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Abstract

Contraction, expansion and despinning have been common in the past

evolution of solar system bodies. These processes deform the lithosphere until

it breaks along faults. Their characteristic tectonic patterns have thus been

sought for on all planets and large satellites with an ancient surface. While the

search for despinning tectonics has not been conclusive, there is good

observational evidence on several bodies for the global faulting pattern

associated with contraction or expansion, though the pattern is seldom

isotropic as predicted. The cause of the non-random orientation of the faults

has been attributed either to regional stresses or to the combined action of

contraction/expansion with another deformation (despinning, tidal

deformation, reorientation). Another cause of the mismatch may be the

neglect of the lithospheric thinning at the equator or at the poles due either to

latitudinal variation in solar insolation or to localized tidal dissipation. Using

thin elastic shells with variable thickness, I show that the equatorial thinning

of the lithosphere transforms the homogeneous and isotropic fault pattern

caused by contraction/expansion into a pattern of faults striking east-west,

preferably formed in the equatorial region. By contrast, lithospheric thickness

variations only weakly affect the despinning faulting pattern consisting of

equatorial strike-slip faults and polar normal faults. If contraction is added to

despinning, the despinning pattern first shifts to thrust faults striking

north-south and then to thrust faults striking east-west. If the lithosphere is

Preprint submitted to Icarus April 29, 2010



ACCEPTED MANUSCRIPT 

thinner at the poles, the tectonic pattern caused by contraction/expansion

consists of faults striking north/south. I start by predicting the main

characteristics of the stress pattern with symmetry arguments. I further prove

that the solutions for contraction and despinning are dual if the inverse elastic

thickness is limited to harmonic degree two, making it easy to determine fault

orientation for combined contraction and despinning. I give two methods for

solving the equations of elasticity, one numerical and the other semi-analytical.

The latter method yields explicit formulas for stresses as expansions in

Legendre polynomials about the solution for constant shell thickness. Though

I only discuss the cases of a lithosphere thinner at the equator or at the poles,

the method is applicable for any latitudinal variation of the lithospheric

thickness. On Iapetus, contraction or expansion on a lithosphere thinner at

the equator explains the location and orientation of the equatorial ridge. On

Mercury, the combination of contraction and despinning makes possible the

existence of zonal provinces of thrust faults differing in orientation

(north-south or east-west), which may be relevant to the orientation of lobate

scarps.

Key words: Iapetus - Mercury - Planetary dynamics - Satellites, surfaces -
Tectonics

1. Introduction

A great variety of tectonic features is found on nearly all solid planets and

large satellites of the solar system: ridges and scarps, rifts and grabens, furrows

and grooves etc. Their origin on Earth mainly lies in the movement of nearly

rigid plates but other mechanisms must be found elsewhere since plate tectonics

is unique to Earth. Though tectonic features can often be explained by a regional

effect, such as an impact or the emplacement of a volcanic load, a subclass of

them sometimes form a global pattern on the surface. In such a case, their

cause must be the global deformation of the whole lithosphere which generates

a global stress distribution resulting in a characteristic faulting pattern at the

surface.
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Several processes affect the planetary figure. Though a change in the mean

planetary radius (contraction or expansion) is the simplest conceivable deforma-

tion, its underlying causes can be complex since they depend on the complicated

physics of the interior of a self-gravitating differentiated body (e.g. Andrews-

Hanna et al. (2008) for Mars, Squyres and Croft (1986) and Collins et al. (2009)

for icy satellites). On a planet with a lithosphere of constant thickness, con-

traction and expansion bring about a homogeneous distribution of randomly

oriented compressional and extensional faults, respectively (Melosh, 1977). The

surfaces of Mars (Anderson et al., 2001, 2008; Knapmeyer et al., 2006) and

Mercury (Watters et al., 2009) show widespread compressional tectonic fea-

tures, termed wrinkle ridges and lobate scarps. Their distribution is however

far from uniform and their orientation is not random. On Mars, regional effects

such as the Tharsis rise have strongly influenced the global pattern of wrinkle

ridges and the possible role of a global contraction event remains under discus-

sion (Mangold et al., 2000; Nahm and Schultz , 2010). On Mercury, the lobate

scarps that have been identified in Mariner 10 images have a greater cumulative

length in the southern latitudes, generally trend within 50◦ of the north-south

direction and preferably dip northward below 50◦S (Watters et al., 2004; Wat-

ters and Nimmo, 2009). The anisotropy of lobate scarps is often attributed to

the additional contribution of despinning (see below), but the regional effect of

the Caloris basin has also been invoked (Thomas et al., 1988). A more com-

plete and less illumination-biased fault catalog should result from the analysis

of Messenger images and altimetry data; results from the first flyby are promis-

ing (Solomon et al., 2008; Watters et al., 2009). Among large icy satellites,

Ganymede is a showcase for extensional tectonics (Pappalardo et al., 2004).

Global expansion is also thought to have played a role in the formation of the

global tectonic grids on Rhea (Consolmagno, 1985; Moore et al., 1985; Thomas ,

1988), Dione (Moore, 1984; Consolmagno, 1985) and Ariel (Plescia, 1987; Nyf-

fenegger et al., 1997), though the orientation of faults has been shown to be

non-random in each case. Global contraction may also have occurred on Rhea

and Dione. New tectonic analyses of Rhea (Moore and Schenk , 2007; Wagner
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et al., 2007) and Dione (Goff-Pochat and Collins , 2009; Wagner et al., 2009;

Stephan et al., 2010) are underway with Cassini data. While partial imaging

makes it difficult to identify a global tectonic grid on Iapetus (Singer and McK-

innon, 2008), its huge equatorial ridge must be related to a global deformation.

Contraction (Castillo-Rogez et al., 2007) has been cited as a possible culprit,

but the corresponding faulting pattern neither predicts the equatorial location

nor the east-west orientation of the ridge.

The next simplest deformation is a change in the planetary flattening due

to a decrease in the rotation rate, or despinning, that results from tidal effects

leading to a resonant or synchronous rotation (Murray and Dermott , 1999). De-

spinning tectonics on a planet with a thin lithosphere of constant thickness con-

sist of an equatorial zone of strike-slip faults (striking at about 60 degrees from

the north) and of polar zones of extensional faults or joints striking east-west

(Burns , 1976; Melosh, 1977). Despun bodies are common in the solar system:

Mercury is in resonant rotation with the Sun (Goldreich and Peale, 1968) and

nearly all large satellites in the solar system are in synchronous rotation with

their parent body (Peale, 1999). Simultaneous despinning and contraction have

been used to justify the predominant north-south orientation of lobate scarps

on Mercury (Melosh and Dzurisin, 1978; Pechmann and Melosh, 1979; Dombard

and Hauck , 2008). Beside the pattern of young lobate scarps, Mercury exhibits

a global grid of more ancient lineaments which Melosh and Dzurisin (1978) and

Pechmann and Melosh (1979) interpreted as evidence of despinning (plus con-

traction), though the case is not closed (Melosh and McKinnon, 1988; Thomas

et al., 1988). While despinning is a generic phenomenon for large icy satellites,

none exhibits unambiguous evidence of the corresponding global tectonic pat-

tern, either because of later resurfacing or because despinning occurred before

the surface was fully formed (Squyres and Croft , 1986). The location of Iape-

tus’ ridge suggests a relation with despinning (Porco et al., 2005; Castillo-Rogez

et al., 2007) but it was immediately noted that despinning tectonics cannot

produce east-west features at the equator. Global tectonic patterns can also

be produced by other types of deformations not examined in this paper: reori-
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entation relative to the spin axis (Melosh, 1980b; Leith and McKinnon, 1996;

Matsuyama and Nimmo, 2008), recession (Melosh, 1980a; Helfenstein and Par-

mentier , 1983), diurnal tides and non-synchronous rotation (Helfenstein and

Parmentier , 1985; Greenberg et al., 1998; Wahr et al., 2009). These deforma-

tions can be seen as a superposition of biaxial deformations and thus share the

basics of the despinning model.

Up to now the distribution and orientation of tectonic features have always

been computed with the assumption of a lithosphere of constant thickness, one

reason being the lack of data about the lithospheric thickness and its varia-

tions. The choice of a specific variation of lithospheric thickness may thus seem

ad hoc if its cause is a variation in the internal heating flux. Two external

phenomena provide a better motivation for a model of lithospheric thickness

variation. On the one hand, the latitudinal variation in the solar insolation ele-

vates the lithospheric isotherm at the equator of a planet without atmosphere.

For Mercury, the lithosphere could be thinner by a factor of two at the equa-

tor in comparison with the poles (McKinnon, 1981; Melosh and McKinnon,

1988); a longitude variation is also expected because of the difference in aver-

age temperature between the so-called equatorial hot and cold poles. On the

other hand, tidal heating acting on the satellites with an eccentric orbit creates

additional lateral variations in the lithospheric thickness. Nimmo et al. (2007)

however found no evidence in the global shape of Europa for the thickness

variations predicted by Ojakangas and Stevenson (1989) (see also Tobie et al.

(2003)). Since large satellites are at present in a synchronous state of rotation,

tidal heating is localized in longitude. Nevertheless tidal heating is evenly dis-

tributed in longitude before tidal locking is achieved, so that the lithospheric

thickness only depends on latitude during the despinning phase.

The goal of this paper is to predict global tectonic patterns due to contraction

and despinning on a lithosphere with latitudinal thickness variation. Though I

will assume in the numerical examples that the thickness variation is symmet-

rical about the equatorial plane, the method is also valid for non-symmetrical

variations. The prediction of tectonic patterns follows the following procedure.
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First the lithosphere is modeled as a thin elastic spherical shell (Turcotte et al.,

1981; Beuthe, 2008). Second the contraction or despinning is represented as a

static deformation of the shell given by the difference between the initial and

final figure of the planet. The stresses caused by the deformation of the thin

elastic spherical shell are computed with the equations of equilibrium and elas-

ticity. Third the style and orientation of faults is predicted from the stresses

with Anderson’s theory of faulting (Jaeger et al., 2007).

The most significant result of this paper concerns the contraction of a planet

with a lithosphere thinner at the equator (predictions for expansion follow by

changing the sign of the stresses). If the contracting lithosphere is of con-

stant thickness, stresses are homogeneous and isotropic, which means that their

orientation and magnitude are independent of position and that the principal

tangential stresses are equal. The thinning of the lithosphere at the equator

has two effects: (1) the stress becomes most compressive at the equator and (2)

the meridional component of the stress becomes more compressive than the az-

imuthal component. This situation, as well as the corresponding expansion case,

favors the development of faults striking east-west and starting preferably at the

equator. The contraction of a shell thinner at the equator is thus complemen-

tary to despinning, for which the azimuthal stress is always more compressive

than the meridional stress. If the inverse thickness is at most of harmonic degree

two I show that this complementarity is described by an exact relation between

a contracting planet and a planet that is spinning up. As for despinning, its tec-

tonic pattern is not much affected by the variation of the lithospheric thickness:

the main effect is the reduction in size of the polar provinces of tensional stress

as the lithosphere thickens at the poles. The combination of contraction and

despinning renders possible the existence of provinces of thrust faults differing

in their orientation (north-south or east-west), but this only occurs for a specific

ratio between contraction and despinning. If the lithosphere is thinner at the

poles, global contraction (resp. expansion) leads to thrust (resp. normal) faults

striking north-south and preferably formed in the polar regions, whereas the

despinning pattern is weakly affected.
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As for applications, I show that contraction or expansion combined with

lithospheric thinning at the equator provides an explanation for the location

and orientation of Iapetus’ equatorial ridge. I also attempt to account for the

orientation of lobate scarps on Mercury. Tectonic patterns resulting from si-

multaneous contraction and despinning on a lithosphere thinner at the equator

are consistent with the latitudinal dependence of lobate scarps. The amount

of required contraction is however much larger than what has been estimated

from observations, making it necessary to resort to more contrived scenarios

involving fault reactivation.

The paper can be read at two levels: I present general results and geophysical

interpretations in the main text, while the semi-analytical method of solution

is described in detail in the appendices, which also include explicit solutions

as well as a discussion of the relationship between thin shells, thick shells and

Love numbers. Section 2 states the membrane equations that must be solved

in order to compute the stresses generated by the deformation of a thin elastic

shell with variable thickness. Remarkably, assumptions of axial and equatorial

symmetry (presented in Section 3) are sufficient for the prediction of the basic

characteristics of stress and strain. These symmetries lead to dualities between

the contraction and despinning solutions when the inverse thickness is at most

of degree two, reducing by half the computational load and simplifying the dis-

cussion of combined contraction and despinning. I also compute a first order

approximation of the contraction stresses from duality arguments. In Section 4,

I show how to solve the membrane equation. After discussing the parameteri-

zation of the thickness variation, I frame the problem for a numerical solution

with Mathematica, before explaining a semi-analytical method in which trun-

cated Legendre expansions serve to rewrite the membrane equation as a matrix

equation. In Section 5, I use the contraction and despinning solutions of the

membrane equation in order to predict the extent of tectonic provinces, i.e.

areas with faults of given style and orientation. The cases of expansion and

spinning-up are related to contraction and despinning by a sign change. In Sec-

tion 6, I discuss the application of the predicted tectonic patterns to Iapetus’
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ridge and Mercury’s lobate scarps.

2. Membrane stress in a deformed spherical shell

The style and orientation of faults due to contraction and despinning can

be predicted from knowledge of the stresses in the lithosphere. The lithosphere

is modeled as a thin elastic spherical shell (in this paper, lithospheric thickness

and elastic thickness are synonymous). The important assumptions that the

shell is thin and that it is elastic are analyzed by Melosh (1977) for a shell of

constant thickness.

First, Melosh shows that models with a thin or a thick shell predict very

similar despinning faulting patterns, except the possible presence of an equa-

torial thrust fault province when the shell is thick (the contraction tectonic

pattern is not affected by the thickness of the shell). Despinning stresses at the

surface of a thick shell can easily be computed if the secular tidal Love num-

bers hT
2 and lT2 are known (see D). At a given latitude, the stress magnitude

mainly depends on hT
2 whereas the relative size of the principal stresses depends

on the ratio lT2 /hT
2 . When the shell thickness increases, hT

2 decreases so that

despinning stresses decrease in magnitude. While Melosh computes thin shell

stresses under the assumption of hydrostatic flattening, Matsuyama and Nimmo

(2008) extend the domain of application of thin shell formulas by using a non-

hydrostatic flattening parameterized by hT
2 . This latter procedure is equivalent

to keeping the overall hT
2 -dependence in thick shell formulas while setting the

ratio lT2 /h
T
2 to its membrane value (1 + ν)/(5 + ν), where ν is Poisson’s ratio

(see D).

