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ABSTRACT

We develop a three-parameter H, G1, G2 magnitude phase function for aster-

oids starting from the current two-parameterH,G phase function. We describe

stochastic optimization of the basis functions of the magnitude phase function

based on a carefully chosen set of asteroid photometric observations covering

the principal types of phase dependencies. We then illustrate the magnitude

phase function with a chosen set of observations. It is shown that the H, G1,

G2 phase function systematically improves fits to the existing data and consid-

erably so, warranting the utilization of three parameters instead of two. With

the help of the linear three-parameter phase function, we derive a nonlinear

two-parameter H, G12 phase function, and demonstrate its applicability in

predicting phase dependencies based on small numbers of observations.

Keywords: Asteroids; Asteroids, surfaces; Asteroids, composition; Photometry
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1 Introduction

The absolute magnitude is a fundamental astronomical parameter. According

to its current definition, the absolute magnitude (H) of an asteroid is its

mean apparent magnitude in the Johnson V band over a full rotation cycle

(to account for the irregular shape of most asteroids that produces a periodic

variation in brightness) when observed at 1 AU from both the Sun and the

Earth, and at zero degrees solar phase angle 1 . That is, the absolute magnitude

quantifies the intrinsic brightness of an asteroid. This brightness is determined

by the asteroid’s size (D, diameter in km) 2 and geometric albedo (pV); the

latter parameter, which is used to quantify the intrinsic reflectance of the

surface, is related to surface composition and texture. The relation between

the diameter, geometric albedo, and absolute magnitude is given by:

log10 D= 3.1236− 0.2H − 0.5 log10 pV. (1)

It is used in many practical applications, in particular when determining the

albedo, given the size and the absolute magnitude (e.g., when the size has

been determined from spacecraft or adaptive-optics imaging or from thermal

radiometric observations) or, conversely, when deriving the size, when the

albedo and absolute magnitude are known (as in the case of polarimetric

determination of the albedo). Accurate albedos and diameters are important

for a number of fundamental studies, e.g., the inventory and size distribution of

the asteroid population and the albedo distribution within dynamical families.

1 The solar phase angle (generally shortened to ”phase angle”) is the angle between

the Sun and the Earth as seen from the object.
2 D is the diameter of a sphere having the same projected surface area as the

asteroid.
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When dealing with real photometric data, determining H for a given asteroid

reduces to determining its phase function. This is because the dependence

on the distances from the Earth and Sun, being merely an inverse square

relation, is trivially accounted for. However, the fact that H is defined at

zero phase angle introduces complications since few asteroids are observed

near zero phase angle. Indeed, many main-belt asteroids are not observed at

phase angles <10◦. Therefore, we must extrapolate from the phase angle of

observation to zero degrees using what we know about the variation of the

magnitude as a function of phase angle. This variation is mostly linear over

a wide range of phase angles, but a nonlinear brightness surge takes place

at small phase angles (roughly <7◦). The origin of this so-called opposition

effect is believed to be an interplay of shadowing and coherent-backscattering

mechanisms (e.g., Muinonen et al. 2002).

To address this issue, in 1985, Commission 20 of the International Astronomi-

cal Union adopted the so-called H, G magnitude system (the Johnson V band

at mean lightcurve brightness and the H, G phase function) to define asteroid

absolute magnitudes. The two parameters of the H, G phase function have

the following meaning: H corresponds to the mean brightness, in Johnson V

magnitude, at zero degrees phase angle (i.e., the absolute magnitude), and G

is the so-called slope parameter, which describes the shape of the magnitude

phase function. In practice, the slope parameter has been derived for �0.1%

of the known asteroids (.100 from the Minor Planet Center’s orbital-elements

file and perhaps a score of others mostly from asteroid lightcurve studies). In

general, only a handful of photometric observations, obtained at only a few

phase angles, are available for any given asteroid, and this is insufficient to

derive both H and G. In these cases, an assumed value of G, usually 0.15, is
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adopted (Bowell et al. 1989). Since the shape of the phase function is deter-

mined by G, this allows for the derivation of H from magnitudes at as few as

one phase angle. When observations from multiple phase angles are available

the resulting H values are averaged. To some extent this increases the relia-

bility of H by taking into account brightness variations due to lightcurve and

aspect 3 effects.

