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Abstract. Since the work of Rabin [9], it has been known that any
monadic second order property of the (labeled) binary tree with successor
functions (and not the prefix ordering) is a monadic ∆3 property.
In this paper, we show this upper bound is optimal in the sense that
there is a monadic Σ2 formula, stating the existence of a path where
a given predicate holds infinitely often, which is not equivalent to any
monadic Π2 formula. We even show that some monadic second order
definable properties of the binary tree are not definable by any boolean
combination of monadic Σ2 and Π2 formulas.
These results rely in particular on applications of Ehrenfeucht-Fräıssé
like game techniques to the case of monadic Σ2 formulas.

1 Introduction

In this paper we are interested in a problem of descriptive complexity, an impor-
tant and rapidly growing research area in theoretical computer science. Descrip-
tive complexity was proposed by Fagin in the seventies (see [3]) as an approach to
fundamental problems of complexity theory such as whether NP equals co−NP .
While ordinary computational complexity theory is concerned with the amount
of resources (such as time or space) necessary to solve a given problem, the
idea of descriptive complexity is to study the expressibility of problems in some
fixed logical formalism. For instance, in his seminal paper of 1974, Fagin shows
that NP problems coincide (over finite structures) with the problems expressible
in existential second order logic. Since then, there has been a large number of
results in descriptive complexity. We note that most of these results concern fi-
nite structures (which are those interesting for the applications in computational
complexity theory), but studying descriptive complexity also over infinite struc-
tures makes sense and may lead to a better comprehension of the expressiveness
of various logical systems.
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Here, we are concerned with the structure of the monadic second order logic
(MSOL) on the infinite binary tree. It is a well known result of Rabin [9] that
any monadic second order formula (MS-formula) is equivalent, on the binary
tree, to a monadic Σ2 formula, that is a formula of the form

∃X1, · · · , Xm∀Y1, · · · , Ynψ

where ψ is a first order formula. This result comes from the translation of any
MS-formula into tree-automata. It is also well-known [9] that there are formulas
which are not equivalent to any monadicΣ1 formula (of the form ∃X1, · · · , Xmψ).
Since many logics of programs [2, 12] can be translated into MS-formulas on the
binary tree, this difference of expressive power between monadic Σ1 and Σ2

allows a classification of these logics.
However, this upper bound obtained by Rabin works in the presence of a

particular relation symbol, in the vocabulary of the logic considered, whose in-
terpretation is the prefix ordering over nodes of the binary tree. If instead of
this ordering we consider the two successor functions over nodes of the binary
tree, Rabin’s approach shows that every MS-formula is equivalent a monadic Σ3

formula, that is a formula of the form

∃X1, · · · , Xm∀Y1, · · · , Yn∃Z1, · · · , Zpψ

where ψ is first order.

In this paper, we show that this upper bound is tight in the sense that, over
the binary tree with successor functions instead of the prefix ordering, there are
MS-formulas which are not equivalent to any monadic Σ2 formula. We even show
that, again on the binary tree with successor functions, there are MS-formulas
which are not equivalent to any Boolean combination of monadic Σ2 formulas.
Notice that in many logics of programs the prefix ordering is (in some sense)
definable (for instance with Kozen’s propositional mu-calculus [7]) so it makes
sense to be interested in the monadic second order logic of the binary tree with-
out this ordering predefined.

A related result is established by Rabin [10]. He investigates there the ex-
pressive power of some restricted notion of tree-automata : the special or Büchi
automata. He shows that there are MS-formulas which cannot be translated into
this particular kind of tree automata. This result is extended by Hafer [5] who
shows that there are MS-formulas that cannot be translated into any Boolean
combination of Büchi automata.

Our result is possibly a consequence of Rabin’s and Hafer’s results provided
monadic Σ2 formulas characterize exactly Buchi tree-automata. It is well known
that Buchi tree-automata can be translated into monadic Σ2 formulas over the
binary tree with successors functions. The converse is however an open ques-
tion 1.
1 more recent works, yet unublished, suggest unexpectedly that this converse may also
be true. . .