Second, Melosh argues that the faulting pattern predicted by the elastic

model is not substantially modified when the lithosphere becomes plastic, though

the numerical values of the stresses are bounded by the yield stress. The elas-

tic model is thus limited to the prediction of the faulting style (including its

orientation) but does not say whether faulting occurs.

Stresses in a shell satisfy equilibrium equations which relate them to the
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load deforming the shell. However the load causing the contraction or the flat-

tening change during despinning is a priori unknown. Thus the full formulation

of elastic equations involving stress-strain and strain-displacement relations be-

comes necessary. For an elastic shell of constant thickness, contraction stresses

were obtained by Lamé (see Love, 1944, p. 142) whereas despinning stresses

were computed by Vening-Meinesz (1947). There are no analytic formulas giv-

ing equivalent results for a thin elastic shell with variable thickness but Beuthe

(2008) recently derived the scalar equations governing the deformation of such

a shell under an arbitrary load.

Since displacements of the shell surface due to contraction and despinning

have a large wavelength, bending moments in the shell are negligible: the shell

mainly responds by stretching and is said to be in the membrane regime (Kraus ,

1967; Turcotte et al., 1981). In the membrane limit, bending moments are set to

zero: deformation equations take a simplified form which can be obtained from

the full deformation equations by setting to zero the bending rigidity D. In

that case, the membrane equations for a spherical shell of radius R and variable

thickness h are

∆′F = −Rq , (1)

C (α ;F ) − (1 + ν)A (α ;F ) =
1
R

∆′w . (2)

where q is the transverse load (positive inward), w is the transverse displace-

ment (positive outward) and F is an auxiliary function called the stress function.

Tensile stress is positive. The tangential load has been set to zero. The differ-

ential operators ∆′, C and A are defined in A by Eqs. (63)-(67). The thickness

h is included in the elastic parameter α:

α =
1
Eh

. (3)

E is Young’s modulus (which is allowed to be variable), ν is Poisson’s ratio

(which must be constant).

In the membrane limit, the stress integrated over the thickness of the shell,
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or stress resultant, is given by

(Nθθ, Nϕϕ, Nθϕ) = (O2,O1,−O3)F . (4)

with the operators Oi being defined by Eqs. (60)-(62). The stress as expressed

in Eq. (4) automatically satisfies the two tangential equilibrium equations while

the radial equilibrium equation is encoded in Eq. (1). In the membrane limit,

there is thus only one equation where elastic parameters appear, Eq. (2), which

results from an equation of compatibility between the strains.

In the membrane limit, the stress is constant through the shell thickness. It

is thus related to the stress resultant by

σij =
1
h
Nij . (5)

The strain is given by

εθθ =
1
E

(σθθ − νσϕϕ) , (6)

εϕϕ =
1
E

(σϕϕ − νσθθ) , (7)

εθϕ =
1 + ν

E
σθϕ . (8)

If the load is known, the stress function F can be computed from the first

membrane equation (1) and the stress from Eqs. (4)-(5). In that case, the elastic

thickness only appears in Eq. (5), which means that the solution for variable

thickness is directly obtained from the solution of constant thickness by the

scaling h0/h (h0 is the mean elastic thickness). This procedure implies that

the load is the same whether the elastic thickness is constant or not. However

the load is a priori unknown when modeling contracting and despinning events;

instead, the transverse displacement w is the known input. The stress function

F must thus be computed from the second membrane equation, Eq. (2), which

is linear in F and w with variable coefficients depending on 1/Eh. As a corol-

lary, the load causing contraction or despinning is not the same in the cases of

constant and variable elastic thickness.

It should be noted that the variation of the lithospheric thickness has an

effect on the deformation. Contraction is not a problem if it is defined as a
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uniform change in radius, but it is another matter if the definition involves

physical processes such as an internal thermal contraction or an expansion due

to water-ice transition. Despinning causes deformations of harmonic degrees

zero and two (the former is very small and usually neglected) if the lithospheric

thickness is constant but other harmonic degrees appear if it is variable. In

principle the effect of internal contraction and despinning on the shape of a

planet with a variable lithospheric thickness should be computed with a three-

dimensional model of the interior. Love numbers quantify the response of a

planet with a spherically symmetric internal structure (see D), but there is no

standard technique dealing with the non-spherical case. Extreme cases of a

very thin or a very thick lithosphere are not a problem. On the one hand,

the lithosphere does not affect the shape of the body in the limit of vanishing

thickness. On the other hand, thickness variations of a thick lithosphere are

expected to be relatively small with respect to the average thickness: latitudinal

variations in solar insolation, for example, induce smaller thickness variations

(in percentage) in a thick lithosphere than in a thin one. In both cases, the

response of the planet is thus adequately described by using a model with a

spherically symmetric internal structure. Between these extremes, the size of the

deformations with harmonic degrees not equal to zero (for contraction) or two

(for despinning) should be investigated, but this question is beyond the scope

of this paper. I thus choose to define contraction and despinning as phenomena

associated with deformations of harmonic degree zero and two, respectively.

How good an approximation is the membrane limit? If bending terms are

not neglected, Eq. (2) remains the same but new terms appear in Eq. (4) for

the stress resultants. These new terms have the form (D/R3)Oiw (with D =

Eh3/12(1 − ν2)) so that they are smaller than the dominant term Oi F by a

factor ξ = 12R2/h2. Neglected bending terms are thus of the same order of

magnitude as other small terms present in the equations before the ‘thin shell’

limit of large ξ is taken (Beuthe, 2008). It is possible to solve the complete

equations (with bending terms and no large ξ limit) with the same method as

proposed in this paper, but the gain in precision would only be of order 1/ξ.
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Even so the theory remains a thin shell theory in the sense that the radial stress

is neglected.

The membrane and stress equations (2)-(5) become nondimensional with the

following definitions:

ᾱ =
α

α0
, (9)

F̄ = α0 F , (10)

w̄ =
w

R
, (11)

N̄ij = α0Nij , (12)

σ̄ij =
1
E
σij , (13)

where α0 is the average of α on the sphere, i.e. the coefficient of degree zero

in the expansion of α in Legendre polynomials (α0 �= 1
Eh0

). The membrane

equation (2) then becomes

C (
ᾱ ; F̄

) − (1 + ν)A (
ᾱ ; F̄

)
= ∆′w̄ . (14)

The nondimensional stress is computed with the nondimensional version of

Eqs. (4)-(5):

(
N̄θθ, N̄ϕϕ, N̄θϕ

)
= (O2,O1,−O3) F̄ , (15)

σ̄ij = ᾱ N̄ij . (16)

The strain is already nondimensional:

εθθ = ᾱ (O2 − νO1) F̄ , (17)

εϕϕ = ᾱ (O1 − νO2) F̄ , (18)

εθϕ = −ᾱ (1 + ν)O3 F̄ . (19)

The solution of the nondimensional membrane equation (14) when w̄ is only of

degree zero (w̄ = w̄0P0) will be called the contraction solution F̄C (whatever the

sign of w̄0), whereas the solution when w̄ is only of degree two (w̄ = w̄2P2) will

be called the despinning solution F̄D (whatever the sign of w̄2). Negative (resp.

positive) values of w̄0 correspond to contracting (resp. expanding) planets,

14
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whereas positive (resp. negative) values of w̄2 correspond to despinning (resp.

spinning-up) planets. Solutions for a constant elastic thickness are computed in

C.

3. Symmetry and duality

As discussed in the introduction, I make the simplifying assumption that the

value of the elastic thickness only depends on the latitude. The contraction and

despinning problems are then axially symmetric. Though the numerical method

developed in Section 4 does not require it, I also assume equatorial symmetry,

i.e. mirror symmetry about the equatorial plane. These two assumptions ap-

proximately hold for the physical causes of the thickness variation considered

here: variation in solar insolation and tidal heating during despinning, provided

that the obliquity of the body with respect to the Sun (in the former case) or

to the tidal source (in the latter case) is small.

Using symmetry and duality arguments, I describe in this section the char-

acteristics of stress and strain on contracting or despinning shells thinner (or

thicker) at the equator. The duality relation will also serve to obtain a numerical

approximation of the contraction solution.

3.1. Axial and equatorial symmetry

The main characteristics of the contraction solution can be determined from

symmetry arguments, without solving the membrane equation. Axial symmetry

give the following constraints on stress and strain (see also Fig. 1):

1. the meridional and azimuthal stresses (resp. strains) are principal stresses

(resp. strains), i.e. σθϕ = 0 (resp. εθϕ = 0).

2. the meridional and azimuthal stresses are equal at the poles; this is also

true of the strains.

3. the slopes of the stress and strain components vanish at the poles (it is a

consequence of the previous point combined with the equations of equilib-

rium); they also vanish at the equator if there is equatorial symmetry.
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4. the average of the meridional strain is independent of the elastic thick-

ness (see Eq. (116)): < εθθ >= w̄0 for contraction, < εθθ >= w̄2/4 for

despinning.

5. the azimuthal strain at the equator is independent of the elastic thickness

(see Eq. (118)): εϕϕ|θ= π
2

= w̄0 for contraction, εϕϕ|θ= π
2

= −w̄2/2 for

despinning.

[Figure 1 about here.]

These constraints allow me to predict the response of the shell to a radius

variation. The stresses for a constant elastic thickness are given in C. Fig. 1 il-

lustrates the following discussion. I suppose that the shell is expanding (w̄0 > 0)

so that stresses and strains are positive (the solution for a contracting shell is

obtained by changing the sign of stresses and strains). I also assume equatorial

symmetry with a monotonous variation of the thickness from the pole to the

equator, so that stress and strain components can be expected to vary monoto-

nously. Stress and strain are concentrated where the shell is weaker. In other

words, the membrane stretching is maximum where the shell is thinnest. If the

shell is thinner at the equator, the azimuthal strain is thus maximum at the

equator, where it takes the value w̄0 imposed by the equatorial length variation,

and minimum at the poles, where it is equal to the meridional strain. The merid-

ional strain is also maximum at the equator and minimum at the poles, taking

somewhere in between its average value w̄0. Therefore, the meridional strain

always exceeds the azimuthal strain when the shell is thinner at the equator.

This ordering is conserved for the stresses: the meridional stress always exceeds

the azimuthal stress when the shell is thinner at the equator, as shown by the

inversion of Eqs. (6)-(8) with ν < 1. If the shell is thinner at the poles, a similar

analysis leads to the conclusion that the strain (resp. stress) is maximum at the

poles and that the azimuthal strain (resp. stress) always exceeds the meridional

strain (resp. stress).

The despinning shell case (w̄2 > 0) is not as simple since the combined

effects of the non-spherical deformation and thickness variation can lead to local
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extrema of the stress and strain components between the poles and the equator.

However the ordering of the strains (εϕϕ more compressive than εθθ) is expected

to be the same as in case of constant elastic thickness, since the meridional strain

has an average positive value (w̄2/4) while the azimuthal strain varies between

the value of the meridional strain at the poles and the negative value −w̄2/2

at the equator. The location of the shell thinning has thus less influence on

the stress/strain pattern than in the contraction case. Because of stress/strain

concentration in weaker areas, the stress and strain components are expected

to come closer to (resp. farther from) zero at the poles if the shell becomes

thinner at the equator (resp. at the poles), as shown in Fig. 1b. The meridional

strain curve will accordingly move so as to keep its average constant. The

principle of stress/strain concentration does not apply to the azimuthal strain

at the equator since its value is fixed by the geometry. As above, the ordering is

conserved when going from strains to stresses: σϕϕ is more compressive than σθθ.

Another argument for ordering will be obtained from the contraction-despinning

duality in Section 3.2.

3.2. Contraction-despinning duality

Still assuming axial and equatorial symmetry, I now show that the contrac-

tion and despinning solutions are not independent if the harmonic expansion of

the inverse thickness is limited to degree two. Even if this assumption is not

strictly valid, the harmonic of degree two will dominate if the thickness variation

is monotonous between the poles and the equator. Under these assumptions, ᾱ

can be written in terms of Legendre polynomials of degrees zero and two:

ᾱ = 1 + ᾱ2 P2 , (20)

where P2 is the Legendre polynomial of degree two defined by Eq. (71). The

parameter ᾱ2 is in the range [−1, 2] and is negative (resp. positive) for shells

thinner at the equator (resp. poles). The parameterization of the thickness

variation is discussed in more detail in Section 4.1.
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The stress functions for contraction and despinning then satisfy the following

duality:

F̄C

w̄0
=

1
1 − ν

− ᾱ2
F̄D

w̄2
. (21)

The first term in the right-hand side is the contraction solution when the elas-

tic thickness is constant. The duality (21) can be checked by substitution in

Eq. (14) and using the identity (69). Since spherical harmonics of degree one

belong to the kernel of ∆′ (see A), the duality remains valid if ᾱ includes such

harmonics. If ᾱ contains harmonics up to degree k > 2, a similar relation ex-

ists (see Eq. (125)) between the solutions for right-hand sides of higher degree

(w̄ = w̄3 P3, ... , w̄ = w̄k Pk); I use it in F for the computation of the contraction

solution at first order. I also give below a relation of fourth degree between the

stresses in order to discuss the combination of contraction and despinning.

Eq. (21) leads to a duality between the stress resultants for the contraction

and despinning solutions:

N̄C
ij

w̄0
=

δij
1 − ν

− ᾱ2

N̄D
ij

w̄2
. (22)

The stress resultants for a contracting shell are thus the same as those for a

despinning shell with w̄2 = −ᾱ2w̄0, plus the stress resultants for a contracting

shell of constant thickness. If the contracting shell (w̄0 < 0) is thinner at the

equator (ᾱ2 < 0), the equivalent ‘despinning’ shell is actually spinning faster

since w̄2 < 0. This duality is clearly visible by comparing Figs. 4a and 4b. A

similar duality holds for the stresses, but the first term in the right-hand side

now depends on latitude:

σ̄C
ij

w̄0
= ᾱ

δij
1 − ν

− ᾱ2

σ̄D
ij

w̄2
. (23)

Finally the duality relation for the strains reads

εCij
w̄0

= ᾱ δij − ᾱ2

εDij
w̄2

. (24)

These dualities are extremely useful. Their most obvious use is to generate

both contraction and despinning solutions by computing only one of them, but
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they also have other advantages. First, Eq. (23) shows that the ordering in size

of the components of the stress is either the same (if ᾱ2 > 0) or reversed (if

ᾱ2 < 0) when going from the contraction to the despinning solution. Thus the

azimuthal stress is more compressive than the meridional stress for a despinning

shell whether the shell is thinner at the equator or at the poles. While the

isotropic term ᾱδij/(1− ν) in Eq. (23) does not affect the ordering of the stress

components, its spatial dependence influences the positions of the maxima which

must thus be computed from the numerical solution.