The accuracy of V-band magnitudes predicted from available H, G values is

usually poor, probably due to low-quality photometry used to obtain the H

(and in a few cases, the G) values. The reason for this is that the vast major-

ity of available asteroid photometry is from near-Earth-object search programs

conducted over the past 15 years. Because these are discovery surveys, most

of which obtain images using unfiltered CCDs, the emphasis is on limiting

magnitude, sky area covered per unit time, and astrometric accuracy. In par-

ticular, for most surveys the ”photometry”, where it is provided at all, is not

in the Johnson V band (or in any other standard photometric system) and

does not use standard stars from photometric catalogs for calibration. Thus, it

is not surprising that there is poor agreement between observed V magnitudes

and those predicted using H,G values from the orbital-element catalogs all of

which currently (except the AstDys database maintained by A. Milani at the

University of Pisa) trace their values to the Minor Planet Center’s database,

the sole repository for H, G values recognized by the IAU. See Jurić et al.

(2002), Jedicke et al. (2002), and Parker et al. (2008) for further discussions

of this issue.

3 The “aspect angle” is the angle between the asteroid rotation axis and the line

of sight.
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In practice, there are at least three accuracy levels required for H: 1) On

the order of a few hundredths of a magnitude for detailed physical stud-

ies 4 , e.g., shape determination and thermophysical modeling, 2) ∼0.1 mag

- ∼0.2 mag for “statistical” physical studies, e.g., Durda et al. (1998), Tedesco

et al. (2002abc), and Tedesco et al. (2005), and 3) ∼0.2 mag - ∼0.5 mag

for astrometric studies, e.g., for planning follow-up observations. Our work

focuses on improving H for uses 1) and 2) by developing improved asteroid

phase functions. In particular, as shown below, these new phase functions de-

rive from basis functions that were originally determined using results from

the best light-scattering models available, and which have been tested using

the best magnitude phase curves available. We also demonstrate how a non-

linear two-parameter version of the linear three-parameter phase function can

be used to predict asteroid brightnesses from sparse observational data and

will provide an estimate of the accuracies to be expected for observations from

various phase-angle ranges.

In Sect. 2, we review the H, G magnitude phase function, describe the stochas-

tic optimization methods for deriving new phase functions, and summarize the

error estimation of parameters using Monte Carlo methods. Section 3 describes

the minimum-change effort for optimizing the H, G magnitude phase function,

the derivation of the H, G1, G2 phase function, as well as the least-squares

analyses of a set of observed phase curves. Based on the new three-parameter

phase function, we derive a nonlinear two-parameter H, G12 phase function,

and demonstrate the predictive power of the nonlinear phase function. Con-

clusions and future prospects close the article in Sect. 4.

4 In which case, to account for aspect variations, observations over several different

apparitions are required.
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2 Theoretical and Numerical Methods

2.1 H, G Magnitude Phase Function

The H, G phase function for asteroids can be described as follows. If we

call α the phase angle, and V (α) the V magnitude (reduced to unit distance)

expected for an object characterized by given values of H and G, the following

relation holds:

V (α) = H − 2.5 log10[(1−G)Φ1(α) +GΦ2(α)], (2)

where Φ1(α) and Φ2(α) are two basis functions normalized at unity for α = 0◦.

According to Eq. 2, the magnitude phase curve (hereinafter, ”phase curve”)

of an object is described as the partitioning of the Φ1 and Φ2 functions in the

ratio (1−G) : G. In turn, the slope parameter G is scaled in such a way that

it is close to 0 for steep phase curves, and close to 1 for shallow phase curves,

but values outside this interval are not excluded a priori.

In the H, G magnitude phase function for asteroids, the reduced observed

magnitudes V (α) can be obtained from

10−0.4V (α) = a1Φ1(α) + a2Φ2(α) = 10−0.4H [(1−G)Φ1(α) +GΦ2(α)], (3)

where the absolute magnitude H and the coefficient G are 5

H =−2.5 log10(a1 + a2), G =
a2

a1 + a2

. (4)

5 There is a misprint in Bowell et al. (1989) in the definition of the G-parameter.
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The coefficients a1 and a2 are estimated from the observations by using the

linear least-squares method. Thereafter, H and G follow from Eq. 4. In the

H, G phase function, the basis functions are

Φ1(α) =w
(

1− 0.986 sinα

0.119 + 1.341 sinα− 0.754 sin2 α

)
+

(1− w) exp
(
−3.332 tan0.631 1

2
α
)
,

Φ2(α) =w
(

1− 0.238 sinα

0.119 + 1.341 sinα− 0.754 sin2 α

)
+

(1− w) exp
(
−1.862 tan1.218 1

2
α
)
,

w = exp(−90.56 tan2 1

2
α). (5)