2 Definitions and notations

Let T = {0, 1}∗ be the binary tree, i.e. the set of finite words over the alphabet
{0, 1}, equipped with (immediate) successor functions ra : T → T defined by
ra(w) = w.a for a = 0 or 1.

The set of formulas of MSOL we consider in the sequel is built from the func-
tion symbols r0 and r1 to be interpreted by the corresponding successor func-
tions, equality predicate, Boolean connectives, existential and universal quantifi-
cations of first order variables x, y, . . . , and existential and universal quantifi-
cations of (monadic) second order variables X, Y , . . . .

We call monadic Σ0 and monadic Π0 the set of MS-formulas without set
quantifiers and, for any integer n, we call monadic Σn+1 (resp. monadic Πn+1)
the set of MS-formulas formed by a sequence of existential (resp. universal) set
quantifiers followed by a formula of monadic Πn (resp. monadic Σn).

Any MS-formula ϕ(x1, · · · , xm, X1, · · · , Xn), with free first order variables
among {x1, · · · , xm} and with free second order variables among {X1, · · · , Xn},
defines over the binary tree the set of tuples (t1, · · · , tm, R1, · · · , Rn) ∈ Tm ×
P(T )n that satisfy the formula ϕ. This is denoted by

(t1, · · · , tm, R1, · · · , Rn) |= ϕ

(see [11], for instance, for a precise definition of the satisfaction relation).
Notice that any tuple (R1, · · · , Rn) ∈ P(T )n corresponds to the function v

from T to P({X1, · · · , Xn}) defined by v(t) = {Xi : t ∈ Ri}. In the sequel, such
a function is called a {X1, · · · , Xn}-colored tree (or {X1, · · · , Xn}-tree for short).

Given R ⊆ T a set of nodes of the binary tree, we use the notation v|R
that stands for the restriction of v to R. Given v1 : R1 → P(C1) and resp.
v2 : R2 → P(C2) two partially C1-colored resp. C2-colored trees, we say v1
and v2 are compatible when they agree on R1 ∩ R2, i.e. for any t ∈ R1 ∩ R2,
v1(t) ∩ C1 = v2(t) ∩ C2.

Given a partial C1-tree v1 and a partial C2-tree v2 compatible one with the
other, we denote by (v1, v2) the partial C1 ∪ C2-colored tree (also denoted by
C1, C2-colored tree) given by the union of v1 and v2.

3 An Ehrenfeucht-Frass like game

Checking whether a colored binary tree satisfies some MS-formula can be seen
as a game between two players : the first one trying to show the binary tree does
satisfy the property, the second one trying to show the converse.

In the first order case, these game considerations lead to the standard no-
tion of Ehrenfeucht-Frass game (EF-game), a useful tool to show that a given
property is not definable in first order logic (see for instance [1]).

Here, we define a second order version of this EF-game in order to handle
monadic Σ2 formulas.

In order to investigate definability by monadic Σ2 formulas, we extend EF -
games to the second order case as follows. This definition can be seen as a



generalization of the second order game (also called the Ajtai-Fagin game) in-
troduced to handle monadic NP definability (see [4] for a discussion on these
monadic NP games).

Definition 1 (monadic Σ2 games). Given three integers c, d and e, given
V1 and V2 two nonempty disjoint sets of B-colored trees, denoting by C and D
two disjoint sets of set variables not in B, with c = |C| and d = |D|, we define
the game EF2(V1, V2, c, d, e) as a play in four (second order) rounds between two
players (called Spoiler and Duplicator) as follows :

1. for each v ∈ V1, Spoiler chooses a C-coloring C1(v);
2. Duplicator chooses one v2 ∈ V2 and a C-coloring C2(v2);
3. Spoiler chooses a D-coloring D2(v2);
4. Duplicator chooses one v1 ∈ V1 and a D-coloring D1(v1).

We say Duplicator wins the game when the two B,C,D-colored trees

(v1, C1(v1), D1(v1)) and (v2, C2(v2), D2(v2))

satisfy the same first order formulas of quantifier depth e. Otherwise, Spoiler
wins.

