A CANDLE for a deeper in-vivo insight
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A new Collaborative Approach for eNhanced Denoising under
Low-light Excitation (CANDLE) is introduced for the processing
of 3D laser scanning multiphoton microscopy images. CANDLE is
designed to be robust for low signal-to-noise ratio (SNR)
conditions typically encountered when imaging deep in
scattering biological specimens. Based on an optimized non-local
means filter involving the comparison of filtered patches,
CANDLE locally adapts the amount of smoothing in order to deal
with the noise inhomogeneity inherent to laser scanning
fluorescence microscopy images. An extensive validation on
synthetic data, images acquired on microspheres and in vivo
images is presented. These experiments show that the CANDLE
filter obtained competitive results compared to a state-of-the-art
method and a locally adaptive optimized nonlocal means filter,
especially under low SNR conditions (PSNR<8dB). Finally, the
deeper imaging capabilities enabled by the proposed filter are
demonstrated on deep tissue in vivo images of neurons and fine
axonal processes in the Xenopus tadpole brain.

Introduction

In vivo fluorescence microscopy enables the direct observation of living cells within their
natural environment. Based on endogenous autofluorescence (Husson et al., 2007; Shibuki
et al., 2003) or exogenous fluorochomes such as green fluorescent protein, in vivo
fluorescence microscopy can provide 3D information on the structure and the various



functions of the cell at sub-cellular resolution. Since its introduction in biology, fluorescence
microscopy has enabled the elucidation of numerous biological phenomena. However,
despite its many advantages, the utility of fluorescence microscopy for imaging living
material is limited by the number of photons exciting the fluorophore of interest and the
efficiency in collecting emitted photons. Although the number of fluorescent emitted
photons increases linearly in proportion to excitation intensity, excessive fluorophore
excitation rapidly leads to cell phototoxicity and photobleaching (Carlton et al., 2010). This
problem is compounded for deep tissue imaging in biological specimens, as the scattering of
ballistic photons increases exponentially as a function of depth, demanding higher
excitation intensities to obtain usable fluorescence signal from deep structures. Although
multiphoton microscopy enables deeper imaging and reduced phototoxicity compared to
confocal microscopy, these images are still practically limited by scattering to less than 1
mm in depth (Kobat et al., 2009; Theer and Denk, 2006). A low number of photons results
in a drastic decrease of the signal-to-noise ratio (SNR) in the obtained image. The low SNR
of fluorescence microscopy images of living specimens is the main limitation to reducing
exposure time to preserve the health of the specimen, as well as the main factor preventing
in vivo imaging at greater depths. Improvement of the SNR under low-light conditions
therefore has great potential to alleviate both these constraints. In this study, we propose a
new denoising filter dedicated to 3D laser scanning multiphoton microscopy imaging under
limited-light excitation and show how this filter can help surpass current limits of in vivo
imaging in scattering tissues.

Denoising filters aim to improve the SNR of images by removing the noise component while
preserving the structural information. Image restoration is a complex problem that has
been intensively investigated. In fact, many methods have been proposed to address this
open problem (see (Buades et al., 2005) for a review of restoration methods). Recently, a
new family of filters has received attention due to its simplicity and high denoising
performance. First introduced by Buades and co-workers in 2005, the non-local means
(NLM) filter uses pattern redundancy present in images to achieve efficient image denoising
by adaptively averaging different occurrences of similar noisy patches (Buades et al., 2005).
Since its introduction, this patch-based filter has been intensively applied leading to
significant improvements in computer vision (Dabov et al.,, 2007; Kervrann and Boulanger,
2008; Mairal et al., 2008), medical imaging (Coupe et al., 2009; Coupe et al., 2008; Manjon et
al., 2010) and biological imaging (Boulanger et al., 2010; Wei and Yin, 2010; Yang et al,,
2010).

In fluorescence microscopy imaging, noise arises from several sources such as thermal
noise, photon shot noise, biological background or read-out noise, and non-uniform
fluorophore noise (Boulanger et al,, 2010; Luisier et al., 2010a; Santamaria-Pang et al,,
2008). In such low-light photon-limited images, the random component of this mixture has
been modelled by a Gaussian noise locally stationary (Broser et al., 2005; Chan et al., 1993),
by Poisson noise (Fudenberg and Paninski, 2009; Kervrann and Trubuil, 2004;
Lefkimmiatis et al., 2009; Nowak and Baraniuk, 1999; Rodrigues and Sanches, 2009; Willett
and Nowak, 2007) and more recently as a combination of Poisson and Gaussian noise



(Boulanger et al., 2010; Luisier et al., 2010a). In this last model, the Poisson component is
used to model the limited number of photons while the additive white Gaussian noise
component is incorporated to take into account the electronic noise of the detector. The
importance of each source varies according to the SNR of the image (Luisier et al., 2010a).
For high SNR images, the electronic noise is preponderant; while for low SNR images, the
Poisson noise due to photon-detection becomes the main source. The removal of such noise
is thus a challenging task with open questions about not only the noise model to use but
also on the denoising strategy that should be adopted. Indeed, in a fashion similar to the
denoising of natural images, the denoising approaches used in fluorescence microscopy
have followed different paradigms such as Partial Differential Equation (PDE)-based
techniques (Broser et al., 2005), wavelet-based methods (Delpretti et al., 2008; Dima et al,,
2002; Lefkimmiatis et al., 2009; Luisier et al., 2010a; Nowak and Baraniuk, 1999;
Santamaria-Pang et al., 2008; Willett and Nowak, 2007; Zhang et al., 2008) and more
recently patch-based approaches (Boulanger et al., 2010; de Deckerk et al., 2009; Deledalle
et al.,, 2009; Kervrann and Trubuil, 2004; Yang et al., 2010).