Second, the dualities serve to compute a first approximation of the contrac-

tion solution on a shell of variable thickness, knowing the despinning solution on

a shell of constant thickness. The trick comes from the fact that the term linear

in ᾱ2 in the contraction solution is related by duality to the term independent

of ᾱ2 in the despinning solution. The contraction solution is computed in such

a way in F (see Eqs. (121)-(124)). In dimensional notation, the contraction

stresses at first order in ᾱ2 read

σC
θθ

∼= σ0

(
1 + 3 ᾱ2

ν + (2 + ν) cos 2θ
2(5 + ν)

)
, (25)

σC
ϕϕ

∼= σ0

(
1 + 3 ᾱ2

1 + (1 + 2ν) cos 2θ
2(5 + ν)

)
, (26)

where σ0 is the stress for a radial contraction of δR (δR > 0) when the thickness

is constant:

σ0 = − E

1 − ν

δR

R
. (27)

Fig. 13a shows that the first order approximation is good if ᾱ2 = −2/5 and

rather bad if ᾱ2 is close to its lower bound −1. In F, the method is generalized

to an ᾱ having an arbitrary Legendre expansion (see Eqs. (128)-(129)). Though

the basic characteristics of stress and strain for a despinning shell could be

predicted by the symmetry arguments of Section 3.1, duality cannot serve for

the computation of their numerical values. Their formulas at first order in ᾱ2

are given in J.

A third interesting consequence of the dualities concerns the analysis of com-

bined contraction and despinning. If the amounts of contraction and despinning
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are related by

w̄2 = ᾱ2 w̄0 , (28)

the total stress computed with the duality (23) is isotropic (though not homo-

geneous):

σ̄C
ij + σ̄D

ij = ᾱ w̄0
δij

1 − ν
. (29)

Consider a contracting (w̄0 < 0) and despinning (w̄2 > 0) body with a lithosphere

thinner at the equator (ᾱ2 < 0). If there is less (resp. more) despinning than the

threshold (28), the meridional stress is more (resp. less) compressive than the

azimuthal stress. This fact is useful when determining the orientation of faults

for contraction plus despinning. The threshold is reached for a contraction δR

(δR > 0) of

δR =
hT

2

ᾱ2

(Ω2
f − Ω2

i )R
2

3g
, (30)

where Ωi (resp. Ωf ) is the initial (resp. final) angular rate, g is the surface

gravity and hT
2 is the degree-two displacement Love number. The above equation

results from the substitution of Eqs. (89) and (92) into Eq. (28).

The threshold (28) becomes dependent on latitude when the inverse thickness

expansion includes higher harmonics. If ᾱ = 1+ᾱ2 P2+ᾱ4 P4, the generalization

of the stress duality reads

σ̄C
ij

w̄0
+ ᾱ2

σ̄D
ij

w̄2
+ ᾱ4

σ̄E
ij

w̄4
= ᾱ

δij
1 − ν

, (31)

where the index E denotes the solution of the membrane equation (14) for w̄ =

w̄4P4, which is given at zeroth order in (ᾱ2,ᾱ4) by Eqs. (94)-(95). Since there

is actually no deformation of degree four, the third term in the left-hand side of

Eq. (31) should not be interpreted as a physical stress but rather as a deviation

from the duality (23). At the threshold (28), the total stress σ̄T
ij = σ̄C

ij + σ̄D
ij is

thus not isotropic anymore:

σ̄T
θθ − σ̄T

ϕϕ
∼= ᾱ4 w̄0

19 + ν
(12P4 − 10P2 − 2) . (32)
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If ᾱ4w̄0 > 0, the meridional stress is more (resp. less) compressive than the az-

imuthal stress for high (resp. low) latitudes, with the turning point being given

by a latitude of arcsin(1/
√

7) ∼= 22.2◦ (this value is only valid if ᾱ2, ᾱ4 � 1).

If ᾱ4w̄0 < 0, the high and low latitudes zones are exchanged. In Section 4,

I propose a parameterization of the inverse thickness which has an unlimited

expansion in Legendre polynomials (see Eq. (36)). Fig. 9 then shows the lati-

tudinal dependence of the threshold between north-south and east-west thrust

faults for different types of thickness variations. The case described by Eq. (32)

corresponds to a value of the parameter k close to zero.

4. Solving the membrane equation

Symmetry and duality arguments have served us well for the determination

of the main characteristics of the stress and strain curves, as well as for a

first numerical approximation of the contraction solution. It remains however

necessary to solve the full membrane equation in order to compute both the

contraction and despinning solutions at an arbitrary degree of precision. I will

present two methods which are valid for an arbitrary deformation of the surface.

The first one is numerical and has the advantage of minimizing the amount of

programming. The second one is semi-analytical, in the sense that the solution

can be expressed as a perturbation expansion in Legendre polynomials about

the solution for constant shell thickness. It has the advantage of producing

explicit formulas for the stresses in which the influence of parameters describing

thickness variations clearly appears. Before tackling the methods of resolution,

I briefly discuss the parameterization of the thickness variation.

4.1. Thickness variation

Since my aim is to predict tectonic patterns without assuming a specific

lithospheric structure, I will work with a simple parameterization of the variation

of the shell thickness. I choose to parameterize ᾱ instead of the thickness h

because it is more convenient for the semi-analytical method. A few assumptions

21



ACCEPTED MANUSCRIPT 

constrain the possible form of the thickness variation. Variations caused by

solar insolation and tidal heating are of very large wavelength, so that only

slow-varying functions of the colatitude are permissible. Axial symmetry means

that the thickness only depends on the colatitude θ, but it also imposes that the

derivative of the thickness vanishes at the poles. If there is equatorial symmetry,

the derivative of the thickness vanishes at the equator (this restriction can be

lifted without changing the methods of resolution). A simple parameterization

of the thickness compatible with these constraints is given by Eq. (20):

ᾱ(θ) = 1 + ᾱ2 P2(cos θ) , (33)

where the dependence on the colatitude θ has been made explicit. I define the

equator-to-pole thickness ratio r by

r =
hE

hP
, (34)

where hE is the equatorial thickness and hP the polar thickness. The coefficient

ᾱ2 is then given by

ᾱ2 = 2
r − 1
r + 2

. (35)

The thickness is positive everywhere if −1 ≤ ᾱ2 ≤ 2. Negative and posi-

tive values of ᾱ2 describe elastic shells that are thinner at the equator and at

the poles, respectively. Fig. 2 shows various profiles of ᾱ and h/hP when the

lithosphere is thinner at the equator: the values r = (1, 1/2, 1/4, 1/10) corre-

spond to ᾱ2 = (0,−2/5,−2/3,−6/7).

[Figure 2 about here.]

Although the parameterization (33) is sufficient for the determination of the

most important features of tectonic patterns, it suffers from a weakness revealed

by Fig. 2b. When the equator-to-pole thickness ratio decreases, the zone of

equatorial thinning expands toward the pole. In other words, the parameter

ᾱ2 not only affects the equator-to-pole thickness ratio, but it also modifies the

relative extension of the thin and thick zones. Therefore, the parameterization
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(33) is not appropriate for the analysis of the influence of the thin zone size. I

thus define a new parameterization in which the interval [0, π/2] is non-linearly

stretched by a function ψk. As a result, the extension of the thin zone can be

modulated without affecting the equator-to-pole thickness ratio:

α̃(θ) = 1 + α̃2 P2(cosψk(θ)) , (36)

where −1 ≤ α̃2 ≤ 2. The ‘tilde’ notation indicates that the normalization

differs from the one used for ᾱ because the Legendre coefficient of degree zero

differs from one. The term P2(cosψk(θ)) has generally an unlimited expansion

in Legendre polynomials, including a term of degree zero. Nonetheless the

normalization of α does not matter for the computation of stress and strain; it

only affects the stress resultants.

The function ψk(θ) is defined on the interval [0, π/2] by

ψk(θ) =

⎧⎨
⎩

π
2

sinh(2kθ/π)
sinh(k) if k > 0 ,

π
2

tanh(2kθ/π)
tanh(k) if k < 0 .

(37)

It can extended to the interval [0, π] by mirror symmetry about the equatorial

plane. The limit k → 0 yields the parameterization (33):

lim
k→0

ψk(θ) = θ . (38)

Fig. 3 shows that positive values of k correspond to a reduction in the size of

the thin zone. The equator-to-pole thickness ratio is left unchanged since it is

controlled by α̃2. Conversely, negative values of k correspond to an extension

of the thin zone.

[Figure 3 about here.]

4.2. Numerical method

The software Mathematica (Wolfram Research, 2008) has a powerful com-

mand called ‘NDSolve’ for the numerical solution of differential equations. When

there is axial symmetry, the second membrane equation (14) is an ordinary dif-

ferential equation of order four. I found it convenient to solve it as a system of
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two differential equations of order two:

∆′F̄ = −q̄ , (39)

−∆′ (ᾱ q̄) − (1 + ν)A (
ᾱ ; F̄

)
= ∆′w̄ . (40)

where the nondimensional load q̄ is defined by

q̄ = Rα0 q . (41)

The various terms in the above equations can be expanded with the formulas

of A:

∆′F̄ = ∆F̄ + 2F̄ , (42)

∆′ (ᾱ q̄) = (∆ᾱ) q̄ + 2
∂ᾱ

∂θ

∂q̄

∂θ
+ ᾱ (∆q̄) + 2ᾱ q̄ , (43)

A (
ᾱ ; F̄

)
=

(
∂2ᾱ

∂θ2
+ ᾱ

) (
cot θ

∂F̄

∂θ
+ F̄

)

+
(

cot θ
∂ᾱ

∂θ
+ ᾱ

) (
∂2F̄

∂θ2
+ F̄

)
, (44)

with

∆f =
∂2f

∂θ2
+ cot θ

∂f

∂θ
. (45)

In principle the system (39)-(40) should be solved on the segment [0, π] but

the points 0 and π must be excluded from the interval because of the apparent

polar singularities in spherical coordinates. I thus restrict the interval to [a, b]

with a = ε and b = π − ε (ε is a small positive number, for example 0.001).

Four boundary conditions are required. Smooth solutions with axial sym-

metry satisfy

∂F̄

∂θ
|θ=a =

∂q̄

∂θ
|θ=a = 0 , (46)

∂F̄

∂θ
|θ=b =

∂q̄

∂θ
|θ=b = 0 . (47)

Before applying these equations as boundary conditions, I should make a caveat.

The stress function has the particularity that it can be redefined at will because

of the degree-one freedom mentioned in A:

F̄ → F̄ + β cos θ , (48)
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where β is an arbitrary real number. Since cos θ satisfies Eqs. (46)-(47) in the

limit ε→ 0, another condition must be specified in order to fully determine F̄ ,

for example:

F̄ |θ=a = 0 . (49)

This last condition being arbitrary, one should keep in mind that the same

physical problem can be solved with various boundary conditions. The resulting

stress functions only differ by their degree-one content, i.e. by cos θ multiplied

by some constant. The corresponding stresses are of course identical.

Suitable boundary conditions for the interval [a, b] consist of Eq. (49), plus

three conditions chosen among Eqs. (46)-(47). I found it best to specify three

conditions on F̄ and one condition on q̄. In most cases NDSolve also works well

with only Eqs. (46)-(47) as boundary conditions, meaning that its algorithm

chooses one possible solution for F̄ among an infinity (note that the freedom in

the definition of F̄ only appears in the limit ε→ 0). Though it is not necessary,

one can get rid of the cos θ component of F̄ by orthogonalization:

F̄ → F̄ − 3
2

∫ π

0

F̄ cos θ sin θ dθ . (50)

If there is equatorial symmetry, it is sufficient to consider the interval [a, b]

with a = ε and b = π/2. In that case, Eqs. (46)-(47) form a suitable set of

boundary conditions since cos θ violates Eq. (47) when b = π/2. The cos θ

component of F̄ then vanishes.

4.3. Semi-analytical method

If the elastic thickness is constant, the membrane equation (14) is diagonal in

the basis of spherical harmonics. The contraction solution is then of harmonic

degree zero whereas the despinning solution is of degree two (see C). This

straightforward method cannot be used when the elastic thickness is spatially

variable because of the coupling of the different harmonic degrees and orders.

In this section I show that the system of coupled differential equations remains
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manageable under the assumption of axial symmetry. Since the imposed de-

formation and the elastic thickness do not depend on the longitude, only zonal

spherical harmonics contribute.

The problem thus consists in solving the membrane equation (14) with ex-

pansions in zonal spherical harmonics, i.e. Legendre polynomials: ᾱ =
∑
ᾱ� P�,

F̄ =
∑
F̄� P� and w̄ =

∑
w̄� P�. The action of the operators C and A on

Legendre polynomials produces a finite sum of Legendre polynomials which is

computed in G and H (final results are embodied in Eqs. (146)-(147)). If the

expansions are truncated at degree n, the membrane equation takes a matrix

form with each row corresponding to a harmonic degree on which the membrane

equation is projected, except for degree one:

M(n) F̄ = ∆′w̄ , (51)

with the membrane matrix M(n) being defined by

M(n) = C(n) − (1 + ν)A(n) . (52)

C(n) and A(n) are matrices approximating at degree n the operators C and

A, respectively. F̄ and w̄ are vectors containing the coefficients F̄� and w̄�,

respectively. ∆′ is the diagonal matrix with elements δ′� = −�(� + 1) + 2.

The absence of a row for degree one is due to the fact that spherical surface

harmonics of degree one do not belong to the images of the operators C and A
(see H). Correspondingly, there is no coefficient of degree one in the vectors F̄

and w̄ since the membrane equation does not constrain them (see A). Given

a deformation w, the membrane equation in its matrix form can for example

be solved by matrix inversion, yielding the Legendre coefficients of the stress

function:

F̄ =
(
M(n)

)−1

∆′w̄ , (53)

An example of the membrane matrix and of its solution is given in I for an

expansion of ᾱ limited to degree two and a truncation degree equal to 6. If the

thickness variation is symmetric about the equatorial plane, only Legendre poly-

26



ACCEPTED MANUSCRIPT 

nomials of even degree will contribute to the solution because the deformation

is also symmetric (degree zero or two).

Since ᾱ = 1+ ᾱ2P2 is finite even if hE or hP vanishes (though not both), the

nondimensional membrane equation can in principle be solved with a vanishing

thickness at the equator or at the pole. Problems of divergence however appear

in these extreme cases for the nondimensional stress function and the stress

resultants, though the stresses and the strains are well behaved. The membrane

matrix M(n) is invertible in the physical range of ν ∈ [0, 1/2] and for ᾱ2 ∈ [−1, 2],

as can be seen from the examination of its eigenvalues.