Theorem 1. For any sets V1 and V2 of B-colored trees, and for any integers c,
d, e, if Duplicator has a winning strategy for the game EF2(V1, V2, c, d, e) then
there exists no Σ2 formula ϕ with free set variables among B and of the form :

∃X1 · · ·Xc∀Y1 · · ·Ydψ

with ψ a first order sentence of quantifier depth e such that any v1 ∈ V1 satisfies
ϕ while no v2 ∈ V2 satisfies ϕ.

Proof. A classical consequence of the standard definition of the satisfaction re-
lation.

✷

In the sequel, in order to handle the winning condition given in the definition
of EF2-game above, we use the notion of r-type and r,m-equivalence and apply
(the following non game theoretic version of) Hanf’s theorem [6].

Definition 2. Given integer r and node t, let S(t, r) be the set of nodes t′ such
that there is an undirected path between t and t′ of length at most r. The r-type of
some node t ∈ T in a C-colored tree v is the graph isomorphism class of v|S(t, r).
Given integer m, we say two C-colored trees v1 and v2 are r,m-equivalent if, for
any r-type τ , the number of nodes of r-type τ in v1 equals the number of nodes
of r-type τ in v2, or both these numbers are greater than m.

Theorem 2 (Hanf [6]). For any e, there exist r and m such that if two C-
colored trees v1 and v2 are r,m-equivalent then they satisfy the same first-order
formula of quantifier depth at most e.



4 Monadic Σ2 vs. monadic Π2

In this section, we define the define a property, called the Bchi property, and
show that it is not definable by a monadic Π2 formula (hence its complement is
not definable by a monadic Σ2 formula). The same property is used by Rabin
in [10] as a witness of properties definable by means of Bchi automata and whose
complement is not definable by means of Bchi automata.

Definition 3 (the Bchi property). Let X be a set variable. Given a {X}-
colored tree v, we say v has the Bchi property B(X) if there is a directed path
in T with infinitely many nodes in the interpretation of X in v.

Equivalently, denoting by Acc(t, u) the property stating that there is a di-
rected path from t to u, a {X}-colored tree satisfies the Bchi property if and
only if the greatest solution of the set equation Y = FX(Y ) with

FX(Y ) = {t ∈ T : ∃u ∈ Y,X ∈ v(u) ∧ t 6= u ∧Acc(t, u)}

is non empty. Although not very common, such a definition leads to the definition
of the Bchi property by transfinite induction that we shall use later for our main
result.

Definition 4. For any countable ordinal α, let us define Fα
X(T ) as the set T

when α = 0, the set FX(Fα1

X (T )) when α = α1 + 1 and the set
⋂

α1<α F
α1

X (T )
when α is a limit ordinal. Let then Bα(X) be the property of {X}-colored trees
stating that Fα

X(T ) is non empty.

Proposition 1. (1) For any countable ordinal α there are {X}-colored trees
that do satisfy Bα(X) while they do not satisfy B(X). (2) A {X}-colored tree
satisfies the property B(X) if and only if, for any countable ordinal α, it does
satisfy Bα(X).

Proof. Fact (2) follows from the fact that the binary tree is countable. To prove
fact (1), let us define, for each countable ordinal α, the {X}-tree vα by the
following induction. When α = 0, vα(t) = ∅ for each t ∈ T . When α = α1 + 1,
vα(ǫ) = {X}, and for any t ∈ T , vα(0.t) = ∅ and vα(1.t) = vα1

(t). When α

is a countable limit ordinal, given an arbitrary enumeration α0, α1, . . . , of all
ordinals strictly smaller than α, vα(ǫ) = {X}, and for any t ∈ T , any n ∈ IN ,
vα(0

n.1.t) = vαn
(t). None of these vα satisfies the Büchi property while, for each

ordinal α, vα+1 does satisfy Bα(X).
✷

Before stating and proving the main theorem below, we give some more
technicalities in order to deal with EF2-games. These definitions are inspired by
similar techniques used by the second author in [8].

Definition 5 (r,m-type constraint). An r,m-type constraint is a function f
which associates to each r-type τ of its domain a number f(τ) < m. We say v|R
is compatible with type constraint f when, for any r-type τ in the domain of f ,
v|R has at most f(τ) nodes of type τ .