In this study, we present a new Collaborative Approach for eNhanced Denoising under
Low-light Excitation (CANDLE), optimal for deep in vivo 3D multiphoton microscopy. Our
method is based on a fast pre-filtering of the image before applying a locally-adaptive
optimized NLM filter (Coupe et al.,, 2008). The proposed collaborative approach takes
advantage of the robust and fast filtering behaviour of the median filter and the high
denoising performance of the NLM filter. Moreover, this approach has the advantage of
dealing with the different sources of noise typically present in fluorescence microscopy
over a large range of SNR conditions, being particular efficient for very low SNR typically
found in deep tissue multiphoton imaging. We present an extensive validation on synthetic,
fluorescent bead images and in vivo images and compare our method to the recently
published Puredenoise filter and a locally adaptive nonlocal means filter. Denoising results
on in vivo neuron images are used to show the possibility of deeper imaging achieved by
our method. Finally, we discuss further improvements and potential impact in biological
imaging of this new approach.

Material and Methods

Proposed method: CANDLE

In the photon-limited image denoising literature, the classical solution consists of
converting highly signal-dependent Poisson noise into locally-stationary noise considered
as pseudo-Gaussian (Makitalo and Foi, 2011; Zhang et al., 2008). To achieve this conversion,
several variance-stabilization transforms (VST) have been proposed in the past (Anscombe,
1948; Fryzlewicz and Nason, 2004; Starck et al., 1998; Zhang et al., 2008). Once the problem
of Poisson denoising is transformed into a classical Gaussian denoising problem by applying
a forward VST, a large variety of standard approaches can be used. In the case of very low
SNR images, the two major problems are: VST robustness in low count situations (Starck et
al., 1998) and the efficacy of the selected denoising filter under very noisy conditions. In the



proposed method, an optimal VST and a NLM-based filter are combined to collaborate in
the denoising process.

- VST: The most common and simple VST is the Anscombe transform (AT) for Poisson
noise (Anscombe, 1948) and its generalized version (GAT) for Poisson-Gaussian
noise (Murtagh et al., 1995; Starck et al., 1998). Despite the many advantages of the
AT (e.g, simplicity, parameter-free and low complexity), it has been shown that this
kind of transform can be unstable under low-count situations (i.e., usually less than
10 photons on average) (Lefkimmiatis et al., 2009; Luisier et al., 2010b; Starck et al.,
1998; Zhang et al., 2008), potentially providing a biased estimation. To overcome
this limitation, more complex approaches have been proposed such as a multiscale
transform (de Deckerk et al., 2009; Fryzlewicz and Nason, 2004; Zhang et al., 2008)
or GAT requiring automatic estimation of parameters (Boulanger et al, 2010;
Delpretti et al., 2008). Recently, a study has demonstrated that the limitation to
using the AT under photon-limited condition is applicable to the backward (i.e.,
inverse) transform but not to the forward one (Makitalo and Foi, 2011). Based on
this observation, a new optimized inverse AT has been proposed. In our method, we
use classical AT and the optimal inverse AT as proposed by (Makitalo and Foi, 2011)
to tackle the intensity bias introduced by the inverse AT under very photon-limited
conditions (even for less than 1 photon on average). In this way, we avoid any
estimation of parameters what is a particularly difficult task in very low SNR
conditions.

- Denoising filter: Recently, patch-based denoising filters have been intensively
investigated due to their simplicity and their high denoising performance over a
large range of SNRs. Numerous types of improvements over the original NLM filter
(Buades et al., 2005) have been proposed in the last years and a review of them can
be found in (Buades et al.,, 2010). In our paper, we present an adaptation of the 3D
optimized non-local means (ONLM) filter (Coupe et al., 2008) in order to address the
noise present in fluorescence microscopy images and to make it more robust to the
low SNR conditions often encountered when imaging deep in biological specimens
with a laser scanning fluorescence microscope. To achieve these goals, we propose
to pre-filter the original image to facilitate the patch comparison required by the
NLM filter. Then, noisy samples are aggregated according to the similarity of their
filtered neighbourhoods.

Overview

Figure 1 shows the overall workflow of the proposed method. First, a copy of the noisy
image is pre-filtered using a median filter. Median filtering was chosen for its robustness
(Arce, 2005), its low computational burden and because it works directly on the Poisson
noise, before VST. In this fashion, the instability of VST under low SNR conditions can be
sidestepped. The original noisy image and the median filtered image are then transformed
with the AT (Anscombe, 1948) which is fast, simple and does not require any parameter
estimation. Afterwards, local noise levels are estimated within the stabilized noisy image by



using the Median Absolute Deviation (MAD) estimator in the wavelet transformed domain
(Donoho, 1995). This approach is widely used for Gaussian noise estimation due to its
robustness. The core of the proposed approach is then the NLM filtering step. In the
proposed method, we adapted our ONLM filter, originally proposed for 3D MRI restoration
(Coupe et al., 2008), to multiphoton imaging.
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Figure 1: Overall workflow of the proposed method.

The first adaptation of the ONLM is the estimation of patch similarity over the median
filtered image, instead of using the noisy input image. By reducing the noise, we provide a
more robust patch comparison that enables a better restoration. It is important to note that
the weights estimated from the median filtered image are ultimately used to average the
noisy input samples. The median filtered image is not used in other steps. The second
adaptation of the ONLM is to use the local noise level estimated by using the MAD estimator
to deal with inaccuracies of the AT that do not fully handle the non-stationary nature of
noise in multiphoton images. The estimated local level of noise is used as the smoothing
parameter of the ONLM for each voxel and thus optimally controls the amount of denoising
over the image.

Previously, we shown that the ONLM filter yields superior results compared to the classical
NLM filter while drastically reducing computational time, which justifies its utilization.
Finally, an optimal inverse Anscombe transform (OVST) (Makitalo and Foi, 2011) is used to
obtain the final denoised image without intensity bias under very low SNR conditions. The
proposed collaborative approach is designed to take advantage of the simplicity and the
efficiency of the involved components.



Median pre-filtering

The first step of our collaborative approach is to apply a median filter to the noisy image.
Despite the recent proliferation of other denoising methods, the median filter is still the
most used filter within the biological community due to its robustness and simplicity. We
used a 3x3x3 neighbourhood as is commonly done in the literature (Kobat et al., 2009; Rice
et al, 2010). This median filtered image is used exclusively for performing the patch
comparison in a more robust manner. The weights estimated from this patch comparison
on the median filtered image will by used to average the original noisy samples.