If ᾱ is limited to degree two, the approximate membrane equation (51) can

also be solved by expanding F̄ in ᾱ2 and solving order by order:

F̄ =
∞∑

p=0

(ᾱ2)p F̄(p) . (54)

It is convenient to split the membrane matrix so that the dependence in ᾱ2

becomes explicit:

M(n) = M(n)
0 + ᾱ2 M(n)

2 . (55)

The matrix M(n)
0 is diagonal so that its inversion is straightforward. The solu-

tion is then generated order by order in ᾱ2 by a recurrence relation:

F̄(p+1) = −ᾱ2

(
M(n)

0

)−1

M(n)
2 F̄(p) , (56)

which is initiated with F̄(0), the solution of M(n)
0 F̄ = ∆′w̄. This method can be

generalized to an ᾱ of degree higher than two. Since the largest eigenvalues of the

iteration matrix appearing in Eq. (56) tend to 1 (from below) as the truncation

degree increases, the series (54) may diverge for near extremal values of ᾱ2. If

|ᾱ2| < 1, the series converges but the convergence can be very slow if ᾱ2 is close

to -1. Even if it is not the best numerical method, the ᾱi-expansion provides

an explicit solution which is helpful to understand properties such as the rule

governing the decrease of the Legendre coefficients of the solution (see I) or the

pseudo-nodes in the stress and strain components (see F and J).

27



ACCEPTED MANUSCRIPT 

5. Tectonic patterns

5.1. Stress and faulting

Tectonic patterns can be predicted from the analysis of stresses. According

to Anderson’s theory of faulting, the faulting style depends on how the vertical

(or radial) stress compares with the horizontal (or tangential) stresses (Melosh,

1977; Jaeger et al., 2007; Schultz et al., 2009). Thrust faults, strike-slip faults

and normal faults occur if the radial stress is respectively least compressive,

intermediate or most compressive among the principal stresses. Thrust faults

and normal faults strike in the direction of the intermediate principal stress,

whereas strike-slip faults strike in a direction at about 30◦ from the direction of

the most compressive stress. The radial stress vanishes since faults occur at the

surface (this assumption is criticized by Golombek (1985)). Anderson’s theory

presupposes that all principal stresses are compressive, at least when including

the lithostatic pressure that must be added to the stresses computed from thin

shell theory. I will briefly mention below the possible occurrence of near-surface

tensile failure when one (or more) principal stress is extensional. This point is

discussed in more depth by Melosh (1977) and Schultz and Zuber (1994).

Once the contraction solution of the membrane equation (2) has been found

with the methods of Section 4, it is possible to compute stress resultants, stresses

and strains with the formulas of Section 2. The nondimensional stress is suf-

ficient for the determination of tectonic patterns since the physical magnitude

of the stress is only useful when comparing the predicted stresses with a failure

criterion. Nonetheless figures represent dimensional quantities for values of pa-

rameters typical of terrestrial planets: E = 100 GPa, ν = 0.25, average inverse

thickness equal to 1/(100 km), contraction of 0.1% and flattening reduction of

0.15%. I initially give examples with ᾱ limited to harmonic degree two, i.e. ᾱ is

parameterized by Eq. (33). Most basic characteristics of the tectonic patterns

are indeed independent of the precise latitudinal variation of the elastic thick-

ness as long as it smoothly varies from the pole to the equator. Figs. 4 and 5

show the stress resultants and the stresses for the contraction and despinning
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of a lithosphere thinner at the equator. The duality between contraction and

despinning solutions appears clearly on Fig. 4. The stress curves for varying

ᾱ2 seem to cross at a fixed point on Fig. 5 but this is only true at first order

in ᾱ2 (see F and J). The case of polar thinning is illustrated by Fig. 1, which

shows the strains for expansion and despinning (stress curves are very similar).

Besides I will resort to the parameterization (36) in order to demonstrate two

effects due to the variation in size of the thin zone: it modifies the position of

the extremum of the meridional stress and it affects the orientation of thrust

faults when contraction is combined with despinning. Fig. 6 shows the stresses

for contraction and despinning when the thin zone size is extended or reduced.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

5.2. Contraction or expansion

For the contraction of a shell thinner at the equator, the stresses have the

following characteristics:

• stresses are everywhere compressive.

• the meridional stress is more compressive than the azimuthal stress (Fig. 5a);

This situation favors the development of thrust faults striking east-west.

• the stress is most compressive at the equator (Fig. 5a). This situation

favors the development of thrust faults at the equator. Note that the

stress resultant is most compressive at the poles (Fig. 4a).

The contraction fault pattern predicted with Anderson’s theory is thus signif-

icantly modified by a variable elastic thickness: instead of thrust faults with

random strikes, the predicted pattern consists of thrust faults striking east-west

and preferably formed at the equator. The third characteristic is not strictly

true for all thickness profiles. The curve k = −2 in Fig. 6a shows that two
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things happen if the thin zone has a large extension. First stress curves become

nearly flat in that zone, where the stresses approach the value predicted for

a lithosphere of constant thickness. Second the latitude of the most compres-

sive meridional stress moves away from the equator toward the latitude where

the thick zone begins. This peak in compressive stress is however not well-

pronounced and for all practical purposes the most compressive stress can be

said to occur in the whole thin zone. If the thin zone is very localized, stress

curves become flat in the thick zone and approach the value predicted for a

lithosphere of constant thickness (this is not yet apparent on Fig. 6a because k

should be much larger than 2).

If the shell is expanding (see Fig. 1a), stresses change sign, so that Anderson’s

theory predicts normal faults striking east-west and preferably formed at the

equator. Near the surface tensile failure is also possible because lithostatic

pressure might be too small to render all stresses compressive. It would then

lead to the appearance of joints striking east-west, because rocks are much

weaker in extension than in compression.

If the contracting shell is thinner at the poles, the azimuthal stress is more

compressive than the meridional stress and they are both most compressive at

the poles, so that the tectonic pattern consists of thrust faults striking north-

south and preferably forming near the poles. If an expanding shell is thinner

at the poles (see Fig. 1a), the azimuthal stress is more extensional than the

meridional stress and they are both most extensional at the poles, so that the

tectonic pattern consists of normal faults striking north-south and preferably

forming near the poles.

5.3. Despinning

For the despinning of a shell thinner at the equator, the stresses have the

following characteristics:

• the meridional stress is everywhere extensional, whereas the azimuthal

stress is extensional near the poles and compressive near the equator. This
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situation favors the development of normal faults near the poles and strike-

slip faults near the equator. The limit between the faulting provinces

is given by the latitudes for which the azimuthal stress vanishes. These

boundaries are at about ±48◦ latitudes (independent of ν) when the elastic

thickness is constant, and move toward the poles if the elastic thickness

decreases at the equator.

• the meridional stress is more extensional - or less compressive - than the

azimuthal stress. This situation either favors normal faults striking east-

west, or strike-slip faults striking at about 60◦ from the north (depending

on whether the tangential stresses have the same sign or not).

• the meridional stress is most extensional at the poles if the elastic thick-

ness is constant. The maximum moves toward the equator if the elastic

thickness variation is large enough (if ᾱ is limited to degree two, the max-

imum moves away from the pole if ᾱ2 < −0.44). If the equator-to-pole

thickness ratio is small (threshold ≈ 1/4) and the thin zone is not too large

(threshold k ≈ 1 if equator-to-pole thickness ratio=1/10), the most exten-

sional meridional stress can be at the equator but it is a rather extreme

situation (see Fig. 6b).

The despinning fault pattern predicted with Anderson’s theory is thus not sub-

stantially altered by the variation of the elastic thickness. There is an equatorial

province of strike-slip faults striking at about 60◦ from the north, plus two po-

lar provinces of normal faults striking east-west. The boundaries between the

faulting provinces move toward the poles as the elastic thickness becomes thin-

ner at the equator. As in the case of expansion, tensile failure may occur near

the surface, leading to the production of east-west joints. In the rather extreme

case where the meridional stress is at the equator, these joints would first form

at the equator.

If the shell is spinning up, stresses are the same except for a sign change, so

that the tectonic pattern consists of an equatorial province of strike-slip faults
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striking at about 30◦ from the north and polar provinces of thrust faults striking

east-west.

If the shell is thinner at the poles (see Fig. 1b), the tectonic pattern is similar

to the one for a constant elastic thickness, except that the boundaries between

the tectonic provinces shift toward the equator as the shell becomes thinner at

the poles.

5.4. Contraction plus despinning

Let us now consider tectonics due to simultaneous contraction and despin-

ning. I initially assume that the lithosphere is thinner at the equator and I use

the parameterization (33) to start with. Results for the case of polar thinning

are given at the end. Fig. 7 (inspired by Fig. 5 of Melosh (1977)) represents the

latitudes of the boundaries between tectonic provinces when a varying amount

of contraction (or expansion) is added to despinning (Poisson’s ratio is cho-

sen to be 0.25 but only weakly affects the position of the boundaries). The

proportion between contraction and despinning is parameterized by the con-

traction/despinning ratio χ:

χ = − w̄0

w̄2
, (57)

which is zero if there is only despinning, positive if there is additional contrac-

tion, negative if there is additional expansion. Fig. 8 illustrates some possible

tectonic patterns. The predicted tectonic pattern has the following features:

• If there is no contraction or expansion, strike-slip faults are predicted near

the equator and east-west normal faults near the poles. The boundaries

of tectonic provinces move by a few degrees with respect to the case of

constant elastic thickness.

• If the despinning planet also contracts, the strike-slip fault province ex-

tends toward the poles. Beyond a first threshold of contraction, an area of

north-south thrust faults appears near the equator; this area gets larger

if contraction increases, whereas the strike-slip fault province is split in
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two smaller parts which are displaced toward the poles. Beyond a second

threshold of contraction, the provinces of normal and strike-slip faults

vanish. Thrust faults are then predicted over the whole planet. The two

thresholds have a moderate dependence on the equator-to-pole thickness

ratio and a weak dependence on Poisson’s ratio.

• When contraction exceeds the first threshold, thrust faults striking north-

south start to form. Since thrust faults for pure contraction strike east-

west, the orientation of the faults must change for a large enough contrac-

tion. If ᾱ is limited to degree two, Eqs. (28)-(29) show that the orienta-

tion of thrust faults switches everywhere from north-south to east-west if

w̄2 = ᾱ2w̄0, that is if χ = −1/ᾱ2.

• If the despinning planet also expands, the strike-slip faulting province

becomes smaller and vanishes for a large enough expansion. East-west

normal faults are then predicted all over the planet. If the thickness

variation is small, normal faults preferably form in polar areas. Beyond

some expansion threshold, normal faults preferably form in the equatorial

region, except if the thickness is constant.

If ᾱ is not limited to degree two, the orientation of thrust faults may depend

on the latitude. With the assumptions ᾱ2, ᾱ4 � 1 and other ᾱi = 0 (i > 4),

Eq. (32) gives the sign of the stress difference at the threshold w̄2 = ᾱ2w̄0.

If ᾱ4 < 0, the change from north-south to east-west thrust faults first occurs

in the polar region. As contraction increases, the frontier between provinces

of thrust faults with different orientations shifts from the pole to the equator.

Conversely, the change from north-south to east-west thrust faults first occurs

in the equatorial region if ᾱ4 > 0 and the frontier moves from the equator to the

pole as contraction increases. These two cases are illustrated by Figs. 9a,b where

the parameterization (36) is used: negative values of ᾱ4 correspond to negative

values of k (enlargement of thin zone), whereas positive values of ᾱ4 correspond

to positive values of k (reduction of thin zone). For a given k, one can select a

preferred latitude for the boundary between these provinces and then read on
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the x-axis the required contraction/despinning ratio χ. Using the same symbols

as in Eq. (30), I can relate the contraction to the rotation variation:

δR = −χhT
2

(Ω2
f − Ω2

i )R
2

3g
. (58)

The above equation results from the substitution of Eqs. (89) and (92) into

Eq. (57). The important conclusion is that a particular combination of con-

traction and despinning leads to tectonic provinces of thrust faults differing in

orientation.

Finally I consider simultaneous contraction and despinning on a lithosphere

thinner at the poles. In contrast with the case of lithospheric thinning at the

equator, the tectonic pattern when contraction (resp. expansion) is dominant

consists of north-south thrust faults (resp. normal faults) preferably formed near

the poles. Hence thrust faults do not change in orientation as the amount of

contraction increases but the area where they preferably form is displaced from

the equator to the poles. The change in orientation occurs in the expansion

regime: normal faults switch from striking east-west to north-south when w̄2 =

ᾱ2w̄0 (see Eqs. (28)-(29) with ᾱ2 > 0). Near the threshold, provinces of normal

faults with different orientations (north-south or east-west) can coexist.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

6. Applications

6.1. Iapetus’ ridge

Cassini images revealed in December 2004 an extraordinary feature on Sat-

urn’s satellite Iapetus, a high ridge running along the equator spanning more

than half of its circumference (Porco et al., 2005). High-resolution imaging is

not available on the whole surface, but it seems that impact basins are present

where the ridge has not been detected (Denk et al., 2008). It is thus reasonable
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to assume that the ridge originally spanned the whole circumference. In well-

imaged areas, it has an average width of 60 − 70 km and heights up to 18 km

(Giese et al., 2008; Denk et al., 2008).

Several theories have been proposed to explain the origin of the ridge, in-

cluding deposition of ring remnants, convection, despinning and compaction.

The morphologic analysis of the ridge by Giese et al. (2008) excluded an exoge-

nous origin due to the accretion of a now-vanished ring (Ip, 2006). Convection

(Czechowski and Leliwa-Kopystyński , 2008) cannot create a sufficiently narrow

topographic rise, even if a width of 100 − 200 km is generously attributed to

the ridge (Roberts and Nimmo, 2009). Despinning (Porco et al., 2005; Melosh

and Nimmo, 2009) cannot account for equatorial faults striking east-west, even

if the lithospheric thickness is variable (see Section 5.3; dikes are discussed be-

low). Castillo-Rogez et al. (2007) suggested that the ridge is due to surface

reduction caused either by despinning or by compaction, without explaining

how this surface reduction could be localized along the equator.

The tectonic patterns studied in this paper provide new possibilities. In par-

ticular, the contraction of a lithosphere thinner at the equator leads to a tectonic

pattern of compressional faults striking east-west and preferably formed at the

equator. The two assumptions underlying this mechanism are not arbitrary.

First, the lithosphere must be thinner at the equator because of the latitudinal

variation in solar insolation, as shown in Figs. 13 and 14 of Howett et al. (2010).

Second, a collapse of porosity during the first 15 Myr of Iapetus occurs in the

interior model of Castillo-Rogez et al. (2007), leading to a global contraction of

about 40 km during which the average lithospheric thickness is less than 20 km.

Though it is not known whether faulting occurred at the ridge, other tectonic

processes such as buckling or folding will result in the same orientation and lo-

cation since the meridional stress is more compressive than the azimuthal stress

and the maximum compression is at the equator.