Definition 6 (D-closure of a C-colored finite region). Given integers r
and m, given a C-colored tree v, given a set D of variables disjoint from C,
given finite regions R ⊆ R1 ⊆ T , we say R1 is a D-closure of R (in v) if, for any
r,m-type constraint f and for every D-coloring v0 of R, if there is a D-coloring
v1 of R1 which equals v0 on R and such that the C,D-coloring (v, v1) of R1 is
compatible with f , then there is a similar D-coloring of the complete binary tree.

We want to show that indeed D-closures exists; to this goal we begin with a
lemma:

Lemma 1. Given R ⊆ T , v a C-colored tree and v1 a D-coloring of R. Given f
an r,m-type constraint. If every finite subset of the binary tree has a D-coloring
which equals v1 on R and, together with v, is compatible with f , then the entire
binary tree has a similar coloring.

Proof. By a classical compactness argument.

Proposition 2. For any integers r and m, for any C-colored tree v, for any
finite region R ⊆ T colored by v, and for any set D of fresh variables, there
exists a D-closure of R.

Proof. Let v, R and D be as above. For each r,m-type constraint f , and for
each D-coloring w of R, applying the previous Lemma, either there exists a D-
coloring of the entire binary tree which, together with v, is compatible with the
constraint f and extends w, or there exists a finite region Rf,w with no such
D-coloring. One can check that the union of all these Rf,w is a D-closure of R.

✷

We can now state and prove our main theorem.

Theorem 3. Over {X}-colored binary trees with successor functions, the Bchi
property B(X) is not definable by any monadic Π2 formula.

Proof. Assume B(X) is definable by a Π2 formula. This means B̄(X), the com-
plement of B(X), is definable by a Σ2 formula; henceforth, applying Theorem 1,
Spoiler has a winning strategy on the game EF2(B̄(X), B(X), c, d, e) for some
integer c, d and e. We show below that Duplicator has a winning strategy for
this game hence this assumption is absurd.

Let C and D be disjoint sets of variables distinct from X with |C| = c and
|D| = d, and let r and m be given by Hanf’s theorem (Theorem 2) for classical
EF-games in e rounds over {X}, C,D-colored binary trees. We want to show that
the second order rounds can be played (by the Duplicator) so that the resulting
pair of {X}, C,D-trees chosen at the end (by the Duplicator) are r,m-equivalent.

(1) First, for each v ∈ B̄(X), Spoiler chooses a C-colored tree C1(v).

(2) The duplicator’s answer is the choice of an {X}-colored tree v2 ∈ B(X)
together with the choice of the C-colored tree C2(v2). This answer is made using
the following lemma.



Lemma 2. There exists a sequence {(Rn, wn,Wn, tn)}n∈IN where Rn ⊆ T is a
finite subset of the binary tree, Wn is a set of {X}, C-colored trees of the form
(v, C1(v)) with v ∈ B̄(X) and tn ∈ T , and such that T equals the union of all
Rn and for each n :

1. wn : Rn → P(C ∪ {X}) is a {X}, C-coloring of Rn,

2. all {X}, C-colored trees of Wn are compatible with wn and color tn by X,
and Wn+1 ⊆Wn,

3. Rn+1 is a D-closure of Rn in every element of Wn+1,

4. tn is a proper prefix of tn+1 and belongs to Rn+1,

5. for each countable ordinal α, there exists w ∈ Wn such that the binary tree
rooted at tn and {X}, C-colored by w satisfies Bα(X).

Proof. By induction on n. Let us take R0 = ∅, W0 the set of {X}, C-trees
(v, C1(v)) for each v ∈ B̄(X) such that X ∈ v(ǫ) for ǫ the root of the binary tree
and t0 = ǫ. Property 5 is ensured by Proposition 1.