Anscombe and optimal inverse Anscombe transforms

Noise in fluorescence microscopy derives from several sources making the choice of the
noise model difficult. At present, the best model to adopt for multiphoton imaging is still an
open question. However, in very low SNR situations, the Poisson noise component due to
the stochastic nature of photon detection is the most important (Luisier et al., 2010a).
Therefore, we consider the VST based on a Poisson noise model.

By considering the observed values z; as random and independent Poisson variable of
underlying intensities y;, we can write:

Zi = Yi
Plely)=" (1)

it

The main idea of using VST is to transform the signal-dependent noise into quasi-stationary
Gaussian noise by applying a square-root-based transform. As widely done in Poisson
denoising literature, we used the AT defined as follows (Anscombe, 1948):

[ 3
T (z2)=2 Z+§. (2)

A denoising filter dedicated to Gaussian noise can be then applied on Ta(z) providing an

estimation d of E(Ta (z)! y) (i.e.; the expectation of the desired stabilized value). Due to the

nonlinearity of the square-root, the direct inverse transform of the denoised values yields a
biased estimation. Therefore, in (Makitalo and Foi, 2011), the authors proposed to build the

exact unbiased inverse of the Anscombe transform T, by imposing the mapping of the
expectations: T :E(Ta (z)| y)l—) E(z | y). Practically, a correspondence table is built using
the noise model under consideration. As in (Makitalo and Foi, 2011), we used the following
mapping:



E(T,(2)1y) =2T(1/z+§- yzze'—y )dz. (5)

This approach can be easily extended to other noise models. In addition, it is parameter-
free and fast since it uses a pre-computed correspondence table.

Wavelet-based local noise estimation

The optimal inversion of the AT does not solve the problem of its variance instability within
the image. In fact, the AT only asymptotically provides an additive Gaussian noise (Makitalo
and Foi, 2011). To address this issue, we propose to locally adapt our denoising of the
stabilized image using a robust wavelet-based estimation (Donoho, 1995) of the local noise
variance. The wavelet transformation is usually used to obtain a spatial-frequency
representation of images. The highest sub-band HHH is essentially composed of coefficients
that correspond to the noise, permitting the estimation of noise variance. By using the
Median Absolute Deviation (MAD) estimator, the global standard deviation of noise is
computed as follows:

. median(| c,
5, - median( <, ©)
0.6745
where c; are the wavelet coefficients of the HHH sub-band. Simultaneously, a local noise
estimation is also computed using a restricted area, thus providing an estimation &, for

each voxel. The radius of this restricted area isr, = 2r,,, where ry is the radius of the search

volume  used during the NLM step. Finally, a map of local noise levels is built by assigning
6, = max(6,,0,) (see Fig. 2). This approach avoids problems in the background where the

stabilized noise can be far from Gaussian noise, resulting in an inaccurate noise estimation.

The local map of &, will be used in the weighting function as smoothing parameter. In this

way, the amount of denoising is locally adjusted in order to handle the imperfections of the
AT transform. In fact, it has been shown that the optimal smoothing parameter of the NLM
filter is related to the noise variance (Buades et al., 2005; Coupe et al., 2008). In case of
stationary Gaussian noise, a global noise estimation can be used. In our case, we assume
that after the AT transform, the noise can be considered as Gaussian and stationary only
locally. Therefore, by using the local MAD estimation as local smoothing parameter, we
ensure an optimal amount of denoising over all of the image.



Locally adaptive and optimized non-local means filter

Based on the self-similarity properties of the images, the NLM filter is a simple but highly
effective method to remove noise while minimally affecting the fine structure of the image.
This filter benefits from the high level of pattern redundancy present in the images to
average similar realizations of the noisy signal. The NLM filter considers that voxels with
similar neighborhoods will tend to have similar original values. Therefore, the NLM
performs a weighted average of all the voxels x; of the image (or in a restricted search

volume for practical reasons to reduce the computational burden), assigning a weight to
each of them by comparing their surrounding neighborhoods:

E Wi Xj wnf
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where Q represents the search volume of radius ry, the weights w,  represent the
similarity between any two noisy 3D patches N, and N, centered around pixels x; and x;,
and h? is a parameter controlling to strength of the filter, usually related to noise variance
(such as h* = Bo’). The patch size is defined as |N| = (2 xT,+ 1)3V0xels where r, is the radius

of the patch (i.e. a small cube in 3D). Finally,

||2 represents the L2-norm computed between
both patches. In the classic formulation, x;is the observed value considered as corrupted by

additive white Gaussian noise and y, is the estimation of the noise-free intensity.

In our collaborative approach, the weights are based on the comparison of the patches
]Vl. and N , extracted from the stabilized prefiltered images (see Fig. 2) and the weighted
average is performed over the stabilized noisy values Ta(z). Finally, the smoothing
parameter is locally adapted by using 4’ = fo:. Therefore, the proposed approach can be
written as follows:

d=Fe —— with W, 6=e " . (8)

The patch size, related to ry, reflects the scale of the object to denoise. During experiments,
rp was set to 2. This parameter can be adjusted according to the properties of the specimen.
The search volume size, related to ry, is limited for computational reasons and was set to 3
during all the experiments. Finally, the value of 3 is used to rescale the L2-norm computed



over the filtered image to the noise level estimated on the original image. During our
experiments, this value was empirically set to 0.4, providing a good trade-off between
visual assessment and denoising performance in terms of peak signal-to-noise ration
(PSNR) and correlation. This parameter can be calibrated by the user according to image
modality or denoising purpose (e.g., visualization, segmentation,...). The impact of these
parameters on denoising performance is studied on in vivo image in the results section
below.

As proposed in Coupe et al. (2008), the NLM filter used is optimized by performing a pre-
selection of most similar patches in a blockwise implementation. These optimizations
accelerate the process and improve the denoising performance (see original paper for
details). Finally, the denoised image is obtained by using the optimal inverse transform
(Makitalo and Foi, 2011) as described previously:

9, =T)(d) (9)

CANDLE illuminated by an example

In order to provide an intuitive understanding of our method, Fig. 2 presents the main steps
on a real multiphoton image of a glial cell in a living Xenopus brain. This figure shows how

the use of the median pre-filtering step facilitates the patch comparison between N, and

1

~

N, . In addition, thanks to this proposed pre-filtering, the noise model assumed during

patch-pair comparison is less critical since the L2-norm is applied on enhanced structures,
slightly corrupted by residual noise. This fact enables our method to be robust to any
discrepancy between the chosen noise model and the real one. As shown on the map of
weights w, ; in Fig 2, the most similar patches are accurately found within the defined

search volume Q.
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Figure 2 : CANDLE illuminated by an example. To obtain the denoised value cAli atlocation x,,
the weights w, ,computed on prefiltered image are used to aggregate the stabilized noisy

samples T,(z,)by taking into account the local noise level &..