How does despinning affect the contraction hypothesis? Iapetus is at present

locked in a 1:1 resonance with Saturn: its rotation period and orbital period

are both equal to 79 days. This synchronicity is generic of all large satellites

35



ACCEPTED MANUSCRIPT 

which initially rotated much faster. Moreover Iapetus has the peculiarity of be-

ing very flattened (equatorial and polar radii differ by 35 km), though it should

be nearly spherical if it were hydrostatic. Its present shape is well fitted by

a homogeneous hydrostatic ellipsoid with a rotation period of about 16 hours

(Castillo-Rogez et al., 2007). The most obvious explanation is that Iapetus had

an initial rotation period of 16 hours or less and that its shape froze while de-

spinning. The lithosphere must have been several hundred kilometer thick when

the rotation period reached 16 hours, otherwise the body would not have re-

tained its flattened shape. In the evolution model of Castillo-Rogez et al. (2007),

despinning is a rapid process occurring 800 Myr after formation, at which time

the lithosphere has a thickness of about 240 km. In this scenario, contraction

happens long before despinning, when the lithosphere is thin enough to be easily

deformed. In such a case the east-west faulting pattern due to contraction is

not directly affected by despinning.

If contraction occurred before despinning, a question to be addressed is the

absence of a superimposed tectonic pattern due to despinning. This problem is

not unique to Iapetus. Though all large satellites underwent despinning, none

exhibits unambiguous evidence of it in its global tectonic grid. As for Iapetus,

one way out is to postulate an initial period not much shorter than 16 hours. If

the lithosphere is thick enough, the flattening change is small and the associated

stresses not large enough to cause faulting.

How thick should the lithosphere be in order to resist despinning stresses?

The simplest failure criterion is that of Coulomb (Jaeger et al., 2007), which

consists of a linear relation between the extreme principal stresses. For thrust

and normal faults, this criterion can be rewritten as a constraint between the

maximum differential stress σf = |σ1 − σ3| (σ1 and σ3 are the most and least

compressive stresses, respectively) and the vertical stress σz = ρgz:

σf = a+ b σz , (59)

where a is the yield strength of ice at zero pressure and σz is positive. If

σz ≤ 12 MPa, the constants (a, b) for ice at a temperature of about 100 K
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are equal to (3.4 MPa, 1.86) and (1.2 MPa, 0.65) for compression and extension,

respectively (Beeman et al., 1988). Failure starts either at the poles or at the

equator since the differential stress is maximum at these locations. At the

poles, normal faults start to form when the meridional stress exceeds the yield

strength of ice for extension. At the equator, thrust faults form instead of strike-

slip faults when the shell is thick (see D): faulting begins when the azimuthal

stress exceeds (in absolute value) the yield strength of ice for compression. As

discussed in Section 2, a thick lithosphere can usually be approximated by a

shell of constant thickness so that Eqs. (108)-(109) become valid. Iapetus’ mean

radius is 735.6 km, its mean density is 1083 kg/m3 and thus its surface gravity

is 0.22 m/s2 (Thomas et al., 2007). Young’s modulus is 11.7 GPa and Poisson’s

ratio is 0.325 (see D), but I compute Love numbers with ν = 0.5 (see Fig. 10). If

the initial period is 16 hours, normal faults form at the poles if the thickness is

smaller than 400 km whereas thrust faults form at the equator if the thickness is

smaller than 220 km. These thresholds are respectively reduced to 325 km and

150 km if faulting is initiated at 5 km depth. There is also a lot of uncertainty in

the experimental value of the yield strength of ice at zero pressure: Beeman et al.

(1988) consider alternative fits leading to yield strength ranges of [0, 2.8] MPa for

extension and [0, 6.8] MPa for compression. The thickness thresholds associated

with the upper values of these ranges are 270 km for normal faults and 125 km

for thrust faults. Combining the effect of fault initiation at depth with high

yield strength values, one can obtain a thickness threshold for normal faults

lower than 240 km, which is the lithospheric thickness at the time of despinning

in the model of Castillo-Rogez et al. (2007) (note that the initial rotation period

is 7 hours in that model). Therefore, it is conceivable that Iapetus’ lithosphere

resisted failure during despinning if the initial period was not much shorter than

16 hours.

Let us now examine what happens if contraction and despinning are simulta-

neous. As shown in Figs. 7 and 8, the combination of contraction and despinning

leads to three possible faulting patterns at the equator, given in order of increas-

ing contraction: strike-slip faults, north-south thrust faults, or east-west thrust
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faults. The amount of contraction required to yield the third outcome is given

by Eq. (30), at least if the lithospheric thickness varies as in Eq. (33). As a

starting point, I set the initial rotation period to 16 hours, the equator-to-pole

thickness ratio to 1/2 (i.e. ᾱ2 = −2/5) and the Love number hT
2 to 5/2 (limit

of vanishing lithospheric thickness). The contraction threshold between north-

south and east-west thrust faults is then δR ≈ 60 km which is large, though of

the same order of magnitude as the one due to porosity collapse in the model

of Castillo-Rogez et al. (2007). Of course, the amount of contraction due to

porosity depends on the initial porosity profile which is unknown. Other values

of the parameters strongly affect the result. On the one hand, the threshold

increases with the square of the initial rotation rate. On the other hand the

threshold decreases as the lithospheric thickness increases, because the flatten-

ing variation is then smaller. The two-layer incompressible model discussed in

D yields δR ≈ 13 km and δR ≈ 0.9 km if the lithospheric thickness is equal to

20 km and 240 km, respectively. Furthermore the threshold not only decreases

with the equator-to-pole thickness ratio (see Fig. 7b), but is also affected by the

precise form of the thickness variation: Fig. 9b shows that a reduction of the

thin zone can decrease the value of the threshold at the equator by a factor of

two. Therefore, simultaneous contraction and despinning may lead, or not, to

east-west thrust faults. For a given amount of contraction, the outcome sen-

sitively depends on the initial rotation rate and on the lithospheric thickness

(average thickness, equator-to-pole thickness ratio, thin zone size).

Besides the contraction hypothesis, an episode of expansion in Iapetus’ evo-

lution due to differentiation (Squyres and Croft , 1986) would lead to equatorial

normal faults striking east-west and forming first at the equator. Iapetus’ ridge

does not look like normal faulting, but the same extensional stress field is com-

patible with the intrusive dike origin for the ridge proposed by Melosh and

Nimmo (2009). In that scenario, the simultaneous occurrence of despinning is

generally not a problem because it is only required that the meridional stress

be most extensional at the equator. This is true for moderate amounts of ex-

pansion, the value of the threshold depending on the thickness profile. The
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expansion threshold is for example 7.5 times smaller in magnitude than the

contraction threshold discussed above, assuming an equator-to-pole thickness

ratio of 1/2 (it coincides in this particular case with the expansion threshold for

normal faults at the equator). Note that despinning can also be favorable to

the formation of an east-west dike at the equator, but the conditions are rather

stringent: the equator-to-pole thickness ratio must be smaller than 1/4 and the

thin zone not too large (see Fig. 6b).

6.2. Mercury’s scarps

Lobate scarps on Mercury are linear or arcuate escarpments varying in length

from about 20 km to 500 km and in height from a few hundred meters to about

3 km (Strom et al., 1975; Watters et al., 2009). They are the most common

tectonic features on Mercury and are thought to be the result of thrust faulting.

The predominant north-south orientation of lobate scarps was first attributed to

illumination bias but Watters et al. (2004) showed that this preferred orientation

is real. The combination of planetary contraction and despinning is a possible

explanation for this pattern (Melosh and Dzurisin, 1978; Pechmann and Melosh,

1979; Dombard and Hauck , 2008). Another interesting observation is that lobate

scarps in the southern polar region are as often east-west than north-south (see

Fig. 2.23 in Watters and Nimmo (2009)). East-west lobate scarps are much rarer

in the northern polar region, but the total length of scarps of any orientation

is also much smaller than in the south. Let us suppose that lobate scarps

predominantly strike north-south from 50◦ S to 50◦ N latitude and east-west in

the polar regions, as done by King (2008). Fig. 9a shows that simultaneous

contraction and despinning may lead to this pattern if the thin zone is rather

extended. As mentioned in the introduction, the lithosphere could be thinner by

a factor of two at the equator in comparison with the poles (McKinnon, 1981;

Melosh and McKinnon, 1988). In that case, the required contraction/despinning

ratio should be close to two, assuming that the shape parameter k is between

−1 and −2. Substituting χ = 2 in Eq. (58), I obtain δR ≈ 20 km if hT
2 = 5/2

and the initial rotation period is 20 hours (g = 3.7 m/s2, R = 2440 km). The
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contraction threshold is somewhat reduced by more realistic values of hT
2 . The

thickness of the lithosphere at the time of the formation of lobate scarps is

difficult to pinpoint: arguments have been made for values of 25−30 km and

100−200 km (see a summary in Watters and Nimmo (2009)). In any case,

Fig. 10a shows that the secular Love number hT
2 is not very sensitive to the

lithospheric thickness. The contraction threshold is only reduced to 15 km and

12 km if the lithospheric thickness is equal to 30 km and 100 km, respectively

(see D for the value of hT
2 ). The radius contraction at the origin of lobate scarps

likely being in the range 1−2 km (Strom et al., 1975; Watters et al., 2009), it is

far too small to make possible the existence of east-west thrust faults.

One kilometer of contraction, combined with despinning, is also too small to

generate north-south thrust faults all over the planet, though two kilometers are

enough if the yield strength of rock is neglected (use Eq. (58) with χ determined

from Fig. 7a). Yet another problem is that lobate scarps are more abundant in

the south than near the equator, contrary to the prediction of contraction plus

despinning. Dombard and Hauck (2008) thus suggested that a larger amount of

contraction occurred during despinning in the early history of Mercury (their

contraction threshold of 3−5.5 km is however significantly reduced if the factor

hT
2 is taken into account). The Late Heavy Bombardment then erased the

faults and new scarps were produced along the old fault lines by a later global

contraction event of smaller magnitude, when the planet had despun. Such a

scenario widens the choice of the relative weights of despinning and contraction.

On the one hand despinning needs not be finished when the early tectonic grid

forms. On the other hand early contraction can be rather large in thermal

evolution models: 2.5−7.5 km in Dombard and Hauck (2008), with an upper

bound of 17 km if the core completely solidifies (Solomon, 1976) (measurements

of Mercury’s librations however indicate that the core is at least partially molten,

see Margot et al. (2007)). In conclusion, it is possible to imagine a sequence of

events in which various events of contraction and despinning lead to thrust

faults that strike north-south near the equator and east-west near the poles.

However the observation that the total scarp length increases from north to
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south remains to be explained. East-west thrust faults could instead be the

result of the reactivation of early normal faults due to despinning (Watters and

Nimmo, 2009). The various orientations of lobate scarps could also be due to a

combination of despinning, contraction and true polar wander (Matsuyama and

Nimmo, 2009).

7. Conclusions

The main result of the paper can be very simply stated: the contraction or

expansion of a planet with lithospheric thinning at the equator results in tectonic

features striking east-west, preferably formed in the equatorial region. If the

lithosphere is thinner at the poles, contraction or expansion generates tectonic

features striking north-south. In general, despinning alone cannot produce east-

west features near the equator. One exception could be the appearance of east-

west joints or dikes at the equator if the thickness variation is large and strongly

peaked at the equator.

A spectacular and rather unique illustration of an east-west structure is the

equatorial ridge on Iapetus, which can be explained by the theory developed

in this paper. The mountainous structure of the ridge is suggestive of a com-

pressional event but an extensional process is not excluded. Since despinning

inhibits the formation of east-west compressional tectonics, the ridge probably

formed long before Iapetus had despun, but this is not required if the contraction

is large enough.

Contraction and despinning stresses can be computed either numerically or

with a semi-analytical method, which yields a perturbation expansion in the

parameters describing the thickness variation. First order formulas for stresses

are sufficient if the thickness varies by a factor of two. In the simplest case

(inverse thickness of degree two), contraction stresses are well approximated by

the elementary formulas (25)-(26), while Eqs. (128)-(129) are valid at first order

for an arbitrary thickness profile.

The combination of radius change and despinning generates new tectonic
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patterns when the lithospheric thickness is variable. On the one hand, con-

traction plus despinning makes possible the coexistence of tectonic provinces of

thrust faults differing in orientation if the lithosphere is thinner at the equator.

Lobate scarps on Mercury roughly follow such a pattern but the small amount

of contraction associated with the scarps makes it necessary to resort to rather

complicated models involving fault reactivation. On the other hand, expansion

plus despinning may lead to the coexistence of tectonic provinces of normal

faults differing in orientation if the lithosphere is thinner at the poles. In both

cases the magnitude of the contraction/despinning ratio must be large otherwise

the predicted patterns are similar to those valid for a lithosphere of constant

thickness.

Global contraction or expansion occur in many models of interior evolution

and are often assumed to be the cause of planetary tectonics. Since lithospheric

thinning due to the latitudinal variation in solar insolation must be a generic

phenomenon, it is surprising that an east-west orientation of tectonic features

at the planetary scale is so rare in the solar system. One reason could be that

the thinning is too small to have a significant effect. Also, tidal heating might

counteract the effect of the variation in solar insolation. Another explanation

is the simultaneous occurrence of despinning. Finally, it is possible that global

contraction or expansion events generally happen very early in the history of

the planet so that either faults do not appear because the lithosphere is not yet

formed, or faults do form but the associated tectonic pattern is subsequently

erased. Further inferences about the origin of tectonic features depend on more

complete tectonic mapping, which is underway for Mercury with Messenger data

and for Saturn’s icy satellites with Cassini data.
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A. Differential operators on the sphere

The operators Oi are linear differential operators of the second degree on

the sphere:

O1 =
∂2

∂θ2
+ 1 , (60)

O2 = csc2 θ
∂2

∂ϕ2
+ cot θ

∂

∂θ
+ 1 , (61)

O3 = csc θ
(

∂2

∂θ∂ϕ
− cot θ

∂

∂ϕ

)
, (62)

where θ is the colatitude and ϕ is the longitude. They give zero when applied

on spherical surface harmonics of degree one.

The scalar differential operator ∆′ is defined by (Beuthe, 2008):

∆′ = O1 + O2 (63)

= ∆ + 2 , (64)

where ∆ is the spherical Laplacian (called surface Laplacian in Beuthe (2008)).