These functions are accurately approximated by

Φ1(α) = exp(−3.33 tan0.63 1

2
α),

Φ2(α) = exp(−1.87 tan1.22 1

2
α). (6)

The two functions in Eq. 5 constituted the state of the art at the epoch of

development of this photometric phase function. Their forms were suggested

by theoretical models of light scattering that at that epoch did not yet in-

clude the phenomenon of coherent backscattering. Of course, the H, G phase

function was developed and tested by means of a detailed analysis of the best

phase curves available at that time. Phase curves extending up to large phase

angles were available for the Moon and Mercury. The database of asteroidal

observations included phase curves for the objects (24) Themis, (44) Nysa,

(69) Hesperia, (82) Alkmene, (133) Cyrene, (419) Aurelia, and (1862) Apollo

(the only asteroid for which data at phase angles larger than 30 degrees were

available at the time). Due to the peculiarity of the Mercury phase curve at

large phase angles, it was excluded from the development of the H, G phase
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function. The lunar phase curve was included in the development except for

the observations at large phase angles α ≥ 120◦.

More than 20 years since its adoption, there are reasons to try and improve

the H, G phase function. This function still does a reasonably good job in

fitting phase curves for many asteroids, especially in the region from ∼10◦ to

∼60◦. However, there exist some high-quality phase curves for which this is

not true, especially in the region of the opposition brightness surge.

This problem is not too serious in many practical cases, in particular, when

trying to derive the absolute magnitude of asteroids for which only a few ob-

servations are available, in which cases the uncertainty in the derived absolute

magnitude is not due to the adopted phase function, but rather to the qual-

ity, quantity, and distribution over phase angle of the data. Nevertheless, an

optimal phase function should provide accurate fits to high-quality data, and

this is not always true for the current version of the H, G phase function.

Before proceeding to describe revising the H, G phase function, we wish to

present five relevant facts concerning it. First, it is clear that the H and G

parameters have been introduced with the aim to be two fundamental pa-

rameters to describe the photometric behavior of asteroids, or more generally,

that of atmosphereless solar-system bodies. On one hand, knowledge of these

two parameters allows one to predict the magnitude expected for an object at

any given phase angle. Conversely, fitting a given magnitude-phase data set

using the H, G phase function allows one to directly obtain H (the absolute

magnitude). However, Bowell et al. (1989) noted that the relation between

size, albedo, and H, as given in Eq. 1, should be taken with a grain of salt.

In particular, it was suggested that the albedo derived via H and size, being
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not a direct measurement, should be referred to as a ”pseudoalbedo”.

Second, the so-called phase integral 6 (q), is a linear function of G, viz.: 7

q= 0.290 + 0.684G. (7)

The importance of the phase integral q is that it is used to link the value of

the geometric albedo to the value of the Bond albedo, which is by definition

the ratio between the total flux of sunlight scattered (i.e., not absorbed) by

an object and the incoming sunlight flux incident on the object. The simple

relation between the geometric albedo pV, Bond albedo A, and the phase

integral q is the following:

A= pVq. (8)

Since the Bond albedo is an important parameter, for instance for studies

of thermal infrared emission, the simple relation linking G to q is something

generally useful.

Third, it is a fact that real objects have irregular shapes, and so exhibit a

rotational modulation in their brightness. However, by definition, H refers to

the average brightness during a rotational cycle. In practical terms, Bowell

et al. (1989) noted that the phase function should be expected to work us-

ing magnitude values obtained at unknown rotational phases, although with

greater uncertainty in the resultant parameters. In the future, when huge

databases of sparse photometric data will be produced by surveys like Gaia

and Pan-STARRS, modern techniques to invert sparse photometric data will,

in principle, allow the rotational phase, at which each given observation was

6 The phase integral is the integral of the phase function between 0◦ and 180◦.
7 Note that this H, G phase integral is numerically accurate to ∼5%.
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obtained, to be estimated (Cellino et al. 2007).

Fourth, there have been several analyses to find relations between G and some

physical properties of asteroids. The results of these investigations (Tedesco,

1986; Harris and Young, 1989) indicate that there is a general trend of in-

creasing G for increasing albedo. Taken at face value, these results indicate

that the parameter G and albedo correlate but that this correlation is not

particularly strong.