Moreover, this figure highlights the importance of averaging the noisy samples Ta(z)

instead of averaging the filtered samples, since the median filter tends to slightly remove
edge information and may affect the image contrast. In our method, because the
aggregation for averaging is performed on unaltered samples, there is no degradation of
image quality as would occur if the median filtered sampled were used during weighted
average (see Eq. 8). This aspect is further examined in an in vivo experiment where
collaborative and traditional sequential approaches are compared (see Fig. 12). Finally, this
example shows that even after VST, the noise level over the image is not constant. The local
adaptation is thus an important aspect for multiphoton image denoising.



Implementation

The proposed method has been implemented by using multithreaded C-MEX and MATLAB
code. The 3D wavelet transform used is based on a classical discrete wavelet transform
(http://taco.poly.edu/WaveletSoftware/standard3D.html). The optimal inverse Anscombe
transform has been re-implemented following the code made freely available by the
authors ( http://www.cs.tut.fi/~foi/invansc/). Finally, a freely available implementation of
CANDLE is provded as a MATLAB application dedicated to 3D tiff stack denoising with a
user interface (the url will be communicated after publication acceptance). In order to
reduce the computation time, an optional histogram-based background detection has been
included in the CANDLE software to fill the background with values obtained by a median
filter. In this paper, since the background detection may introduce inaccuracies, the quality
metrics reported are based on the full processing of the 3D volumes without this option.
The experiments were conducted using an Intel Core 2 Quad Q6600 processor at 2.4 GHz
with 4 GB of RAM. The computation time required for a stack of 67 slices of 512x512 pixels
(i.e., the full image of glial cell used in Fig. 2) is around 180s (7s for median filter, 15s for
local noise estimation and 160s for NLM denoising) with r, = 2 and rs = 3. By using the fast
background processing option, this time is reduced to 50s (7s for median filter, 15s for local
noise estimation and 30s for NLM denoising of the object). In the CANDLE software, the
default values are rp, = 1 and ry, = 3; these values provide a slightly less optimal denoising
result but reduce the computational time to less than 30s.

Validation Framework

* Compared filters

In the experiments presented, our method was compared with a version of CANDLE
without prefiltering and a recently published state-of-the-art method Puredenoise
(Luisier et al., 2010a).

1. OVST-LAONLM: The first method is a locally adapted optimized non-local means
denoising (LAONLM) filter with the described optimal variance stabilization
(OVST). This OVST-LAONLM filter is similar to CANDLE but does not involve the
proposed pre-filtering. In this case, the theoretical optimal value for 8 is known
to be 2 (Buades et al, 2005; Coupe et al., 2008) and was fixed for all the
experiments. This type of patch-based method obtained excellent results and
outperformed classical approaches in recent reports (Boulanger et al.,, 2010;
Makitalo and Foi, 2011; Wei and Yin, 2010).



2. PureDenoise: The second method is the PureDenoise filter proposed by (Luisier
et al., 2010a) based on a mixed Poisson-Gaussian noise model. This optimized
PURELET-based filter has demonstrated very high denoising performance
compared to a large variety of wavelet-based methods (Luisier et al., 2010a).
Moreover, this filter has been proposed for fluorescence images and its Image]
plug-in for 3D stacks is freely available
(http://bigwww.epfl.ch/algorithms/denoise/). During the experiments, the
fully-automatic mode of the plug-in was used.

Datasets
* Synthetic dataset

First, our method was validated with the synthetic dataset proposed by (Luisier et
al., 2010a) (http://bigwww.epfl.ch/algorithms/denoise/dataset.zip). The dataset is
composed of 10 slices of 400x400 pixels. In order to perform a fair comparison with
PureDenoise which is dedicated to Poisson-Gaussian noise, we first compare the
performance of the three filters on synthetic Poisson-Gaussian noise; while CANDLE
and OVST-LAONLM are built on a Poisson noise model. This experiment also enabled
us to study the robustness of our method in the face of a mixed Poisson-Gaussian
noise model. Several levels of noise were simulated by decreasing the intensity
range of the downloaded noise-free image. As is usually done in the literature
(Lefkimmiatis et al., 2009; Makitalo and Foi, 2011), the intensity range of the original
image is first rescaled (i.e., multiplied by a factor < 1) in order to build the noise-free
image used as ground truth for a given SNR. Smaller maximum intensity peaks lead
to reduced SNR. Then, the ground truth is corrupted by Poisson noise and additive
Gaussian noise. The standard deviation of the Gaussian noise was fixed at 5% of the
highest intensity value of the ground truth/ . . Finally, the denoised images are

compared with the noise-free ground truth (at the same intensity range). This
operation is repeated with decreasing multiplication factors, resulting in noisy
images with peak signal-to-noise ratios (PSNR) varying from 26dB to 6dB.

* Imaging of fluorescent beads

Second, two-photon microscopy was performed using an Olympus FV300 confocal
scan head mounted on a BX61WI microscope custom-converted for multiphoton
imaging with photomultiplier tubes (PMT) positioned adjacent to the fluorescence
filter turret for non-descanned detection. Excitation was produced using a MaiTai-
BB Ti:sapphire femtosecond pulsed laser (A=910nm). An Olympus LUMFL 60x
water-immersion objective (1.1 NA) was used. Images were collected on a PC using
Fluoview software (version 5.0). The high-voltage power supply of the PMT detector
was set to 750V. Laser power was calibrated at the stage and subsequently
measured throughout the experiment using a DET110 - High-Speed Silicon Detector
(Thorlabs) in conjunction with Windaq DATAQ Instruments software. FocalCheck™



Fluorescent Microspheres (Invitrogen) with 15 pm diameter were imaged at varying
laser excitation powers (0.3, 0.5, 1, 1.5, 2, 2.5, 3 mW). In this way, images with a
range of SNR levels could be collected. To build the reference images, 40 acquisitions
were performed at 3 mW intensity for averaging. These acquisitions were then
averaged in order to get an effectively noise-free reference image (see Fig. 5).