Spherical surface harmonics of degree � are eigenfunctions of ∆′ with eigenvalues

(Blakely, 1995, pp. 121-122)

δ′� = −�(�+ 1) + 2 . (65)

The scalar differential operators C and A appearing in the membrane equa-

tion (2) are defined by

C(a ; b) = ∆′ (a∆′ b) , (66)

A(a ; b) = (O1 a)(O2 b) + (O2 a)(O1 b) − 2 (O3 a)(O3 b) . (67)

Since C(a ; b), A(a ; b) and ∆′b give zero if b is a spherical surface harmonic of de-

gree one, the membrane equation (2) does not constrain the degree-one compo-

nents of the stress function F and of the transverse displacement w (translation

invariance).
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C and A are linear in a and in b. If a is constant A(a ; b) = a∆′b whereas

A(a ; b) = b∆′a if b is constant, so that the following identities hold:

C (1 ; b) − (1 + ν)A (1 ; b) = (∆′ − 1 − ν)∆′b . (68)

C (a ; 1) − (1 + ν)A (a ; 1) = (1 − ν)∆′a . (69)

B. Operators Oi on Legendre polynomials

Legendre polynomials P�(x) are defined in many books (Whittaker and Wat-

son, 1935; Blakely, 1995). I only give those that appear in the text, in the form

P�(cos θ):

P0 = 1 , (70)

P2 =
1
4

(3 cos 2θ + 1) , (71)

P4 =
1
64

(35 cos 4θ + 20 cos 2θ + 9) , (72)

P6 =
1

512
(231 cos 6θ + 126 cos4θ + 105 cos2θ + 50) . (73)

The action of the operators Oi defined by Eqs. (60)-(62) on Legendre poly-

nomials P�(cos θ) is

O1 P� =
(
1 − �2

)
P� + Σ� , (74)

O2 P� = (1 − �)P� − Σ� , (75)

O3 P� = 0 , (76)

where

Σ� =
p∑

r=1

(2 �− 4 r + 1)P�−2r ,

= (2�− 3)P�−2 + (2�− 7)P�−4 + ... (77)

with p = �/2 for even � and p = (�−1)/2 for odd �. The action of O2 is obtained

from an expression for the first derivative of a Legendre polynomial found in

Whittaker and Watson (1935, p. 330). The action of O1 is then obtained from

Eqs. (63) and (65).
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The values of O1P� and O2P� are equal at the poles:

OiP�|θ=0 =
1
2
δ′� (i = 1, 2) , (78)

OiP�|θ=π =
(−1)�

2
δ′� (i = 1, 2) , (79)

where δ′� is defined by Eq. (65).

Since the coefficients multiplying the Legendre polynomials in Eqs. (74)-(75)

are independent of θ, the operators Oi can be represented as matrices acting

on vectors of Legendre coefficients. The action of O1 on a vector of Legendre

coefficients of degrees 0, 2, 4 and 6 is represented by the matrix

O(6)
1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

0 −3 5 5

0 0 −15 9

0 0 0 −35

⎞
⎟⎟⎟⎟⎟⎟⎠
. (80)

The action of O2 on a vector of Legendre coefficients of degrees 0, 2, 4 and 6 is

represented by the matrix

O(6)
2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1

0 −1 −5 −5

0 0 −3 −9

0 0 0 −5

⎞
⎟⎟⎟⎟⎟⎟⎠
. (81)

C. Constant thickness: thin shell

When the shell thickness h is constant, the membrane equation (2) becomes

(∆′ − 1 − ν)∆′F =
Eh

R
∆′w , (82)

where I used the identity (68). Eq. (82) is diagonalized by expanding F and w

in spherical surface harmonics whose coefficients (� �= 1) satisfy (see Eq. (65))

F�m =
Eh

R

1
−�(�+ 1) + 1 − ν

w�m , (83)

The index m refers to the order which is equal to zero under the assumption

of axial symmetry. The component of degree one remains indeterminate. The
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stress function generates the stresses according to Eqs. (4)-(5). The action of

Oi on Legendre polynomials of degree 0, 2, 4, 6 is given by Eqs. (80)-(81).

For a contracting shell, w = w0P0 and the stress function is constant (P0 =

1):

FC =
Eh

1 − ν

w0

R
P0 . (84)

The non-zero stresses are

σC
θθ = σC

ϕϕ =
E

1 − ν

w0

R
. (85)

For a despinning shell, w = w2P2 and the stress function reads

FD = − Eh

5 + ν

w2

R
P2 . (86)

The non-zero stresses are

σD
θθ = − E

5 + ν

w2

R
(−P2 − 1) , (87)

σD
ϕϕ = − E

5 + ν

w2

R
(−3P2 + 1) . (88)

The coefficient w2 can be related to the flattening variation δf (δf < 0 for

despinning) by

w2 = −2
3
Rδf . (89)

After substitution of Eqs. (71) and (89), despinning stresses (Vening-Meinesz ,

1947; Melosh, 1977) read

σD
θθ = − E

5 + ν

δf

6
(3 cos 2θ + 5) , (90)

σD
ϕϕ = − E

5 + ν

δf

6
(9 cos 2θ − 1) . (91)

The flattening is related to the angular rate Ω by

f = hT
2

Ω2R

2g
, (92)

where g is the surface gravity and hT
2 is the degree-two tidal Love number for

radial displacement (Matsuyama and Nimmo, 2008).
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For a deformation of degree four, w = w4P4 and the stress function reads

FE = − Eh

19 + ν

w4

R
P4 . (93)

The non-zero stresses are

σE
θθ = − E

19 + ν

w4

R
(−3P4 − 5P2 − 1) , (94)

σE
ϕϕ = − E

19 + ν

w4

R
(−15P4 + 5P2 + 1) . (95)

D. Constant thickness: thick shell

In a tidal or centrifugal potential, the radial deformation of the surface of

a spherically stratified planet is parameterized by the Love number hT
2 , as in

Eq. (92). Other Love numbers noted lT2 and kT
2 parameterize the tangential de-

formation of the surface and the gravity perturbation at the surface induced by

a tidal or centrifugal potential (Lambeck , 1980). Love numbers are complicated

functions of the internal planetary structure. A simple formula exists for an in-

compressible body of uniform density and shear modulus (see below), but this

model is not appropriate for long-term processes such as despinning. Stresses

indeed relax by viscous flow or creep everywhere within the planet except in the

lithosphere, which is by definition rigid on geologic time scales. Internal layers

in which stresses have relaxed are modeled as fluid, inertial forces are neglected

(static limit) and the resulting Love numbers are called secular (Matsuyama and

Nimmo, 2008). The simplest interior model including a lithosphere is a two-layer

spherically stratified planet made of an incompressible fluid core surrounded by

an incompressible elastic lithosphere (Melosh, 1977). A more realistic density

profile is obtained by dividing the planet into several homogeneous layers, each

of constant thickness. Tidal Love numbers for such models are readily computed

with the propagator matrix technique (Sabadini and Vermeersen, 2004). The

assumption of incompressibility is not realistic but satisfactory for our purpose,

since the main uncertainty regarding secular Love numbers lies in the unknown

thickness of the lithosphere.
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In the limit of vanishing core radius, the two-layer model gives the degree-

two tidal Love numbers for a homogeneous incompressible body (Love, 1944,

pp. 257-259):

hT
2 =

5
2

(
1 +

19
2

µ

ρgR

)−1

, (96)

lT2 =
3
10
hT

2 , (97)

kT
2 =

3
5
hT

2 . (98)

R is the radius, ρ is the density, g is the surface gravity and µ is the shear

modulus. Note that Munk and MacDonald (1960) give an incorrect formula

for lT2 while Lambeck (1980) gets it right. Love numbers for a hydrostatic

homogeneous planet are obtained by setting µ = 0: hT
2 = 5/2 and kT

2 = 3/2.

The Love number lT2 does not exist for a hydrostatic body since displacements in

a fluid are indeterminate in the static limit, apart from the radial displacement

at the surface.

In the limit of vanishing elastic thickness, the two-layer incompressible model

gives the following degree-two tidal Love numbers:

hT
2 =

5
2
, (99)

lT2 =
3
11
hT

2 , (100)

kT
2 =

3
5
hT

2 . (101)

As expected, hT
2 and kT

2 coincide with the values for a homogeneous hydrostatic

body. More generally, a lithosphere of vanishing thickness neither affects the

shape of the body nor its gravitational field, whatever the internal density dis-

tribution. However lT2 differs from the value for a homogeneous incompressible

body since the presence of a membrane modifies tangential displacements at the

surface.

I now show that the value of lT2 given by Eq. (100) agrees with the mem-

brane limit of thin shell theory. Toroidal displacement is absent when the shell

thickness is constant (axial symmetry is actually sufficient), assuming that there
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is no toroidal external potential. The tangential displacement v can then be

expressed as the surface gradient of a potential S (Beuthe, 2008):

v = ∇̄S . (102)

The displacement potential S is related to the stress function by Eq. (71) of

Beuthe (2008), which becomes in the membrane limit

∆S = Rα (1 − ν)∆′F − 2w . (103)

The substitution in this equation of the stress function (83) yields the degree-�

component of S in terms of w�:

S� =
1 + ν

�(�+ 1) − 1 + ν
w� . (104)

If V2 = −Ω2R2/3 is the degree-two component of the external potential at the

surface, S2 and w2 are related to degree-two tidal Love numbers by

w2 =
hT

2

g
V2 , (105)

S2 =
lT2
g
V2 . (106)

In the membrane limit, thin shell theory thus predicts that

lT2 =
1 + ν

5 + ν
hT

2 . (107)

This relation holds for any density distribution within the planet, as long as

it is spherically symmetric. If the lithosphere is incompressible (ν = 1/2), the

ratio lT2 /h
T
2 is equal to 3/11, that is Eq. (100). If the lithosphere is made of ice

(ν ≈ 1/3), the same ratio is equal to 1/4 (this result has been noted by Wahr

et al. (2009) regarding tidal stresses).

The insertion of Eq. (89) and Eqs. (105)-(106) into stress-strain relations

yields the following expressions for the tangential stresses at the surface of a

spherically stratified planet:

σD
θθ = − E

1 − ν2

2
3
δf

[
(1 + ν)P2

+
lT2
hT

2

(
1 − ν − 2(2 + ν)P2

)]
, (108)
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σD
ϕϕ = − E

1 − ν2

2
3
δf

[
(1 + ν)P2

+
lT2
hT

2

(
− 1 + ν − 2(1 + 2ν)P2

)]
, (109)

where I used the fact that the rr component of the stress vanishes at the surface.

In the membrane limit of thin shell theory, Love numbers satisfy Eq. (107) so

that Eqs. (108)-(109) become equivalent to the stresses (90)-(91). Moreover

the substitution of Eq. (97) into Eqs. (108)-(109) yields the same stresses as

those found by Melosh (1977) for a homogeneous incompressible body (see his

Eq. (20)).

Once Love numbers are known for some interior model, it becomes possible

to compute surface stresses and thus predict despinning tectonic patterns using

Anderson’s theory of faulting (see Section 5). This is a convenient way to

compute thick shell effects on faulting style as was first done by Melosh (1977),

since several codes for the computation of Love numbers are now available. The

boundaries of tectonic provinces depend only on two numbers: the ratio lT2 /h
T
2

and Poisson’s ratio ν. For example, despinning induces an equatorial zone of

north-south thrust faults if the meridional stress is compressional at the equator,

that is if

lT2
hT

2

<
1 + ν

6
. (110)

This inequality is satisfied neither by thin shell theory (see Eq. (107)) nor by

the homogeneous incompressible model (see Eq. (97)), but is verified for the

incompressible models shown on Fig. 10b if the shell thickness is between 8.4%

and 62% of the radius. Though hT
2 and lT2 are very sensitive to the internal

structure (see Fig. 10a), their ratio varies much less. That is why the despinning

tectonic pattern is not much affected by the shell thickness.

[Figure 10 about here.]

For Iapetus, I adopt an incompressible two-layer model with a radius of

735.6 km and a uniform density of 1083 kg/m3 in both layers (Thomas et al.,
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2007). The shear modulus µ of ice at 257 K is 3.52 GPa so that its value at 80 K

(approximately the mean temperature of Iapetus’ surface) is about 4.4 GPa

(Gammon et al., 1983). Poisson’s ratio ν for ice is 0.325 (but ν = 0.5 in the

model) and Young’s modulus E = 2(1 + ν)µ is 11.7 GPa. The model yields

hT
2 = 0.53 and hT

2 = 0.038 when the lithospheric thickness is equal to 20 km

and 240 km, respectively (for other values, see Fig. 10).

For Mercury, I adopt an incompressible three-layer model with a fluid core,

fluid mantle and elastic lithosphere. Parameters are chosen to be in the middle

range of admissible values (Rivoldini et al., 2009): core radius of 2000 km, den-

sity of mantle and lithosphere equal to 3100 kg/m3 (thus core density equal to

7325 kg/m3), seismic wave velocities in the lithosphere given by vp = 7900 m/s

and vs = 4550 m/s. The corresponding elastic parameters for the lithosphere

are: µ = 64 GPa, E = 160 GPa, ν = 0.25 (but ν = 0.5 in the model). The

model yields hT
2 = 1.83 and hT

2 = 1.49 when the lithospheric thickness is equal

to 30 km and 100 km, respectively (for other values, see Fig. 10).

E. Two properties of the strain

The tangential displacement in the azimuthal direction vanishes if there is

axial symmetry, i.e. if the elastic thickness and the radial deformation of the

shell only depend on the latitude. In that case, the strain-displacement equa-

tions (e.g. Beuthe, 2008) read

εθθ =
1
R

(
∂vθ

∂θ
+ w

)
, (111)

εϕϕ =
1
R

(cot θ vθ + w) , (112)

εθϕ = 0 , (113)

where w is the radial displacement and vθ the tangential displacement in the

meridional direction.

