.19: One component v̂2(x) of a two–scale transform.

1.3.4 Inverse Two–scale Transform T−1
E

The calculation of the inverse two–scale transform T−1
E is done by computing the adjoint T ∗

E and then proving two identity

properties beetween these transforms. The notation for inner products and norms in R
|E | and L2(Ω)|E| are collected in the

following table,

u,v ∈ R
|E | u,v ∈ L2(Ω)|E|

Inner product [u,v] (u,v)

Norm |v| = [v,v]1/2 ||u|| = (u,u)1/2

and defined by

[u,v] = εduT .v,

(u,v) =
|E|

∑
j=1

∫

Ω
u j(x)v j(x)dx.

For all u ∈ L2(Ω)|E|, the adjoint T ∗
E u is defined through the equality

[T ∗
E u,v] = (u,TEv) for all v ∈ R

|E |. (1.27)
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The calculation of T ∗
E from (1.27) is given in Appendix and leads to

(T ∗
E u)I = ε−d

∫

Y ε
µ

u j(x)dx. (1.28)

Moreover, Appendix proves that T ∗
E TE = IE on R

|E | and TET ∗
E = IE on P

0(Ω)|E|. As TE is one–to–one from R
|E | to

P
0(Ω)|E|, these two identities show that

T−1
E = T ∗

E .

1.3.5 Two-scale transform TN

The two–scale transform ϕ̂ of the nodal vector ϕ ∈ R
|N | is the vector of Y ε

µ –piecewise constant functions ϕ̂ ∈ P
0(Ω)|N|

defined by

ϕ̂ j(x) = ∑
µ∈{1,..,m}d

χY ε
µ
(x)Φµ j, (1.29)

where Φµ j = ϕI with (µ , j) ∼ I . We denote by TN the linear map ϕ 7→ ϕ̂ from R
|N | to P(Ω)|N| ⊂ L2(Ω)|N|. As the

nodes located on the cell boundary belong to two adjacent cells TN is not one to one.

1.3.6 Behavior of “Spread” Analog Circuits

We start by illustrating the scaling of currents and voltages in a one–dimensional circuit. A circuit spread out over a large

region may have some pathes linking oposite sides. In view of deriving a partial differential equation for the electric

potential, we assume that voltages are increments of the order ε along such pathes. Flowing current result of numerous

(1/ε) additive sources, so it has a magnetude of 1 as soon as the sources are of the order of ε (Figure 1.20).

0 1 x

ϕ ≈ 1

v ≈ ǫ

v ≈ ǫ

ϕ ≈ 1

1/ǫ ells
Figure 1.20: Illustration of the magnitude orders of ϕ and v.

A branch which does not belongs to any crossing path is necessarily part of a path to the ground, so its voltage

magnitude is 1. We choose its magnitude current be of the order ε as it may be a source for a crossing path (Figure 1.21).

The periodicity of the circuit implies that each node n located on the boundary of the unit cell has its counterpart n′

on the opposite side. We assume that each such couple is linked by at least a crossing path. We introduce the set EC ⊂ E

constituted of all the branches of at least one path linking each couple (n,n′). Of course, a link between (n,n′) which

includes a ground node is not considered as a path. The complementary set E −EC is denoted by ENC (non-crossing

pathes).

In the case where many crossing pathes are linking n and n′, the designer is free to decide which are included in EC

and which are not, with regard to the above discussion about current and voltage magnitudes. The subset EC is partitioned

in its nc connected components EC = ∪nc
p=1ECp. In the following, the main result on the circuit equations will be derived

for the connected components of EC and not for EC itself.

The subsets NC and NNC of N are defined as the set of nodes involved in at least one of the branch of EC and ENC

respectively. Since the branches of EC and ENC have common nodes, these two subsets NC and NNC are not a partition
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Figure 1.21: Illustration of the magnitude order of i.

of N, NC ∩NNC 6= ∅. NCp is the set of nodes involved in the branches of ECp. The subsets NCp constitute a partition of

NC, NC = ∪nc
p=1NCp, as the subsets ECp constitute a partition of EC and they are disconected. The definitions and some

properties of these sets are depicted on Figure 1.22.

n1

n2

n
′

1

n
′

2

EC1

EC2

NC1

NC2

NNCENC

Figure 1.22: Depiction of node and branch sets.

Finally, NC×1 is a set of nc nodes constituted of one arbitrary node of each connected component NCp and N0 is the set

containing only the cell ground node.