Assume the construction has been made up to some integer n. For each
t′ ∈ T strictly above tn, each finite R′ ⊇ R (that also contains tn and any node
at a distance at most n from the root) and each {X}, C-coloring w′ of R′, let
us define the set O(t′, R′, w′) of all countable ordinals α such that there exists
(v, C1(v)) ∈Wn such that :

1. X ∈ v(t′),

2. (v, C1(v))|R
′ and w′ are equal,

3. the {X}-colored binary tree rooted at t′ and colored by v satisfies Bα(X),

4. R′ is a D-closure of Rn w.r.t. (v, C1(v)).

By the induction hypothesis, for each countable ordinal α there exists w ∈ Wn

such that the binary tree rooted at tn colored by v has the Bα+1(X) property.
Also by the definition of Bα+1, there exists some t′ strictly above tn as in item
3; hence we have ⋃

(t′,R′,w′)

O(t′, R′, w′) = ℵ1

Since there are ℵ0 possible values for t′, R′ and w′, one of these O(t′, R′, w′)
has size ℵ1 and we take in this case tn+1 = t′, Rn+1 = R′ and wn+1 = w′. The
set Wn+1 is defined as the set of all w ∈ Wn such that w|Rn+1 equals wn+1,
X ∈ w(tn+1) and Rn+1 is a D-closure of Rn in w.

✷

Proof of Theorem 3 (continued). Now, let us define the {X}, C-tree (v2, C2(v2))
chosen by Duplicator as

⋃
n wn. Notice that v2 does satisfy the Bchi property

since for each n, X ∈ v2(tn).

(3) Spoiler chooses a D-colored tree D2(v2).

(4) Duplicator’s answer is made as follows.

We note that there exists a finite subset R ⊆ T such that the {X}, C,D-
colored tree (v2, C2(v2), D2(v2)) is r,m-equivalent to its restriction to R.



So let n be an integer such that R ⊆ Rn−1 and let f be the minimal (w.r.t. the
usual order on partial functions) r,m-type constraint satisfied by the {X}, C,D-
colored tree above.

Duplicator chooses some (any) {X}, C-colored tree w ∈ Wn with w =
(v1, C1(v1)) (henceforth (v1|Rn) equals (v2|Rn)). An adequateD-coloringD1(v1)
can be chosen as follows.

By the definition of D-closure, since Rn is the D-closure of Rn−1 with respect
to the {X}, C-coloring (v1, C1(v1)), there exists a D-coloring D1(v1) of the bi-
nary tree that equals D2(v2) restricted to Rn and such that (v1, C1(v1), D1(v1))
is compatible with f .

Since (v1, C1(v1), D1(v1)) and (v2, C2(v2), D2(v2)) restricted to R, Rn−1 or
Rn are r,m-equivalent and since f has been chosen minimal w.r.t. the r-types
of nodes of these partially colored trees, the full {X}, C,D-colored trees

(v1, C1(v1), D1(v1)) and (v2, C1(v2), D1(v2)

are r,m-equivalent.
From this point, Hanf’s theorem applies showing that Duplicator wins.

✷

5 The case of the boolean closure of Σ2 and Π2

In order to show that some MS-definable formulas are not definable by any
Boolean combination of Π2 and Σ2 formulas, let us first prove a normal form
theorem for these boolean combinations.

Lemma 3. Any Boolean combination of Σ2 and Π2 formulas is equivalent to a
formula of the form π1 ∧ (σ1 ∨ (π2 ∧ (σ2 ∨ · · · ∨ (πn ∧ σn) · · ·))) with πis monadic
Π2 formulas and σis monadic Σ2 formulas.

Proof. Since both Σ2 and Π2 are closed (up to equivalence) under conjunction
and disjunction, Boolean combinations of Σ2 and Π2 formulas are equivalent to
finite conjunctions of formulas of the form π ∨ σ for σ ∈ Σ2 and π ∈ Π2. It
follows that it is sufficient to show that the set of formulas of the desired form is
closed (up to equivalence) under conjunction with formulas of the form (π ∨ σ).
We show this by induction over n.

For n = 0 nothing has to be proved. Assume it is true up to rank n and let
ϕn+1 = π1 ∧ (σ1 ∨ ϕn) be a formula of rank n+ 1 with ϕn a formula of rank n.

First, we may assume that |= (¬σ1) ⇒ π1 and |= ϕn ⇒ (¬σ1). Otherwise,
we can take σ1 ∨ ¬(π1) instead of σ1 and ϕn ∧ π1 ∧ ¬σ1 instead of ϕn obtaining
thus an equivalent formula with the same shape and the desired property.