By symmetry, vθ vanishes at the poles. The average of εθθ on [0, π] is thus

related to the average of w̄ = w/R:

< εθθ >=< w̄ > , (114)
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where

< f >=
1
π

∫ π

0

f dθ . (115)

There is equatorial symmetry if the elastic thickness and the radial deformation

are symmetric about the equatorial plane. In that case, vθ vanishes at the equa-

tor so that the average can be done on [0, π/2]. For contraction plus despinning,

w̄ = w̄0 + w̄2P2, so that

< εθθ >= w̄0 +
w̄2

4
. (property 1) (116)

Another consequence of axial symmetry is that the azimuthal strain becomes

independent of the elastic thickness at the equator:

εϕϕ|θ= π
2

= w̄|θ= π
2

(117)

This property also directly results from the variation in length of the equator,

δL = 2πw̄|θ= π
2
, which is uniformly distributed along the equator. For contrac-

tion plus despinning,

εϕϕ|θ= π
2

= w̄0 − w̄2

2
. (property 2) (118)

F. Contraction solution at first order

Given the despinning solution on a shell of constant thickness, the dualities of

Section 3.2 generate a first approximation of the contraction solution on a shell

of variable thickness. If ᾱ depends only on the parameter ᾱ2 as in Eq. (20), the

contraction and despinning solutions can be expanded in ᾱ2 about the solution

for a shell of constant thickness given in C. The dualities (21)-(24) then allow

to compute the contraction solution at order ᾱn+1
2 in terms of the despinning

solution at order ᾱn
2 . The nondimensional despinning stress function at zeroth

order is obtained from Eq. (86):

F̄D

w̄2
= − P2

5 + ν
+ O(ᾱ2) . (119)
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Nondimensionalization has been carried out with Eqs. (9)-(13). The duality

(21) yields the contraction stress function at first order in ᾱ2:

F̄C

w̄0
=

1
1 − ν

+ ᾱ2
P2

5 + ν
+ O(ᾱ2

2) . (120)

The duality (23) acting on Eqs. (87)-(88) yields the contraction stresses at

first order in ᾱ2 (an alternative is to use Eqs. (15)-(16) on F̄C):

σ̄C
θθ

w̄0

∼= 1
1 − ν

+ ᾱ2
2(2 + ν)P2 − 1 + ν

(1 − ν)(5 + ν)
, (121)

σ̄C
ϕϕ

w̄0

∼= 1
1 − ν

+ ᾱ2
2(1 + 2ν)P2 + 1 − ν

(1 − ν)(5 + ν)
. (122)

Fig. 13a compares Eqs. (121)-(122) with the stresses computed at high order in

ᾱ2, that is with a truncation degree n = 20. The first order approximation is

good for small ᾱ2 (ᾱ2 = −2/5) but is bad for large ᾱ2 (ᾱ2 = −6/7).

The strains at first order in ᾱ2 can be computed with Eqs. (17)-(19):

εCθθ

w̄0

∼= 1 + ᾱ2
1 + ν

5 + ν
(4P2 − 1) , (123)

εCϕϕ

w̄0

∼= 1 + ᾱ2
1 + ν

5 + ν
(2P2 + 1) . (124)

With the values P2|θ=0 = 1, P2|θ=π/2 = −1/2 and < P2 >= 1/4, one can check

that the stresses and strains (121)-(124) satisfy the properties enumerated at

the beginning of Section 3.1. Besides the meridional strain as given by Eq. (123)

is equal to its average value at θ = 45◦ (where P2 = 1/4), so that the meridional

strain curves for varying ᾱ2 seem to have a unique crossing point (see Fig. 1a).

Since this property is only valid at first order in ᾱ2, I call this point a pseudo-

node. Pseudo-nodes for stresses are obtained by setting to zero the term of order

ᾱ2 in Eqs. (121)-(122), yielding respectively θ ∼= 48.2◦ and θ ∼= 65.9◦ (ν = 0.25)

for the meridional and azimuthal stresses (see Fig. 5a).

The same method works for ᾱ not limited to degree two. The generalization

of the duality (21) to an ᾱ depending on an arbitrary number of parameters ᾱ�

reads

F̄C

w̄0
=

1
1 − ν

−
∑
�≥2

ᾱ�
F̄L

w̄�
, (125)
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where the index L denotes the solution of the membrane equation (14) for

w̄ = w̄�P�. At first order in ᾱ�, the contraction stress function can thus be

computed from the solutions (83) on a shell of constant thickness:

F̄C

w̄0

∼= 1
1 − ν

+
∑
�≥2

ᾱ�
P�

f�ν
, (126)

where

f�ν = �(�+ 1) − 1 + ν . (127)

There is no contribution of ᾱ1 to the contraction stress function (126), but this

is only valid at first order in ᾱ� (terms in ᾱn
1 vanish, but mixed terms like ᾱ1ᾱ2

do not). At first order in ᾱ�, the contraction stresses read

σ̄C
θθ

w̄0

∼= 1
1 − ν

+
∑
�≥1

ᾱ�

(O2P�

f�ν
+

P�

1 − ν

)
, (128)

σ̄C
ϕϕ

w̄0

∼= 1
1 − ν

+
∑
�≥1

ᾱ�

(O1P�

f�ν
+

P�

1 − ν

)
, (129)

with the action of Oi on P� defined by Eqs. (74)-(75). The sum now starts at

� = 1 because of the multiplication by ᾱ when computing the stresses from the

stress resultants, but the first term in the parentheses vanishes for � = 1. At

first order in ᾱ�, the contraction strains read

εCθθ

w̄0

∼= 1 − (1 + ν)
∑
�≥1

ᾱ�

f�ν
(O1 − 1)P� , (130)

εCϕϕ

w̄0

∼= 1 − (1 + ν)
∑
�≥1

ᾱ�

f�ν
(O2 − 1)P� . (131)

The stresses (128)-(129) and the strains (130)-(131) satisfy the properties enu-

merated at the beginning of Section 3.1 because of Eqs. (78)-(79) and since

Eqs. (60)-(61) with axial symmetry imply

< (O1 − 1)P� > = 0 , (132)

(O2 − 1)P� |θ= π
2

= 0 . (133)
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G. Operators C and A on spherical surface harmonics

If the shell thickness is constant, the membrane equation reduces to Eq. (82)

which depends only on the operator ∆′ and can be solved with spherical surface

harmonics as in C. If the thickness is variable, the membrane equation is not

diagonal in the basis of spherical surface harmonics. This basis remains however

useful if the action of the operators C and A on spherical surface harmonics

generates a linear combination of the same functions, so that the operators can

be represented as square matrices. The action of the operators Oi - from which

C and A are built - on Legendre polynomials is known (see Eqs. (74)-(76))

and could be used to derive a formula for the action of C and A on Legendre

polynomials. I will however obtain a more compact formula for the action of A
by rewriting it exclusively in terms of the scalar operator ∆′. The operator A
can be written in the equivalent form (Beuthe, 2008):

A(a ; b) = (∆ a)(∆ b) − (∇i∇j a)(∇i∇j b)

+ (∆ a) b+ a (∆ b) + 2 a b , (134)

where ∇i is the covariant derivative on the sphere and summation on repeated

indices is implicit (indices are raised with the inverse metric gij = diag(1, sin−2 θ)).

Repeated covariant differentiation yields the following identities:

∆(ab) = (∆ a) b+ 2 (∇i a)(∇i b) + a (∆ b) (135)

∆∆(ab) = (∆∆ a) b+ 2 (∆ a)(∆ b) + a (∆∆ b)

+ 4 (∇i∇j a)(∇i∇jb) + 4 (∇ia)(∇ib)

+ 4 (∇i∆ a)(∇ib) + 4 (∇i a)(∇i∆b) . (136)

In the derivation of the last identity, I used the commutation relation for the

spherical Laplacian and the covariant derivative on the surface of the sphere,

∆∇i a−∇i∆ a = ∇i a , (137)

which can be derived from the general commutation relation of covariant deriv-

atives of a vector (see Eq. (G1) in Beuthe, 2008). Other useful identities are
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obtained by substituting a → ∆ a or b → ∆ b in Eq. (135). With the above

identities, the operator A can be rewritten as an expression where the only

intervening operator is ∆′:

A(a ; b) =
1
4

[−∆′∆′(ab) − (∆′∆′ a) b− a (∆′∆′ b)

+ 2 (∆′ a)(∆′ b) + 2 ∆′((∆′ a) b+ a (∆′ b))

− 2 ∆′(ab) − 2 (∆′ a) b− 2 a (∆′ b) + 8 ab ] . (138)

The action of the operators C and A can be partially evaluated if a and b are

spherical surface harmonics of degree m and n (noted am and bn):

C(am ; bn) = δ′n ∆′ (ambn) , (139)

A(am ; bn) = −1
4

(∆′∆′ + κmn ∆′ + λmn) (ambn) . (140)

where δ′n is given by Eq. (65) and

κmn = 2 (1 − δ′m − δ′n) , (141)

λmn = (δ′m − δ′n)2 + 2 (δ′m + δ′n) − 8 . (142)

The action of the operators C and A can only be fully evaluated if the product

ambn is expanded in spherical surface harmonics.

H. Operators C and A on Legendre polynomials

The action of the operators C and A on spherical surface harmonics am and

bn is given by Eqs. (139)-(140) in which products am bn appear. I am now

going to evaluate these products with the assumption that the spherical surface

harmonics are zonal or, equivalently, Legendre polynomials.

The product of two Legendre polynomials can be expanded into Legendre

polynomials with the Adams-Neumann formula (Whittaker and Watson, 1935,

p. 331):

Pm(x)Pn(x) =
min(m,n)∑

j=0

kmnj Pm+n−2j(x) , (143)
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with the coefficients of the expansion being given by

kmnj =
m+ n+ 1

2 − 2j
m+ n+ 1

2 − j

KjKm−jKn−j

Km+n−j
, (144)

where

Km =
(2m− 1)!!

m!
=

1.3...(2m− 1)
m!

, (145)

with K0 = 1. These coefficients kmnj are symmetric in (m,n) and km00 =

k0m0 = 1.

The action of the operators C and A on Legendre polynomials of degree m

and n is thus (the dependence on x is omitted):

C(Pm ;Pn) =
min(m,n)∑

j=0

kmnj χmnj Pm+n−2j , (146)

A(Pm ;Pn) =
min(m,n)∑

j=0

kmnj ψmnj Pm+n−2j , (147)

where

χmnj = δ′n δ
′
m+n−2j , (148)

ψmnj = −1
4

((
δ′m+n−2j

)2 + κmn δ
′
m+n−2j + λmn

)
, (149)

with δ′n given by Eq. (65) and coefficients (κmn, λmn) given by Eqs. (141)-(142).

If m = 0 (constant elastic thickness), the only relevant coefficients are

χ0n0 = (δ′n)2 , (150)

ψ0n0 = δ′n . (151)

The Legendre polynomial of degree one does not belong to the images of

the operators C and A: if m + n − 2j = 1 (meaning that |m − n| = 1), then

δ′m+n−2j = 0 and λmn = 0, so that χmnj = ψmnj = 0. The more general proof

that spherical surface harmonics of degree one are not included in the images

of C and A is given in Beuthe (2008). Since the coefficients multiplying the

Legendre polynomials in Eqs. (146)-(147) are independent of θ, the operators C
and A can be represented as matrices acting on vectors of Legendre coefficients.
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I. Membrane matrix for n = 6

The membrane matrix formalism described in Section 4 is illustrated here

with a simple example: ᾱ is limited to degree two and the truncation degree n is

equal to 6. The action of the operator C on the vector F̄ =
(
F̄0, F̄2, F̄4, F̄6

)T can

be computed with Eq. (146). The matrix C(6) appearing in Eq. (52) is given by

the sum C(6) = C(6)
0 + ᾱ2 C(6)

2 , where

C(6)
0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

4 k000 0 0 0

0 16 k020 0 0

0 0 324 k040 0

0 0 0 1600 k060

⎞
⎟⎟⎟⎟⎟⎟⎠
,

C(6)
2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −8 k222 0 0

−8 k200 16 k221 72 k242 0

0 72 k220 324 k241 720 k262

0 0 720 k240 1600 k261

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The action of the operator A on the vector F̄ is computed with Eq. (147). The

matrix A(6) appearing in Eq. (52) is given by the sum A(6) = A(6)
0 + ᾱ2 A(6)

2 ,

where

A(6)
0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 k000 0 0 0

0 −4 k020 0 0

0 0 −18 k040 0

0 0 0 −40 k060

⎞
⎟⎟⎟⎟⎟⎟⎠
,

A(6)
2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −4 k222 0 0

−4 k200 20 k221 6 k242 0

0 6 k220 90 k241 24 k262

0 0 24 k240 200 k261

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The four rows are associated with the projection of the membrane equation on

harmonic degrees 0, 2, 4, 6. The upper index on the matrices denotes that the

expansion is limited to degree 6. The integer coefficients are generated by the

functions χmnj and ψmnj defined by Eqs. (148)-(149). In particular, the integer
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coefficients in the matrices C(6)
0 and A(6)

0 are given by Eqs. (150)-(151). The

Adams-Neumann coefficients kmnj , given by Eq. (144), are in symbolic form so

that their origin is apparent: the mn indices indicate that the term comes from

the coefficients of ᾱ and F̄ of degree m and n, respectively, whereas m+n−2j

is equal to the harmonic degree associated with the row of the matrix. Apart

from the trivial values km00 = k0m0 = 1, the values relevant to the example

above are associated with the products P2P2, P2P4 and P2P6:

(k220, k221, k222) =
(

18
35
,
2
7
,
1
5

)
, (152)

(k240, k241, k242) =
(

5
11
,
20
77
,
2
7

)
, (153)

(k260, k261, k262) =
(

28
65
,
14
55
,

45
143

)
. (154)

The coefficient k260 does not appear in C(6)
2 and A(6)

2 because it is associated

with a polynomial of degree 8.

The approximate membrane equation (51) now takes the following form:

M(6)
(
F̄0, F̄2, F̄4, F̄6

)T = (2w̄0,−4w̄2, 0, 0)T . (155)

The coefficients F̄C
� of the contraction solution up to ᾱ3

2 are generated with

the recurrence relation (56), starting with F̄(0) = (w̄0/(1 − ν), 0, 0, 0):

F̄C
0

w̄0

∼= 1
1 − ν

+
2
5

1
5 + ν

ᾱ2
2 +

4
35

1 + 5ν
(5 + ν)2

ᾱ3
2 , (156)

F̄C
2

w̄0

∼= 1
5 + ν

ᾱ2 +
2
7

1 + 5ν
(5 + ν)2

ᾱ2
2

+
12
7

49 − 7ν + 17ν2 + ν3

(5 + ν)3(19 + ν)
ᾱ3

2 , (157)

F̄C
4

w̄0

∼= 6
35

ν − 11
(5 + ν)(19 + ν)

ᾱ2
2

+
36
385

(ν − 11)(−21 + 56ν + 5ν2)
(5 + ν)2(19 + ν)2

ᾱ3
2 , (158)

F̄C
6

w̄0

∼= 18
385

(ν − 11)(ν − 29)
(5 + ν)(19 + ν)(41 + ν)

ᾱ3
2 . (159)

Coefficients F̄C
� have a leading term of order ᾱ�/2

2 . Thus the truncation at har-

monic degree n can be understood as an expansion in ᾱ2: harmonic coefficients
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that are neglected are at most of order ᾱ1+n/2
2 : if n = 6, F̄C

� with � ≥ 8 are

at most of order O(ᾱ4
2) and are ignored. However the truncation at degree n is

not equivalent to an expansion at order ᾱn/2
2 since the lower the degree of the

harmonic coefficient, the better it is known. More precisely, the band-diagonal

structure of the membrane matrix has the effect that, for a given truncation de-

gree n, the expansion of a term F̄C
� can be done up to order ᾱn−�/2+1

2 included:

if n = 6, (F̄C
0 , F̄

C
2 , F̄

C
4 , F̄

C
6 ) can be expanded up to order (ᾱ7

2, ᾱ
6
2, ᾱ

5
2, ᾱ

4
2) respec-

tively.