Finally, we note that it is inadvisable to combine magnitude data obtained

at different apparitions (the interval of time around opposition during which

an asteroid is observable) unless it has been established that the apparitions

correspond to similar aspect angles, because different apparitions may cor-

respond to different viewing geometries. In particular, the aspect angle may

change from apparition to apparition, resulting in the object presenting differ-

ent views of its surface to the observer. Thus, combining data from different

apparitions can produce misleading results. In particular, the value of H for

a given object may change from apparition to apparition. However, the con-

sequences of this fact are beyond the scope of the present paper because it is

something that is independent of the actual phase function.

2.2 Stochastic Optimization

We make use of a stochastic optimization method for the basis functions that

is, in principle, independent of any a priori analytical choices for the shape of

the functions. We present the basis functions with a discretization and cubic-

spline interpolation scheme relying on a fixed discrete set of phase angles, with

12



ACCEPTED MANUSCRIPT 

the function values at the fixed angles and, occasionally, the first derivatives

of the functions at the ends of the entire angular interpolation range as the

free parameters (or unknowns). As a result, the number of free parameters

is large but manageable. The optimization method includes ingredients from

simulated annealing methods (e.g., Press et al. 1992; also compare to MCMC

or Markov-Chain Monte-Carlo methods, Gilks et al. 1996). The optimization

of the basis-function values proceeds from a chosen starting point via a Monte

Carlo method that proposes random moves based on Gaussian proposal prob-

ability densities, but gives rise to a move only if the proposed new point in

the parameter space results in improved fits to all the observational data. The

data are grouped according to differing phase-curve shapes to allow for wide

applicability of the new basis functions. In optimizing the basis functions, the

data are properly weighted by the asteroid groups and number of members

within each group.

In the optimization, it is necessary to utilize regularization procedures to con-

strain the basis functions to be members of reasonable function classes. Among

the typical constraints are, for example, that a basis function needs to be a

monotonically decreasing function of the phase angle or that a basis function

needs to have a positive second derivative close to the opposition to be able to

describe common opposition-effect characteristics. The phase-angle discretiza-

tion for cubic-spline interpolation needs to be defined so as to secure, prefer-

ably, numerous photometric observations of different asteroids within each of

the discrete intervals. It is important to require that the basis functions be non-

intersecting at phase angles most typically covered by observations: should the

basis functions intersect, all resulting phase functions would pass through the

point of intersection, which would be in disagreement with observational data.
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Furthermore, if the first derivatives of the basis functions coincide for some

phase angle, the linear least-squares fitting becomes ill-posed in the vicinity of

that phase angle. It is desirable to rule out this caveat, again, at phase angles

most typically covered by observations.

The optimization scheme also works well for smaller numbers of parameters,

i.e., when we optimize basis functions that use a small number of parame-

ters (like the numerical coefficients of the basis functions in Eq. 6 for the

approximate H, G phase function). In what follows, we utilize stochastic opti-

mization methods in numerous tasks connected with the search for improved

photometric phase functions.

Deriving the basis functions for the magnitude phase function entails solving

a global optimization problem iteratively so that, at each iteration step, a

number of linear least-squares minimization problems are solved for individual

asteroid phase curves. We group the individual asteroid phase curves based

on their similarities and differences so as to guarantee a balanced coverage of

phase-curve variability.

The global metric to be minimized with respect to the NP parameters P =

(P1, P2, P3, . . . , PNP
)T characterizing the basis functions is termed m2:

m2(P ) =
1

N

N∑
i=1

Ni∑
j=1

Nij∑
k=1

[Vijk − Vij(αijk,P )]2

σ2
ijk

, (9)

where N is the number of asteroid groups involved, Ni is the number of aster-

oids in group i, Nij is the number of observations of the jth asteroid in group

i, Vijk and αijk denote the kth observed magnitude and corresponding phase

angle of asteroid j in group i, Vij(αijk,P ) is the computed magnitude, and

σ−2
ijk denotes the weight factor for each observation.
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The computed magnitudes Vij(αijk,P ) in Eq. 9 follow from solving the linear

least-squares problems concerning the observed disk-integrated brightnesses

Lijk, their error standard deviations σ
(L)
ijk , and the computed disk-integrated

brightnesses Lij(αijk,aij), where aij = (a1,ij, a2,ij, . . . , aNa,ij)
T denotes the Na

parameters to be fitted in the linear least-squares sense for each asteroid ij.