* Invivo datasets with varying power

In vivo two-photon imaging of aspiny Xenopus laevis tectal neurons and olfactory
neurons with dendritic spines was performed on the same two-photon microscope
and the same settings described above (see dataset acquired from fluorescent
beads) but at different laser powers (3, 5, 7, 9 mW), PMT setting (800V) and zoom
1.5). Animals were transfected by electroporation to express farnesylated EGFP
(EGFP-F). The aspiny Xenopus leavis tectal neurons data set was composed of 19
optical sections with 512x512 pixels (see Fig. 8). In addition, in order to build the
reference image, 20 acquisitions were acquired at 9 mW. These 20 acquisitions were
then used to generate a single low-noise image using two different methods: by
averaging or by taking the median of all images. During the in vivo imaging, some
motion inevitably occurred between image acquisitions. A registration approach
based on cross-correlation similarity measure was thus used to estimate the shift
between images. A pure translational realignment was then applied without using
interpolation in order to not affect the nature of the noise. All images used for the
reference image construction as well as the images collected at different powers
were corrected in this manner (see Fig 8). For the two-photon imaging of spiny
neurons of the olfactory bulb we transfected neurons with EGFP by bulk
electroporation in the olfactory bulb. The following two-photon settings were used
for acquisition: laser power (3 mW), PMT settings (700 V), A (910 nm), zoom 8x,
lum step size in z-direction. Images were acquired using an Olympus LUMFL 60x
water-immersion objective (1.1 NA).

* Deep acquisition in vivo datasets

Using the same two-photon microscope, we imaged through an entire Xenopus laevis
brain at the level of the optic tectum. Tectal neurons were labelled with BODIPY® TR
Methyl Ester (Invitrogen) by pressure injection of 5mM solution (in DMSO) into the
ventricle. In addition, the retinal ganglion cells were bulk transfected by
electroporation in the eye to express EGFP throughout their axonal processes. The
following two-photon settings were used for acquisition: laser power (49 mW), PMT
settings (channel 1[bodipy]: 560V, channel 2[EGFP]: 760V), A 850 nm, zoom (1), 4
um step size in z-dimension. . Images were acquired using an Olympus UPlanFL 20x
air objective (0.5 NA).



* Quality metrics

The first quality metric used in this paper is the usual PSNR. This metric is one of the
most commonly used quality measures in the denoising literature and is computed
as follows:

72
PSNR=101lo max_ 10
glO(MSE) (10)

where MSE is the mean squared error computed between the noise-free and the
denoised image. The PSNR can be easily used on synthetic images where the noise-
free image is known. However, this measure is sensitive to intensity shift and thus
cannot be used during experiments on real images acquired at different powers
where the intensity range depends on the power. The comparison between our
reference image, used as the gold standard, and the denoised image at another
powers was quantified by using the well-known Coefficient of Correlation (CC) as a
measure of denoising quality.

Results

Synthetic images

In this experiment, we investigated the denoising performance of filters compared on
synthetic images corrupted by different levels of Poisson-Gaussian noise. This experiment
provides an initial validation of the proposed CANDLE filter under perfectly controlled
conditions. Figures 3 and 4 show the results of application of each of the filters to synthetic
data, where Fig. 3 shows the PSNR and the correlation coefficient graphs, and Fig. 4 shows
the synthetic images. As shown in Fig. 3, CANDLE yielded better results than OVST-LAONLM
and PureDenoise in all cases. For low levels of noise (e.g., PSNR of the noisy image at 26dB),
all methods provide high denoising quality. For medium levels of noise (e.g., PSNR of noisy
image around 16dB), the NLM-based approaches provided better results. Figure 4 (Middle
row) shows that CANDLE and OVST-LAONLM efficiently removed the noise component,
although OVST-LAONLM tended to slightly over-smooth the image. At this level of noise,
PureDenoise did not fully remove the noise within the object.



Synthetic image corrupted with Poisson-Gaussian noise
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Figure 3: Quantitative comparison of the CANDLE, OVST-LAONLM and PureDenoise filters
on synthetic images corrupted by Poisson-Gaussian noise. Left: PSNR in dB of the denoised
image according to PSNR of the noisy image. Right: Correlation between noise-free and the

denoised image according to PSNR of the noisy image.

For very high levels of noise (PSNR of the noisy image < 8dB), CANDLE provided a
significantly better denoising result than the two other filters, especially compared to
OVST-LAONLM which obtained the worst results. This is evident in the images of the
bottom row of Fig. 4. When noise is extremely pronounced, the classical NLM filter
considers noise in the background as structure, since the dark, flat area corrupted by shot
noise is treated as a repetitive pattern. The amount of residual background noise
drastically impacts the quality metrics. At this high level of noise, the advantage of pre-
filtering the image as proposed in CANDLE becomes evident. Indeed, pre-filtering enables
comparison of quasi-noise-free background patterns that results in efficient background
denoising. With the PureDenoise filter, while the background noise was efficiently removed,
the structural integrity of the object was not correctly restored and a significant amount of
noise remained within the object.



Ground truth

Noisy image CANDLE OVST-LAONLM PureDenoise

PSNR =16.53 dB PSNR = 34.12 dB PSNR =32.96 dB PSNR =29.92 dB

Noisy image CANDLE OVST-LAONLM PureDenoise

PSNR =5.96 dB PSNR = 28.67 dB PSNR=16.11dB PSNR = 24.72 dB

Figure 4: Denoising results obtained by the CANDLE, OVST-LAONLM and PureDenoise
filters in experiments on synthetic images. Top: the noise-free synthetic image used
during the experiment. Middle: noisy image at 16.5dB and the denoised images obtained
by the methods compared. Bottom: noisy image at 6 dB (highest level of noise) and the
denoised images obtained by the methods compared.