Given then π ∈ Π2 and σ ∈ Σ2, one can check the formula π1 ∧ ((σ ∧ σ1) ∨
((π ∨ (¬σ1)) ∧ (σ1 ∨ (ϕn ∧ (π ∨ σ)))) is equivalent to ϕn+1 ∧ (π ∨ σ). Applying
the induction hypothesis over ϕn ∧ (π ∨ σ) concludes the induction step.

✷

Let us then define the predicate P (X,x) as the one stating that the binary
tree rooted in node x satisfies the Buchi property with respect to the set vari-
able X.



Proposition 3. For any node t ∈ T , the property P (X, t) is not definable by a
monadic Π2 formula.

Proof. By applying the argument of Theorem 3 to the binary tree rooted in t.
✷

Now let us fix two variablesX and Y and let us define the predicate A(X,Y, z)
as the least 2 monadic predicate equivalent to P (X, z.0)∨(P̄ (Y, z.0)∧A(X,Y, z.1)),
where P̄ (Y, z.0) denotes the negation of P (Y, z.0).

The property A(X,Y, ǫ) is definable in MSOL since it is definable in the
mu-calculus (see [7]). However :

Theorem 4. Property A(X,Y, ǫ) is not definable by any boolean combination of
Σ2 and Π2 formulas.

Proof. Let us assume the converse and let us show this leads to a contradiction.
Assume A(X,Y, ǫ) is equivalent to a Boolean combination ofΠ2 andΣ2 formulas.
Applying Lemma 3 assume such a formula is of the form π1 ∧ (σ1 ∨ (π2 ∧ (σ2 ∨
(· · ·πn ∧ (σn) · · ·)))).

Applying the fixpoint definition of A(X,Y, z) n times shows that A(X,Y, ǫ)
is equivalent to

P (X, 0) ∨ (P̄ (Y, 0) ∧ (· · ·P (X, 1n−1.0) ∨ (P̄ (Y, 1n−1.0) ∧A(X,Y, 1n) · · ·)))

denoting by ak, as usual, the word composed of k times the letter a.

Let then X1, . . . , Xn, X
′ (resp. Y1, . . . , Yn, Y

′) be some new fresh variables.
There exists a monadic Π1 formula ϕX over the free variables X, X1, . . . , Xn

and X ′ that checks whether X equals the disjoint union of the intersection of
X ′ with the subtree rooted in 1n and, for each k ∈ [1, n], the intersection of
Xk with the subtree rooted in 1k−1.0 (and similarly a formula ϕY for Y ). It
follows that there also exists, for each k ∈ [1, n], a Π2 formula π′

k (resp. the
Σ2 formula σ′

k) over the free variable X1, . . . , Xn, X
′ and Y1, . . . , Yn, Y

′

that checks formula πk (resp. formula σk) does hold with X and Y implicitly
defined by ϕX and ϕY . From these definitions it follows that the new formula
A′(X1, · · · , Xn, X

′, Y1, · · · , Yn, Y
′, ǫ) defined by

P (X1, 0) ∨ (P̄ (Y1, 0) ∧ (· · ·P (Xn, 1
n−1.0) ∨ (P̄ (Yn, 1

n−1.0) ∧A(X ′, Y ′, 1n)) · · ·))

is equivalent to the formula π′

1 ∧ (σ′

1 ∨ (π′

2 ∧ (σ′

2 ∨ (· · ·π′

n ∧ (σ′

n) · · ·)))).

The next step is to show, by induction over k, that there exists a
{X1, Y1, · · · , Xk, Yk}-colored tree vk, such that, for each i ∈ [1, k] :

vk |= ∀Xk+1, Yk+1, · · · , Xn, Yn, X
′, Y ′, (π′

i ∧ ¬σ′

i)

while
vk |= ¬P (Xi, 1

i−1.0) ∧ P̄ (Yi, 1
i−1.0)

2 or the greatest, it really does not matter in the following proof. . .