We have the interrelations

Lijk = 10−0.4Vijk ,

σ
(L)
ijk =Lijk(100.4σ

(V )
ijk − 1), (10)

where σ
(V )
ijk stands for the error standard deviations of the magnitudes. The

χ2-value to be minimized here with respect to the parameters aij is

χ2
ij(aij) =

Nij∑
k=1

[Lijk − Lij(αijk,aij)]2

[σ
(L)
ijk ]2

. (11)

The computed disk-integrated brightnesses are expressed with the help of the

Na basis functions Φ1(α,P ),Φ2(α,P ), . . . ,ΦNa(α,P ),

Lij(αijk,aij) =
Na∑
l=1

aijlΦl(αijk,P ),

Φl(0,P ) = 1, l = 1, 2, . . . , Na. (12)

The minimization gives us aij,ls, the linear least-squares aij, for a given set of

basis functions parameterized by P . The magnitudes are then computed from

Vij(αijk,P ) =−2.5 log10 Lij(αijk,aij,ls). (13)

The metric m2(P ) now follows from Eq. 9. The steps in Eqs. 9-13 are itera-

tively repeated for varying P until convergence on the minimum m2(P )-metric

parameters P = P ls is achieved. Note that individual asteroid brightnesses

are being fitted in the linear least-squares sense, whereas the computation
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of m2(P ) entails the least-squares solution in terms of magnitudes. We have

verified that the least-squares parameters P ls are not sensitive to whether

magnitudes or brightnesses are utilized in the definition of m2(P ).

The weight factors σ−2
ijk in Eq. 9 describe the weight of each asteroid observation

in the global m2-metric. The weight factors depend on the number of asteroids

in each group Ni and σ
(V )
ijk as follows:

σ2
ijk =

[σ
(V )
ijk ]2

wi
,

wi =

 Ni∑
j=1

Nij∑
k=1

1

[σ
(V )
ijk ]2

−1

. (14)

The weight factor wi ensures that each asteroid group i obtains the same

weight in the global optimization, without regard to the number or accuracy of

the observations. Within individual data sets and within each group, accurate

observations obtain more weight than inaccurate ones.

The global χ2-value corresponding to the m2-metric of Eq. 9 is available from

χ2(P ) =Nm2(P )

[
N∑
i=1

wi

]−1

. (15)

In what follows, we nevertheless characterize the goodness of each basis-

function set by the global m-metric value (in mag) following from the square

root of the m2-metric in Eq. 9. In characterizing the goodness of the linear

least-squares fits for the individual brightness phase curves, we make use of

the rms values of the fits (in mag, again).

Note that the m-metric could, in principle, include terms measuring the pre-

dictive power of the magnitude phase function, as well as terms measuring the

errors in the parameters a (omitting the subscripts ij). In the present work,
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we are making use of the m-metric as given in Eq. 9.

2.3 Monte-Carlo Inverse Methods

For a given magnitude phase function, the a posteriori probability density

function (p.d.f.) for the parameters a is obtained from (cf. Eq. 11)

p(a)∝ exp[−1

2
χ2(a)], (16)

where χ2 denotes the product of the residuals in a row vector (observed mi-

nus computed), the covariance matrix for the random observational errors,

and the residuals in a column vector. In what follows, for simplicity, the co-

variance matrix is assumed to be diagonal. If the model is linear, p(a) is a

multivariate Gaussian p.d.f. and can be Monte-Carlo sampled using standard

methods, whereafter samples of dependent nonlinear parameters follow in a

straightforward way.

For a model with one nonlinear parameter (b) and a number of linear parame-

ters (a), we obtain varying multivariate Gaussian p.d.f.s for a given the value

of b. Furthermore, the marginal p.d.f. of b is

p(b)∝
√

det Σa(b) exp[−1

2
χ2
a(b)], (17)

where Σa(b) and χ2
a(b) denote the covariance matrix and value of χ2 due to

the least-squares solution for a given the value of b. The a posteriori p.d.f. in

Eq. 17 can be efficiently sampled by drawing b from its marginal p.d.f. and

then drawing a from the multivariate Gaussian p.d.f. corresponding to the

value of b sampled.
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We choose to characterize the parameter errors using the 3σ (99.7%) and 1σ

(68.3%) criteria in the following way: from the set of sampled parameters, we

determine the χ2(a)-value corresponding to the 99.7% or 68.3% boundaries,

whereafter we give the two-sided error bars of the parameters corresponding

to the minimum and maximum values of the parameters within the 99.7% or

68.3% set of sampled parameters.