1.3.7 Cell Equations (Problem Micro)

The model formulation is decomposed in four parts. We first formulates the linear relation between mean electric po-

tentials ϕ0
C along crossing pathes and the other fields as branch currents and voltages. This relation is strictly local in

each cell. In the next Section, the linear relation is simply rewritten introducing linear operators. They are then used for

coefficients of the boundary value problem on ϕ0
C. Finally, actual voltages and currents are computed thanks to the inverse

two-scale transform.

The previous assumptions about voltage and current magnitudes is formulated using the scaling matrices Sv, Sc and Ss

applied to the two-scale transforms,

îε = Sĉi,

v̂ε = Svv̂,

ûε
s = Ssûs.

with the |E|× |E| scaling matrices defined as

Sv = ε−1IEC
+ IENC

, (1.30)

Sc = IEC
+ ε−1IENC

, (1.31)

Ss = ΠcSc +ΠvSv. (1.32)

Here the |E|×|E| matrices IEC
and IENC

are the projectors on the subspaces of R
|E| generated by vectors with non vanishing
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values on EC and ENC,

(IEC
) jk =

{
δ jk if e j ∈ EC,
0 otherwise,

(IENC
) jk =

{
δ jk if e j ∈ ENC,
0 otherwise.

Moreover, each branch equation in (1.23) is homogeneous to a current or to a voltage, this leads to a partition of E into

two subsets. The |E| × |E| matrices Πc and Πv (for currents and voltages respectively) are defined as the projectors on

these two subsets.

The transform ϕ̂ is not scaled, it is rewriten as ϕ̂
ε

for the sake of notation uniformity,

ϕ̂
ε = ϕ̂.

The reduced matrices M and R of M and R are scaled in a consistent manner,

Mε = SsMS−1
v ,

Rε = SsRS−1
c .

The scaled reduced matrices Mε and Rε are assumed to converge towards some limit M0 and R0 when ε → 0. If the

norms ||̂iε ||, ||v̂ε ||, ||ϕ̂
ε
|| and ||ûε

s || are bounded then (̂iε , v̂ε , ϕ̂
ε
, ûε

s ) is weakly converging when ε → 0 towards a limit

(i0,v0,ϕ0,u0
s ) in L2(Ω) [27].

We prove that the vector of electric potential ϕ0(x) is a constant ϕ0
Cp(x) in each connected component of cell crossing

pathes. So, we split it according to ϕ0 = I0ϕ0
C + ϕ0

NC, I0 being defined at (1.39), with ϕ0
C = (ϕ0

Cp)p=1,..,nc and ϕ0
NC(x)

being the electric potentials at nodes not in crossing pathes. Electric potential variations within connected components of

crossing pathes are recovered thanks to the corrector ϕ1
C,

ϕC = ϕ0 + εϕ1
C.

We are ready to state the cell equations. We begin with assuming that ϕ0
C is known.

For given ϕ0
C ∈ΨH , ΨH defined in (1.47), and u0

s ∈ L2(Ω)|E| there exist ϕ1
C ∈ L2(Ω;R

|N|
per) such that ϕ0

NC ∈ L2(Ω;R|N|),

i0 ∈ L2(Ω)|E| and v ∈ L2(Ω)|E| are solution of the algebraic cell circuit equations at each location of Ω,

v = IEC
AT ϕ1

C + IENC
AT ϕ0

NC, (1.33)

R0i0 +M0v = u0
s −M0(τ∇ϕ0

C + IENC
AT I0ϕ0

C), (1.34)

i0T w = 0, (1.35)

for all w = IEC
AT ψ1

C + IENC
AT ψ0

NC with (ψ1
C,ψ0

NC) ∈ Ψm. (1.36)

Moreover, the vector v0 ∈ L2(Ω)|E| is expressed by

v0 = v+ τ∇ϕ0
C + IENC

AT I0ϕ0
C.

We assume that the solution is unique. This assumption is generally satisfied once the global circuit equations has a unique

solution.

The admissible nodal voltage set is

Ψm = {(ψ1
C,ψ0

NC) ∈ L2(Ω;R
|N|
per)×L2(Ω;R|N|)

such that I(N−NC)∪NC×1
ψ1

C = 0 and INC∪N0
ψ0

NC = 0}.

The set R
|N|
per is defined as,

R
|N|
per = {φ ∈ R

|N| such that φ j = φ j′ for all couple (n j,n j′) of opposite nodes}.