Imaging of fluorescent beads

As noted in the introduction, the nature of noise in multiphoton images is difficult to model
due to its various possible sources. Therefore, it is crucial to validate the proposed filter
under realistic conditions in order to evaluate the robustness of the filters on real noise. To
link the synthetic experiment (above) and the in vivo experiment (below), ), we acquired a
dataset by imaging microspheres with a very precise size of 15 wm. This experiment has
been designed to investigate the denoising performance of the filters on real noise while
controlling for other artifacts such as motion. Figures 5, 6 and 7 show the results of
application of the filters to the images of the 15 pm diameter microsphere. Figure 5 shows
the reference image obtained by averaging 40 acquisitions of the same field of view at the



maximum power (3mW). This image was used as a high SNR reference for correlation
when comparing the different denoised images. The intensity profile on the right of Fig. 5
demonstrates the very low noise level in the reference image, justifying its use as a
correlation target.

Reference at 3 mW (40 repetitions)
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Figure 5: Left: the reference image obtained by averaging 40 acquisitions of the
microsphere(15 um diameter) at 3mW. Right: The intensity profile along the red line in the
image on the left.

Figure 6 presents the correlation coefficients obtained on the filtered in vitro microsphere
images (see Fig. 7) compared to the reference image. Similar to the experiment with
synthetic data, at high excitation power (low level of noise), all the methods provided very
good denoising results (see graph Fig. 6 and images top row of Fig. 7). Moreover, for very
low power (0.3 mW and 0.5 mW), the residual background noise in the images denoised by
the OVST-LAONLM filter reduced its performance as in the synthetic experiment. At low
power, the PureDenoise filter only slightly reduced the background noise and resulted in a
denoised image that is very similar to the original one (see bottom of Fig. 7). This is in
contrast to the results with the synthetic data.
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Figure 6: Quantitative comparison of the CANDLE, OVST-LAONLM and PureDenoise filters
on images of the microsphere. Correlation between the reference image at 3mW and the
denoised image according to excitation power in mW.
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Flgure 7 Den01smg results obtalned by the CANDLE OVST LAONLM and PureDen01se
filters on images of a microshpere (15 um diameter).. Top: noisy image at high power
(2.5mW) and the denoised images obtained by the methods compared. The values of the
red lines are plot for each filter and the corresponding correlation coefficients are given.
Bottom: Similar results obtained at very low power (0.3mW). For denoised images, contrast
was adjusted manually to minimize the appearance of residual spike noise to avoid
saturation in the figure. For intensity profiles, identical axis range is used for all the
methods and the noisy image. Saturation of the highest noise peaks was performed to
display the signal of interest at an adapted scale.




In vivo images

* Neuron images

In order to complete the validation of the proposed CANDLE filter, an experiment on in vivo
multiphoton images is presented. First, the three filters are compared to laser scanning
multiphoton images containing real noise as well as artifacts occurring during in vivo image
acquisition. Second, the influence of the filter parameters is studied for acquisition at 9mW
in terms of PSNR and correlation coefficient. Finally, collaborative and sequential
approaches are compared for acquisition at 5mW. Figure 8 shows the maximum intensity
projection of a Xenopus laevis tectal neuron used as reference stack created by averaging 20
acquisitions acquired at 9 mW after motion correction, the central slice of the reference
stack, and the right panel shows an intensity profile through the reference image that
demonstrates the low level of noise in the background of this reference dataset.

Maximum intensity projection
- .

Central slice Intensity profile of the red line

Figure 8: The image stack of xenopus laevis tectal neurons used for the in-vivo experiment.
Left: Maximum intensity projection along the z-axis through 19 slices of the reference stack
obtained by averaging 20 registered acquisitions at 9mW. Middle: the central slice of the
reference stack. Right: The intensity profile of the red line in the reference image.

Methods comparison: Figure 9 presents the correlation coefficients obtained on the in vivo
images between the denoised images and the reference image. Two strategies have been
investigated to construct the reference image. First, the 20 acquisitions are classically
averaged and thus the reference image is the mean of the 20 registered images. Second, in
order to avoid bias due to the average-based principle of NLM filters, the median image of
the 20 registered acquisitions is also used as reference image. As in the data aquired by
imaging microspheres and synthetic experiments, for highest SNR images all the methods
provided very good denoising results (see top of Fig. 10). For lowest SNR images, the in
vivo results are similar to the microsphere data results where, at the lowest power (3mW),
the OVST-LAONLM and the PureDenoise filters retained an important amount of residual
noise (see bottom of Fig. 10). This in vivo experiment confirms the results obtained with the
from imagining microspheres experiment and highlights the competitive performance of
the CANDLE filter, even under the lowest studied SNR conditions. this result holds
regardless of the strategy used for reference image construction.
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Figure 9: Quantitative comparison of the CANDLE, OVST-LAONLM and PureDenoise filters
on in vivo images of xenopus laevis tectal neurons. Correlation between the reference image
at 9mW build on 20 acquisitions and the individual denoised images according to
acquisition power from 3mW to 9mW. Two different strategies to construct the reference
image are compared. Left: The 20 acquisitions are classically averaged; the reference image
is the mean of the 20 images. Right: The median of the 20 acquisitions is used as reference
image.

Influence of parameters: Figure 11 shows the influence of filter parameters on denoising
quality in term of PSNR and coefficient of correlation. In this experiment, bigger patches
(i.e., rp=2) tended to provide slightly better results while larger search volume marginally
decreased the measured quality. The optimal value of § was estimated around 1 in terms of
PSNR and CC. However, we used 0.4 during all our experiments since this value provided
better tradeoffs between visual assessment and denoising quality measured by PSNR and
CC. The optimal amount of denoising remains a difficult question (Wang et al., 2004). In our
opinion, the optimal value (3 is mainly driven by the particular application. For visual
inspection, lower values could be preferable while for automatic post-processing such as
segmentation or registration higher value could be used.