3 Results and Discussion

3.1 Optimizing the H, G Phase Function

Our first attempt to obtain an improvement of the H, G phase function con-

sists of trying to derive improved expressions for the basis functions Φ1(α)

and Φ2(α). The shapes of the phase curves observed for E-class and F-class

asteroids are such that the phase curves intersect each other at a small but

nonzero phase angle when normalized to an equal magnitude value at zero

phase angle (see references in Tables 1 and 2). Thus, a linear two-parameter

phase function with non-intersecting basis functions cannot result in excellent

fits to the entire current asteroid phase-curve data. In what follows, we assess

in detail the price of having such a phase function.

The data used in this analysis are summarized in Tables 1 and 2, which also

list the original references for each phase curve. We selected what we believe

to be the best data available today, in terms of good phase-angle coverage

at small phase angles, good phase-angle range, and small scatter within the

observational data (typically .0.03 mag). In particular, we used a total of 18

phase curves, subdivided into five groups I-V. Four of the groups (I-IV) were
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established because of similar photometric behavior of the objects. Differences

between the phase curves of individual asteroids in each of these groups are

within the uncertainties of the magnitude measurements, and the data are

utilized to produce four composite phase curves pertaining to groups I-IV.

These four groups are mainly characterized by differences in geometric albedo,

but we did not do any a priori selection based on albedo and/or taxonomic

class, but rather focused on the apparent photometric behavior by looking

at the data on a case-by-case basis. In simple terms, the four groups include

asteroids which exhibit increasing extents of the opposition brightness surge,

from objects displaying mostly linear phase curves with very little opposition

effect, if any, up to objects displaying a pronounced opposition effect (the

latter objects belonging to the E taxonomic class).

The remaining group V consists of photometry for four objects with phase-

curve observations extending over extensive ranges of phase angles: (1862) Apollo,

the Moon, (2867) Steins, and the martian moon Deimos. Note that the phase

curve of asteroid (2867) Steins is simulated using the H, G phase function with

G ≈ 0.4 in five-degree steps from α = 0◦ to α = 150◦ (with the standard devi-

ation σ(V ) taken to be ∼0.02 mag). The simulation relies on the space-based

ESA Rosetta observations (Sonia Fornasier, private communication 2009). Ta-

bles 1 and 2 show that the high-quality phase curves obtained in recent years

have been mostly produced by V. Shevchenko at the Kharkiv Observatory.

In summary, groups I-V contribute altogether eight different phase curves

to the optimization process. Making the composite curves for groups I-IV is

presently required in order to obtain a coverage as a function of the phase

angle dense enough for successful optimization of basis functions. Following

the notation in Sect. 2, we have N = 5, Ni = 1 for i = 1, 2, 3, 4, and N5 = 4.
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The standard deviation σ(V ) (subscripts suppressed) of Sect. 2.2 obtains the

value of 0.03 mag for all objects except the Moon (0.023 mag, Bowell et al.

1989) and (2867) Steins (0.023 mag). For observations at large phase angles

α ≥ 100◦, we assume σ(V ) = 0.2 mag mainly due to the relevance of unmodeled

physical properties of the objects such as the irregular shape and variegation

of scattering properties on the surfaces. For observations at small phase angles

α ≤ 0.2◦ for members in groups I-IV, we halve the σ(V )-value in order for the

resulting phase functions to be able to produce particularly accurate fits at

small phase angles.

In attempting to revise the two H, G basis functions, we follow two principal

approaches: first, by discretizing the basis functions and introducing a fixed

cubic-spline interpolation grid of phase angles (0◦, 0.3◦, 1◦, 2◦, 4◦, 8◦, 15◦,

30◦, 60◦, 90◦, 120◦, and 150◦), we search for function values resulting in mini-

mum global m2 in Eq. 9; second, we fine-tune the numerical coefficients of the

current H, G basis functions in Eq. 6. In both approaches, we require that

0 ≤ G ≤ 1. Before revising the basis functions, we note that the H, G phase

function fits the data set with m = 0.0361 mag.