The |E|×d ×nc tensor τ is defined by

τ lkp =

{
∑ j:n j∈NCp

yk(n j)A jl for el ∈ ECp,

0 otherwise.
(1.37)

We recall that y(n) ∈ R
d is the coordinate vector of a node n, and we use the tensor product notation,

(τθ)l = ∑
k

∑
p

τ lkpθ kp, (1.38)
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where the summation is on the two last indices of τ .

The |N|×nc matrix I0 is defined by

I0
jp =

{
1 if n j ∈ NCp,
0 otherwise,

(1.39)

NCp is the set of nodes involved in the branches of ECp.

1.3.8 Reformulation of the Problem Micro

In the next section, we state that ϕ0
C is the solution of a partial differential equation, so once ϕ0

C is known, i0 and v0 can be

computed. The equations (1.33–1.36) being linear, there exists some matrices Lx, Hx and a third order tensor Px such

that i0, ϕ0
NC and v that can be expressed as function of ϕ0

C, its gradient ∇ϕ0
C and the vector source u0

s ,

i0 = Liϕ
0
C +Pi∇ϕ0

C +Hiu
0
s , (1.40)

ϕ0
NC = Lϕ ϕ0

C +Pϕ ∇ϕ0
C +Hϕ u0

s , (1.41)

v = Lvϕ0
C +Pv∇ϕ0

C +Hvu0
s . (1.42)

The computation of the vector v0 is then unchanged,

v0 = v+ τ∇ϕ0
C + IENC

AT I0ϕ0
C. (1.43)

The terms Lα , Pα and Hα are of course independent of ϕ0
C, ∇ϕ0

C and u0
s and therefore can be used to express the

coefficients in the equation of ϕ0
C.

1.3.9 Homogenized Circuit Equations (Problem Macro)

In this Section, we state the equation satisfied by ϕ0
C.

The vector ϕ0
C ∈ ΨH is solution of the nc partial differential equations, so–called homogenized equations, with its

boundary conditions,

AH(Pi∇ϕ0
C +Liϕ

0
C) = −AHHiu

0
s , (1.44)

ϕ0
Cp = 0 on Γ0p, (1.45)

(Pi∇ϕ0
C +Liϕ

0
C)nτ = 0 on Γ−Γ0p. (1.46)

Γ0p is the part of the boundary Γ of Ω where the pth connected component is grounded. The operator AH is defined by

AH = −∂τ∗ + I0T AIENC
,

where ∂τ∗ i = τ∗∇i with τ∗pkl = τ lkp and the use of convention (1.38). The derivative ∂τ ϕ0
C and the normal nτ are defined

by

∂τ ϕ0
C = τ∇ϕ0

C,

(nτ)l p =
d

∑
k=1

τ lkpnk,

∇ being the gradient (∂xk
)k=1..d and n = (nk)k=1..d being the outward unit normal vector to the boundary Γ of Ω. Remark

that the coefficients AH and the derivatives ∇τ depend on node coordinates inherited from the expression (1.37) of τ.
Finally, the admissible set of macroscopic potential is

ΨH = {ψ ∈ L2(Ω)nc such that ∂τ ψ ∈ L2(Ω)|E| and ψk(x) = 0 on Γ0k}. (1.47)

Let us turn to the example depicted on Figure 1.16, ϕ0
C has only one component ϕ0

C1 (nc = 1), we assume that r = εr0 and

is = εi0s . ϕ0
C is then solution of the partial differential equation

∂ 2ϕ0
C1

∂x2
1

+
∂ 2ϕ0

C1

∂x2
2

= −2r0i0s in Ω,

ϕ0
C1 = 0 on Γ0,1,

∇ϕ0
C1.nτ = 0 on Γ−Γ0,1.

22



Once the solution ϕ0
C1 is computed, the two-scale limits (v0, i0) are expressed by (1.40)–(1.43). For the example, the

two–scale current and voltage are given by

v0 = −
1

2

(
∂ϕ0

C1

∂x1
,

∂ϕ0
C1

∂x1
,

∂ϕ0
C1

∂x2
,

∂ϕ0
C1

∂x2
,2ϕ0

C1

)T

,

i0 = −
1

2

(
1

r0

∂ϕ0
C1

∂x1
,

1

r0

∂ϕ0
C1

∂x1
,

1

r0

∂ϕ0
C1

∂x2
,

1

r0

∂ϕ0
C1

∂x2
,−2i0s

)T

.