Collaborative vs. sequential approach: Figure 12 presents a comparison of denoising
performance provided by the proposed collaborative approach used in CANDLE and the

traditional sequential strategy where the median prefiltered image is used as input of
OVST-LAONLM filter. First, visual inspection shows that the contrast when using the
sequential approach (OVST-LAONLM on median prefiltered image) is lower than the result
produced by CANDLE. Moreover, the denoising quality produced by the sequential
approach is less efficient than the collaborative approach as assessed by coefficients of
correlation (CC). Finally, the finest image features such as dendritic structures are removed
during denoising in the sequential approach. This comparison shows the advantage of the
collaborative approach and emphasizes that the aggregation of unaltered samples through
the NLM filter provides a better result than using prefiltered samples for the weighted
average.



Noisy at 9.0 mW

CANDLE at9.0 mW OVST-LAONLM at 9.0 mW PureDenoise at 9.0 mW

-

Correlation: 0.71 Correlation: 0.86 Correlation: 0.86 Correlation: 0.84

- J - - -
i
. e 0 0
» e - o
I

© B w0 m m = % e e e

Noisy at 3.0 mW

OVST-LAONLM at 3.0 mW

Correlation: 0.31 Correlation: 0.71 Correlation: 0.49 Correlation: 0.58

¢ 8 ¢ 5 F 8 B 3 ¥ 2 8
LI 1 i—ﬂ—ﬁ [ S M 33 )
$ 0 889 00N
$ 0 8 83 000

o % W e me me W we e e 6 % W e me me W W e e 6 % W e me me W W e e 6 % W e me me W W e e

Figure 10: Denoising results obtained by the CANDLE, OVST-LAONLM and PureDenoise
filters applied to the in vivo experiments on Xenopus laevis tectal neurons. Top (from left to
right): noisy single image at highest power (9mW) and the corresponding denoised images
obtained by the three methods compared. The correlation coefficient between each image
and the mean reference image is provided just below. Second row: Intensity profiles for the

horizontal line for the corresponding image in the first row. Third & fourth row: similar

results obtained for images acquired at the lowest power (3mW). For denoised images,
contrast was adjusted manually to minimize the appearance of residual spike noise to avoid
saturation in the figure. For intensity profiles, identical axis range is used for all the
methods and the noisy image. Saturation of the highest noise peaks was performed to
display the signal of interest at an adapted scale.
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Figure 11: Influence of filter parameters on denoising quality in term of PSNR and
coefficient of correlation. The impact of § on denoising quality is studied from 0.1 up to 4.1
with different settings for patch radius (rp) and search volume radius (rsy). The test image
used is the in vivo acquisition at 9mW and the reference image is the average image of 20

acquisitions at 9mW.

* Deep acquisition dataset with two channels

One of the most severe limitations in multiphoton in vivo fluorescence imaging is the drop
of excitation light intensity as an exponential function of depth due to scattering by tissue.
The resultant loss in SNR imposes practical limits on the depth at which useful images may
be acquired. Therefore, the final validation step was to demonstrate the improvement in
SNR produced by the proposed CANDLE filter on a deep tissue acquisition dataset. For this
purpose, a complete z-series though the entire dorsoventral axis of a Xenopus tadpole brain
was collected. Tissue structure was captured by staining with BODIPY, a vital dye that
labels membranes non-specifically (see Channel 1 of Fig. 13). In addition, GFP-expressing
retinal ganglion cells were transfected in the eye using plasmid electroporation to produce
bright GFP fluorescence within their axons along the entire retinotectal projection
terminating in the optic tectum (see Channel 2 of Fig. 13). As expected, the SNR decreases
with the depth of scanning. For clarity, the display intensity range in the example has been
linearly adjusted, using the same lookup table for each scanning depth using Image]. For a
given depth, the intensity ranges between noisy and denoised images are similar. When the
acquisition depth crosses 300um, the low SNR critically limits visual identification of
structures, especially for the GFP data in channel 2. After denoising, the tissue contrast
between structures in channel 1 is improved, particularly deep within the specimen, where,
for example, cell nuclei are only evident on the denoised image, and the structure of the
axons coursing through the optic nerve from the eye and along the optic tract become much
sharper. Figure 14 shows the maximum intensity projection of channel 2 at the depth of the
optical chiasm area. This structure, which is the site where the optic nerves enter the base
of the brain, has been chosen since it is the deepest structure in the tadpole brain.
Therefore, the optic chiasm is a particularly challenging structure to image for which
CANDLE filter can be useful.



MIP of the denoised image using MIP of the denoised image using sequential
collaborative approach approach
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Figure 12: Comparison between collaborative approach used in CANDLE and traditional
sequential approach. In the latter, the median filtered image is used as input in the OVST-
LAONLM filter. Visually, the contrast of the sequential approach is lower than the result
produced by CANDLE. Moreover, the finest dendritic structures are removed during
denoising based on sequential approach as assessed by coefficients of correlation (CC). The
MIPs of denoised images are displayed with the same intensity range.

The bottom of Figure 14 presents a zoomed image of the structure before and after
denoising. The improvement in terms of SNR is clearly visible after denoising,
demonstrating the deeper imaging capability of the proposed CANDLE filter. Although the
impact on biological studies needs further investigation, this first result clearly shows the
improvement in image quality for deep imaging and the expected benefit for post-
processing tasks such as automatic axon segmentation.



Finally, one important concern regarding the use of denoising algorithms is the potential for
loss of critical, fine detail in images near the optical resolution limit of the microscope.
Dendritic spines are the structural correlates of excitatory synapses onto certain types of
neurons and are therefore of great interest in the neuroscience imaging community. They
are found at high density along dendrites and are typically about 1 um long, only slightly
larger than resolving limit of an optical microscope. We therefore sought to determine
whether these structures were well preserved in images denoised using CANDLE. Figure
15 presents the result obtained by CANDLE on a spiny neuron in the olfactory bulb of a
xenopus tadpole. As can be seen in the zoomed images, CANDLE enables a better
visualization of fine structures including broad spine heads and very narrow spine necks.