With k = n this leads to a contradiction since it says in particular that, for any
i ∈ [1, n], vn |= ∀X ′, Y ′, ϕ⇒ π′

i from which it follows that

vn |= ∀X ′, Y ′, π′

1 ∧ (σ′

1 ∨ (π′

2 ∧ (σ′

2 ∨ (· · ·π′

n ∧ (σ′

n) · · ·))))

hence, by the definition of the σ′

ks and π
′

ks,

vn |= ∀X ′, Y ′A′(X1, · · · , Xn, Y1, · · · , Yn, X
′, Y ′, ǫ)

Also, for each i ∈ [1, n], vn |= ¬P (Xi, 1
i−1.0) ∧ P̄ (Yi, 1

i−1.0) hence,

vn |= ∀X ′, Y ′A(X ′, Y ′, 1n)

This is obviously absurd since, given any {X ′, Y ′}-tree v′ that does not satisfy
A(X ′, Y ′, 1n) (and there are some) one has (vn, v

′) |= ¬A(X ′, Y ′, 1n) hence

vn |= ∃X ′, Y ′¬A(X ′, Y ′, 1n)

The proof by induction goes as follows. For k = 0 nothing has to be proved.
Assume the induction hypothesis for some k. In particular, the formulas
P (Xk+1, 1

k.0) ∨ (P̄ (Yk+1, 1
k.0) ∧ (· · ·
P (Xn, 1

n−1.0) ∨ (P̄ (Yn, 1
n−1.0) ∧A(X ′, Y ′, 1n) · · ·)))

and π′

k+1 ∧ (σ′

k+1 ∨ (· · ·π′

n ∧ (σ′

n) · · ·)) are equivalent over any
{X1, · · · , Xn, Y1, · · · , Yn, X

′, Y ′}-tree compatible with vk.
It follows that

vk |= ∀Xk+1, Yk+1, · · · , Xn, Yn, X
′, Y ′(P (Xk+1, 1

k.0) ⇒ π′

k+1)

That is

vk |= ∀Xk+1(P (Xk+1, 1
k.0) ⇒ (∀Yk+1, · · · , Xn, Yn, X

′, Y ′π′

k+1))

Since P (Xk+1, 1
k.0) is not definable by a monadic Π2 formula, the above impli-

cation is strict in the sense that there exists a {Xk+1}-tree v
′ such that

(vk, v
′) |= (∀Yk+1, · · · , Xn, Yn, X

′, Y ′π′

k+1) ∧ ¬P (Xk+1, 1
k.0)

In other words, for any colored tree w compatible with (vk, v
′) one has

P̄ (Yk+1, 1
k.0) ∧ (· · ·P (Xn, 1

n−1.0) ∨ (P̄ (Yn, 1
n−1.0) ∧A(X ′, Y, 1n) · · ·))

equivalent to σ′

k+1 ∨ (· · ·π′

n ∧ (σ′

n) · · ·). Again, in particular,

(vk, v
′) |= ∀Yk+1 · · · , Xn, Yn, X

′, Y ′(σ′

k+1 ⇒ P̄ (Yk+1, 1
k.0))

hence

(vk, v
′) |= ∀Yk+1(¬P̄ (Yk+1, 1

k.0) ⇒ (∀Xk+2, Yk+2, · · · , Xn, Yn, X
′, Y ′¬σ′

k+1)

Now, since ¬P̄ (Yk+1, 1
k.0) is not equivalent to a monadic Π2 formula, there

exists a {Yk}-tree v
′′ such that

(vk, v
′, v′′) |= P̄ (Yk+1, 1

k.0) ∧ (∀Xk+2, Yk+2, · · · , Xn, Yn, X
′, Y ′¬σ′

k+1)

Putting vk+1 = (vk, v
′, v′′) concludes the induction step.

✷



6 As a conclusion. . .

One may notice that all the material presented in last section can be generalized.
The following exercise is one possible formulation of such a generalization.
Exercise. Let C be the class of (even only finite) directed graphs with a source
such that all nodes are reachable from the source. For any integer n ≥ 2, if there
exists a monadic Σn definable property of graphs of C which is not monadic
Πn definable, then there also exists a monadic ∆n+1 graph property (that is a
property both definable by a monadic Σn+1 formula and Πn+1 formula) which is
not definable by a (finite) Boolean combination of monadic Πn and Σn formula.
Hint : think of directed comb-like constructions.
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