The coefficients F̄D
� of the despinning solution are related to the coefficients

of the contraction solution by Eq. (21):

F̄D
0

w̄2
= − 1

ᾱ2

(
F̄C

0

w̄0
− 1

1 − ν

)
, (160)

F̄D
i

w̄2
= − 1

ᾱ2

F̄C
i

w̄0
(i = 2, 4, 6) . (161)

Coefficients F̄D
� thus have a leading term of order ᾱ�/2−1

2 , except F̄D
0 which

begins at order ᾱ2. Furthermore, for a given truncation degree n, coefficients

F̄D
� can be expanded up to order ᾱn−�/2

2 .

Figs. 11 and 12 show the effect of the truncation degree n on the coefficients

of the contraction solution. The effects on the despinning solution are similar

since they are related by Eqs. (160)-(161). Since the stresses are the quantities of

physical interest, the figures do not show the Legendre coefficients of the stress

function F̄ but rather those of the sum of the nondimensional stress resultants:

N̄� ≡
(
N̄θθ + N̄ϕϕ

)
�
= δ′� F̄� . (162)

Truncation effects can be large close to ᾱ2 = 2, but I only consider negative

values of ᾱ2 relevant to equatorial thinning. Fig. 11 shows the effect of the

truncation degree and of the expansion in ᾱ2 on the first four Legendre coeffi-

cients of the solution. The comparison of truncation degrees n = 6 and n = 20

indicates that that the truncation degree n = 6 already yields a precise solution

except when ᾱ2 is close to -1. The solution obtained by direct matrix inversion

is preferable to the solution obtained by expansion in ᾱ2. Fig. 12 shows the

decrease in the values of the Legendre coefficients of the contraction solution up
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to � = 20 for various values of ᾱ2. The decrease is approximately exponential

for |ᾱ2| � 1, but very slow for ᾱ2 = −1. The convergence of the harmonic ex-

pansion of the stress resultants is thus not guaranteed for extremal values of ᾱ2.

Since the stresses and the strains include a supplementary factor ᾱ vanishing at

the poles when ᾱ2 = −1, they are not affected by the convergence problem.

Poisson’s ratio has generally a weak effect on the solutions for contraction

and despinning, except for the coefficients �=0 for contraction and to a lesser

extent �= 2 for despinning. The other coefficients are mainly affected by ν at

near extremal values of ᾱ2.

[Figure 11 about here.]

[Figure 12 about here.]

The computation of the stresses completes the example. The nondimensional

stress resultants are computed with Eq. (15) and Eqs. (74)-(76):

N̄θθ = F̄0 + F̄2 O2P2 + F̄4 O2P4 + F̄6 O2P6 , (163)

N̄ϕϕ = F̄0 + F̄2 O1P2 + F̄4 O1P4 + F̄6 O1P6 . (164)

The Legendre coefficients of OiPj are given by the columns of the matrices

(80)-(81). N̄θϕ is zero. The nondimensional stress is related to N̄ij by Eq. (16):

σ̄ij = (1 + ᾱ2 P2) N̄ij . (165)

The product of Legendre polynomials can be computed with the Adams-Neumann

formula (143) but I will not give the explicit formulas. The stresses and the

strains for the contraction solution at first order in ᾱ2 have already been given

in F whereas those for the despinning solution are computed in J.

J. Despinning solution at first order

If ᾱ depends only on the parameter ᾱ2, the despinning stress function at

first order in ᾱ2 can be obtained from the contraction solution (156)-(158) and
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the dualities (160)-(161):

F̄D

w̄2

∼= − P2

5 + ν

− ᾱ2

5 + ν

(
2
5

+
2
7

1 + 5ν
5 + ν

P2 +
6
35

ν − 11
19 + ν

P4

)
.

The despinning stresses are computed at first order in ᾱ2 from F̄D with Eqs. (15)-

(16):

σ̄D
θθ

w̄2

∼= P2 + 1
5 + ν

+ ᾱ2
sθθ(ν, P2)

(5 + ν)2(19 + ν)
. (166)

σ̄D
ϕϕ

w̄2

∼= 3P2 − 1
5 + ν

+ ᾱ2
sϕϕ(ν, P2)

(5 + ν)2(19 + ν)
. (167)

where the auxiliary functions defined by

sθθ(ν, x) = − 31 + 18ν + ν2 +
(
69 + 48ν + 3ν2

)
x

+
(
40 + 18ν + 2ν2

)
x2 ,

sϕϕ(ν, x) = 21 − 30ν − 3ν2 +
(
47 + 72ν + ν2

)
x

+
(
10 + 42ν + 8ν2

)
x2 ,

have the property

sθθ(ν, 1) = sϕϕ(ν, 1) , (168)

which ensures the equality of the stresses at the poles. In Eqs. (166)-(167), P4

has been expressed in terms of P2:

P4 =
35
18

(
(P2)2 − 2

7
P2 − 1

5

)
. (169)

The strains can be computed at first order in ᾱ2 with Eqs. (17)-(19):

εDθθ

w̄2

∼= (1 − 3ν)P2 + 1 + ν

5 + ν
+ ᾱ2

(1 − ν2) eθθ(ν, P2)
(5 + ν)2(19 + ν)

. (170)

εDϕϕ

w̄2

∼= (3 − ν)P2 − 1 − ν

5 + ν
+ ᾱ2

(1 − ν2) eϕϕ(ν, P2)
(5 + ν)2(19 + ν)

. (171)

where the auxiliary functions defined by

eθθ(ν, x) = − 31 − 3ν + (69 + ν)x+ (40 + 8ν)x2 , (172)

eϕϕ(ν, x) = (2x+ 1) (21 + ν + (5 + ν) x) , (173)
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have the properties

eθθ(ν, 1) = eϕϕ(ν, 1) , (174)

< eθθ(ν, P2) > = 0 , (175)

eϕϕ(ν,−1/2) = 0 , (176)

which ensure that the properties enumerated at the beginning of Section 3.1 are

satisfied (note that < P2 >= 1/4 and < (P2)2 >= 11/32).

At zeroth order in ᾱ2, the meridional strain is equal to its average value

at θ = 45◦ (where P2 = 1/4), but this is not true at first order in ᾱ2 since

eθθ(ν, 1/4) �= 0. If ν = 0.25, the pseudo-nodes defined in Section F occur at

θ ∼= 40.3◦ for the meridional strain (see Fig. 1b), θ = 43.8◦ for the meridional

stress and θ = 64.4◦ for the azimuthal stress (see Fig. 5b).

Fig. 13b compares Eqs. (166)-(167) with the stresses computed at high order

in ᾱ2, that is with truncation degree n = 20. The first order approximation is

good for small ᾱ2 (ᾱ2 = −2/5) but is rather bad for large ᾱ2 (ᾱ2 = −6/7).

[Figure 13 about here.]
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n=6 with no expansion in ᾱ2 (dashed curve), n=20 with no expansion in ᾱ2
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r = 1/10 (ᾱ2 = −6/7). Poisson’s ratio is equal to 0.25. The meridional

and azimuthal stresses are not distinguished but can be identified by looking

at Fig. 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

72



ACCEPTED MANUSCRIPT 

CONSTANT

THICKNESS

EQUATORIAL THINNING

POLAR THINNING

0 15 30 45 60 75 90

0.06

0.08

0.10

0.12

0.14

Colatitude �degrees�

S
tr

ai
n
��
�

�a� EXPANSION

EQUATORIAL THINNING

POLAR THINNING

0 15 30 45 60 75 90
�0.06

�0.04

�0.02

0.00

0.02

0.04

Colatitude �degrees�

S
tr

ai
n
��
�

�b� DESPINNING

Figure 1: Strain as predicted from symmetry arguments: (a) expansion, (b) despinning.
Continuous curves refer to εθθ while dashed curves refer to εϕϕ. Three cases are shown:
constant thickness, equatorial thinning, polar thinning. The unlabeled middle curves in the
despinning case are for constant elastic thickness. The numerical values used to draw the
curves are: w̄0 = 0.001 for expansion, w̄2 = 0.001 for despinning, r = 1/2 for equatorial
thinning, r = 2 for polar thinning (r is defined by Eq. (34)), Poisson’s ratio equal to 0.25.
Extensional strain is positive.
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Figure 2: Equatorial thinning of the lithosphere as parameterized by Eqs. (33)-(35): (a)
profiles of ᾱ (proportional to the inverse thickness), (b) thickness profiles normalized by the
polar thickness. The four profiles correspond to equator-to-pole thickness ratios r equal to
(1, 1/2, 1/4, 1/10).
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Figure 3: Equatorial thinning of the lithosphere as parameterized by Eqs. (36)-(38): (a)
profiles of α̃ (proportional to the inverse thickness), (b) thickness profiles normalized by the
polar thickness. The equator-to-pole thickness ratio r is equal to 1/2: the curves k = 0 are
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Figure 4: Stress resultant as a function of colatitude when the lithosphere is thinner at
the equator: (a) contraction of 0.1% (w̄0 = −0.001), (b) despinning with flattening change
δf = −0.0015 (w̄2 =0.001). Continuous curves refer to Nθθ while dashed curves refer to Nϕϕ.
Elastic parameters are E = 100 GPa and ν = 0.25. The thickness variation is parameterized
by the equator-to-pole thickness ratio r as on Fig. 2; the average inverse thickness is equal to
1/(100 km). Truncation degree n is equal to 20. Tensile stress is positive. The duality (22) is
apparent when comparing contraction and despinning curves.
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Figure 5: Stress as a function of colatitude when the lithosphere is thinner at the equator:
(a) contraction, (b) despinning. Continuous curves refer to σθθ while dashed curves refer to
σϕϕ. Other details as in Fig. 4.
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Figure 6: Influence of thin zone size on stress: (a) contraction, (b) despinning. Continuous
curves refer to σθθ while dashed curves refer to σϕϕ. The thin zone size varies as in Eq. (36)
(see also Fig. 3, but r is different). The equator-to-pole thickness ratio r is equal to 1/10
(α̃2 = −6/7). The curve k = 2 (resp. k = −2) corresponds to a thin zone reduction (resp.
enlargement). The curve k = 0 is the same as the curve r = 1/10 in Fig. 5. Other details as
in Fig. 4.
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Figure 7: Faulting style and orientation for simultaneous despinning and contraction (or
expansion) when the lithosphere is thinner at the equator. The thickness variation is para-
meterized by the equator-to-pole thickness ratio r as on Fig. 2. The x-axis is the contrac-
tion/despinning ratio χ defined by Eq. (57). Poisson’s ratio is equal to 0.25. (a) Boundaries
of the areas with a given fault style. For given ᾱ2 and χ, the intersections of the curves with a
vertical line of abscissa χ give the latitudes of the boundaries between tectonic provinces. (b)
Contraction threshold beyond which the orientation of thrust faults changes from north-south
to east-west. If ᾱ is limited to degree two as is the case here, the threshold is independent
of latitude and given by χ = −1/ᾱ2. The threshold for r = 1 (ᾱ2 = 0) is at infinity because
the orientation of thrust faults never switches from north-south to east-west when the elastic
thickness is constant. The boundaries of the areas with a given fault style are shown as in (a).

79



ACCEPTED MANUSCRIPT 

normal

faults

�90 °

�60 °

�30 °

0

30 °

60 °

90 °

EXPANSION
DOMINANT

normal

faults

DESPINNING
� EXPANSION

strike�

�slip

normal faults

normal faults

DESPINNING

thrust

faults

DESPINNING
� CONTRACTION

thrust

faults

TRANSITION
NS�EW

thrust

faults

�90°

�60°

�30°

0°

30°

60°

90°

CONTRACTION
DOMINANT

Figure 8: Tectonic patterns predicted by Anderson’s theory for simultaneous despinning and
contraction/expansion when the lithosphere is thinner at the equator. This is the pictorial
interpretation of Fig. 7. The y-axis is the latitude. The third pattern from left is for despinning
only; expansion and contraction are respectively added to the left and to the right of it. Normal
faults, strike-slip faults and thrust faults are respectively represented with dashed, dotted and
continuous lines. Faulting preferably occurs where the lines are the thickest. The figure does
not show all possible transition states. The second pattern from the left is only realized if the
equator-to-pole thickness ratio is close to one. The transition pattern EW-NS is shown for
the case of an enlarged thin zone (k < 0).
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Figure 9: Prediction of thrust fault orientation for simultaneous despinning and contraction
when the extension of the thin zone varies as on Fig. 3 (r = 1/2; supplementary curves
are drawn for k = ±1). These figures generalize Fig. 7b: the vertical line in both graphs
corresponds to the vertical line r = 1/2 in Fig. 7b. Poisson’s ratio is equal to 0.25. (a) Thin
zone enlargement: latitude of the transition between the polar province of east-west faults
and the equatorial province of north-south faults. (b) Thin zone reduction: latitude of the
transition between the polar province of north-south faults and the equatorial province of
east-west faults.
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Figure 10: Secular degree-two tidal Love numbers for Mercury and Iapetus as a function of
the lithospheric thickness: (a) hT

2 , (b) lT2 /hT
2 . The model is described in D. For Mercury,

the lithospheric thickness is limited by the size of the core. On an incompressible planet,
despinning leads to thrust faults in the equatorial region when lT2 /hT

2 < 1/4 (see Eq. (110)
with ν = 0.5); this threshold is indicated by the horizontal line in graph (b).

82



ACCEPTED MANUSCRIPT 

��0

��2

��4

��6

�1.0 �0.8 �0.6 �0.4 �0.2 0.0

�1.0

�0.8

�0.6

�0.4

�0.2

0.0

Α2

N
�

Figure 11: Influence of the truncation degree n on the Legendre coefficients of the contraction
solution. The coefficients N̄� (see Eq. (162)) are plotted as a function of ᾱ2 for � = 0, 2, 4, 6.
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solution (w̄0 = −1). The coefficients N̄� (see Eq. (162)) are plotted as a function of the
harmonic degree (up to � = 20) for different values of ᾱ2. The symbols overlap when � = 0.
Truncation degree n is equal to 50.
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Figure 13: Comparison of the stresses at first order in ᾱ2 (dashed curves) and at truncation
degree n = 20 (continuous curves) : (a) contraction case (w̄0 = −1), (b) despinning case
(w̄2 =1). The first order approximation is good if the equator-to-pole thickness ratio r = 1/2
(ᾱ2 = −2/5) and rather bad if r = 1/10 (ᾱ2 = −6/7). Poisson’s ratio is equal to 0.25. The
meridional and azimuthal stresses are not distinguished but can be identified by looking at
Fig. 5.
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