1.3.10 Computation of Actual Voltages and Currents

Actual voltages and currents may be then recovered through the inverse two-scale transform (1.28) and inverse scalings

(1.30–1.32),

v ≈ T−1
E S−1

v v0,

i ≈ T−1
E S−1

i i0.

The approximation of the node voltages ϕ is realized on a different manner. From the solution ϕ0
C of (1.44–1.46) the

approximation of the node voltages is build as follows (neglecting the first order correction),

ϕI ≈ ϕ0
C(xε

µ + εy(n j)) for I ∼ (µ, j) and n j ∈ NC,

where xε
µ ∈ [0,1]d is the coordinate vector of the center of the cell µ (Figure 1.16) and we recall that y(n j) ∈ [−1/2,1/2]d

is the coordinate vector of the node n j (Figure 1.17). For the voltage at the nodes which belong to a non crossing path, the

approximation is more simple because it does not need to refer to the spatial location in the cell

ϕI ≈ ϕ0
C(xε

µ) for I ∼ (µ , j) and n j ∈ N −NC −N0.

A comparison of the solutions computed by the two–scale model with those obtained by a direct circuit simulation is

has been done for the example circuit with 10× 10 cells. In the following simulation results, all the circuit boundaries

are connected to ground and the component values are r0 = 10 kΩ and i0s = 1 mA. The comparison focus only on node

voltages magnitude, their location on the domain being shown on Figure 1.23.
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Figure 1.23: Location of node voltages.

The computation of ϕ0
C has been done using a Finite Element Method (FEM) on a regular mesh of 40× 40 squares

(see Figure ??). We must emphasize that the mesh size is chosen to obtain an accurate numerical solution of the PDE and

is not related at all to the number of the cells of the circuit. The maximum amplitude is 1.4742 V . A direct simulation of

the periodic circuit has been made with Spice. The maximum amplitude is 1.4723V . In Figure ?? the continuous FEM

solution ϕI = ϕ0
C(xε

µ +εy(n j)) is represented by the mesh while all voltage nodes computed by Spice located by bullets.

These results show a good qualitative agreement between the two methods even if the number of cells is not large (10 in

one direction, which corresponds to ε = 0.1).
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Figure 1.24: Two-scale model versus Spice computation.

1.3.11 Appendices

Basic properties of some integrals on cells

∫

Y ε
µ

dx′ = εd

∫

Y ε
µ

χY ε
λ
(x′)dx′ = εdδ µλ

Derivation of the expression of T ∗
E

(TEv,u) =
∫

Ω
(TEv).u(x)dx

=
|E|

∑
j=1

∫

Y ε
µ

(TEv) j(x).u j(x)dx

= ∑
µ∈{1,..,m}d

|E|

∑
j=1

ε−d

∫

Y ε
µ

χY ε
µ
(x)u j(x)dxVµ j

= εd ∑
µ∈{1,..,m}d

|E|

∑
j=1

ε−d

∫

Y ε
µ

u j(x)dxVµ j

[T ∗
E u,v] = εd(T ∗

E u)T .v

= εd ∑
µ∈{1,..,m}d

|E|

∑
j=1

(T ∗
E u)µ jVµ j

⇒ (T ∗
E u)µ j = ε−d

∫

Y ε
µ

u j(x)dx
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Proof that T ∗
E TE = IE on R

|E |

Let u ∈ R
|E | and I ∼ (µ, j),

(T ∗
E TEu)I = T ∗

E


 ∑

λ∈{1,..,m}d

Uλ jχY ε
λ
(x)




= ε−d

∫

Y ε
µ

∑
λ∈{1,..,m}d

χY ε
λ
(x)dxUλ j

= ε−dεdUµ j

= uI

Proof that TET ∗
E = IE on P

0(Ω)|E|

Let u ∈ P
0(Ω;R|E|),

(TET ∗
E u) j(x) = (TE(ε−d

∫

Y ε
µ

u j(x
′)dx′)) j(x)

= ∑
µ∈{1,..,m}d

ε−d

∫

Y ε
µ

u j(x
′)dx′χY ε

µ
(x)

= ∑
µ∈{1,..,m}d

∑
λ∈{1,..,m}d

ε−d

∫

Y ε
µ

χY ε
λ
(x′)dx′Uλ jχY ε

µ
(x)

= ∑
µ∈{1,..,m}d

∑
λ∈{1,..,m}d

δ µλUλ jχY ε
µ
(x)

= ∑
µ∈{1,..,m}d

Uµ jχY ε
µ
(x)

= u j(x)
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