Discussion

We have here presented a novel Collaborative Approach for eNhanced Denoising under
Low-light Excitation (CANDLE). By combining several existing image processing methods,
each selected for their robustness and their simplicity, CANDLE provides high performance
denoising compared to Puredenoise and a locally adaptive nonlocal means filter. The
improvement is especially evident for the low SNR conditions typically present in deep in
vivo imaging where scattering of excitation light results in low density of ballistic photons at
the focal point, and impaired acquisition quality. Our experiments have shown that patch-
based denoising approaches can reveal deep structures that are hardly distinguishable by
the human eye in the original noisy images. Our study on deep imaging is complementary to
recent work using NLM denoising for biological fluorescence microscopy to reduce
exposure times, resulting in improved sample viability. In fact, the ability to reduce
exposure times by applying a patch-based denoising method (Boulanger et al.,, 2010) has
been demonstrated in the recent paper of Carlton et al. (2010). Their paper demonstrated
that NLM-based filtering can reduce photobleaching and phototoxicity while permitting
higher acquisition rates in fluorescence time-lapse microscopy by allowing lower intensity
excitation of fluorescent probes. The great interest in the biological community for this new
type of denoising filter has been highlighted in several recent articles (Baker, 2010;
Swedlow, 2010).

One of the main drawbacks of many patch-based approaches is the extensive computational
time required. Our algorithm has a number of improvements that reduce this constraint to
yield a practical tool that is usable in the laboratory. In our software, we allow the user to
manually tune the smoothing parameter to achieve an optimal denoising for the given
image processing task. For example, image registration and structure segmentation may
require more denoising than other tasks like cell counting. It is important to note that
automatic estimation of this scaling parameter between filtered patches and the noisy
samples should be possible (Deledalle et al., 2010; Van De Ville and Kocher, 2009), but such
an estimation is beyond the scope of the work presented here. Investigations on improved
prefiltering approaches or adaptation to a more complex noise model estimation could be
interesting for future development of the CANDLE algorithm.



The filter presented here has been tailored to increase the SNR while minimizing visible
artifacts. We have used typical 3D datasets created in neuroscience by scanning microscopy
methods that have distinct properties. These properties include a large array of structural
information in combination with a characteristic distribution of the SNR. Because structural
information in these images reflects the functional connections of the neuronal circuit, it is
therefore most important that very little signal is lost or distorted and that little or no
additional artifactual structure as possible be added to the data set due to post-hoc filtering.
On the other hand, filtering can help to extract information that otherwise would be buried
under the noise that comes naturally during the imaging process. We have shown that
CANDLE filter performs particularly well in low light conditions compared to other filtering
methods both with regard to image fidelity and information extraction.

The CANDLE NLM denoising algorithm presented here should be widely applicable to many
forms of light microscopy in addition to multiphoton fluorescence imaging, wherever
detector noise or light scattering lead to degradation of image SNR. Recent improvements
in detector technology that offer improved SNR through the use of highly sensitive GaAsp
PMTs or of electron multiplying charge coupled devices (EMCCDs) are still ultimately
limited for live imaging by the requirement to limit harmful excitation light exposure and by
the fundamental scattering nature of biological tissue. Extensive averaging is not the best
option due to the damage caused to living tissue by prolonged or repeated light exposure.
NLM approaches like CANDLE offer many of the benefits of averaging without any of these
detrimental effects and are therefore broadly applicable to in vivo and especially deep
tissue imaging. A more recent innovation with great potential for deeper imaging in
scattering tissue is the use of adaptive optics, first pioneered in astronomy as a means of
correcting for atmospheric distortion (Cui, 2011). By correcting for tissue scattering, image
noise caused by non-ballistic photons is further reduced, however instrument noise
naturally persists and can be further reduced only by averaging or through computational
methods such as CANDLE.

Light sheet microscopy is an alternative 3D optical imaging method that largely by-passes
the issue of scattering of excitation light by illuminating the specimen from the side with a
sheet of light focused into a single, scanning plane (Voie et al.,, 1993; Dodt et al., 2007). This
method has great potential for improving 3D resolution and reducing out-of-focus
fluorescence excitation at greater depths in specimens where illumination from multiple
angles is possible, but nonetheless is still limited for live imaging by detector sensitivity and
SNR. Furthermore it is obviously limited for in vivo imaging of structures like mammalian
brain where epifluorescence excitation from above through the objective is the only
practical approach for capturing detail beneath the surface.



Computational methods such as deconvolution can also offer significant improvements in
image quality by integrating information from multiple focal planes to reconstruct virtual
images. In principle, CANDLE and deconvolution are complementary methods as they each
use distinct information to improve image quality, the former incorporating pattern image
feature and the latter using prior information about the optical properties of the
microscope. Interestingly because deconvolution relies on information contained within
the image noise, but is negatively impacted by detector noise, it remains to be determined
whether they are indeed mutually beneficial in practice, or, for example, if the order in
which the image is processed has a significant impact on the outcome.

Conclusion

In this paper, we present a new collaborative approach for enhanced denoising under low
light excitation conditions. Based on the pre-filtering of patches before applying a NLM
filter, the proposed method is competitive with the Puredenoise filter, especially in the low
SNR conditions typical of deep tissue in vivo imaging. An extensive validation on synthetic,
multiphoton in vitro and in vivo images was performed to carefully characterize the
performance of the CANDLE method for real images. The results suggest that CANDLE
should have great potential for improving fluorescence imaging, especially under
conditions where excitation illumination is low, either intentionally as a means to reduce
phototoxicity and bleaching or as a consequence of imaging deep within scattering
biological tissue.
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Figure 13: Deep acquisition in a Xenopus laevis brain with two channels: The denoised
images were obtained in less than 160 seconds per channel (95 slices each) using the
default parameter of CANDLE software for both channels in a fully automatic manner. The
display intensity has been set independently for each scanning depth using Image]. For a
given depth, the lookup tables for the noisy and the denoised images are identical.



Optic chiasm: maximum intensity projection (275 pum - 320 pm)

Figure 14: Maximum intensity projection of channel 2 of the deep acquisition image of
tadpole brain. The projection was achieved in the optic chiasm area between 275 pm - 320
um. The lookup tables for displaying the noisy and the denoised images are identical. Top:
the full images before and after denoising with red rectangles indicating the area enlarged
below. Bottom: Zoomed images of the optic chiasm at the base of the brain before and after
denoising.



Figure 15: Maximum intensity projection of olfactory neuron of frog. Left: Original acquired
image. Right: Denoised image with CANDLE. Top: the full images before and after denoising.
Bottom: Zoom on the central part of the image.
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