Within the first approach, first, we further require that the two basis functions

do not intersect at phase angles α > 0◦. Second, we require that the values

of the basis functions at the discretization points be monotonically decreasing

across the full phase-angle range; and, third, we require that the approximate

second derivative of the first basis function (when computed using finite differ-

ences at the discretization points) is positive everywhere and that the second

derivative of the second basis function is positive for α > 8◦. Applying these

constraints and carrying out the stochastic optimization procedure results in a

phase function for which m = 0.0304 mag, that is, we have removed about one
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third of the original m2-value for the H, G phase function. However, strong

trends in the residuals are present at large phase angles and the basis functions

are by no means simple.

Within the second approach, as above, we do not allow the basis functions

to intersect. We do not incorporate additional constraints and obtain m =

0.0351 mag with new numerical coefficients to replace those in Eq. 6. This

shows only minute improvement compared to the fit using the H, G phase

function and shows that the H, G phase function has been well optimized.

The main conclusions are similar to those of the first approach. Note that all

the m-values being close to the typical observational error standard deviation

of 0.03 mag shows that, overall, the phase functions fit the observational data

reasonably well.

We do not include any figures showing the results of our attempt at simply

improving the H, G phase function because the fits that we obtained were

sometimes significantly better but sometimes worse than the corresponding

H, G fits and because many cases of fits using the H, G phase function will

be displayed in the figures presented in Sect. 3.3.

The results of this first exercise are thus negative concerning the development

of a linear two-parameter phase function. In particular, we do not find a way

to reach precise fits to the best data currently available. We are forced to

conclude that any ”improved” linear two-parameter phase function using fixed

basis functions has serious problems in adequately fitting a number of very

accurate magnitude phase curves.

On the basis of these results, we conclude that no ”minor” revision of the H,

G phase function will lead to a substantial improvement of the best fit to high-
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quality photometric phase data. This is essentially due to the intrinsic limits

imposed by the adoption of a linear two-parameter phase function. Although

this kind of model has the merit of being very simple, a better fit of high-

quality photometric phase data can only be obtained by adding an additional

parameter to the photometric phase function.

3.2 H, G1, G2 Phase Function

An immediate critical comment on the conclusion above is that adding param-

eters necessarily leads to better fits (e.g., by using Na > 3 free parameters one

expects to get even better fits), therefore the reasons for adding even one single

parameter must be compelling and well justified. In what follows, we assess the

feasibility of a three-parameter magnitude phase function that, in the number

of free parameters, represents the minimum change to the two-parameter H,

G phase function.

In a three-parameter H, G1, G2 magnitude phase function for asteroids, the

reduced observed magnitudes V (α) can be obtained from

10−0.4V (α) = a1Φ1(α) + a2Φ2(α) + a3Φ3(α)

= 10−0.4H [G1Φ1(α) +G2Φ2(α) + (1−G1 −G2)Φ3(α)], (18)

where Φ1(0) = Φ2(0) = Φ3(0) = 1. The absolute magnitude H and the coeffi-

cients G1 and G2 are

H =−2.5 log10(a1 + a2 + a3),

G1 =
a1

a1 + a2 + a3

,

G2 =
a2

a1 + a2 + a3

. (19)
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The coefficients a1, a2, and a3 are estimated from the observations by using

the linear least-squares method. Thereafter, H, G1, and G2 follow from the

nonlinear relations in Eq. 19.

The next goal is to determine the basis functions Φ1(α), Φ2(α), and Φ3(α).

We start by searching for a magnitude phase function where there is a single

opposition-effect function and where there is a possibility for obtaining arbi-

trary quasi-linear slopes of the phase functions at larger phase angles. Thus,

we construct a magnitude phase function consisting of an opposition-effect

function Φ3 and two linear basis functions Φ1 and Φ2 , and study such a phase

function for α < 30◦. Accordingly, the basis functions Φ1 and Φ2 are taken to

be

Φ1(α) = 1− 6α

π
,

Φ2(α) = 1− 9α

5π
, (20)

bracketing the photometric slopes currently observed for asteroids and partly

mimicking the H, G basis functions. Note that Φ1(
π
6
) = 0 and Φ2(

π
6
) = 7

10
.

We search for Φ3 by using the stochastic optimization method of Sect. 2.2

applied to the observational data in the five groups described above at α ≤ 30◦.

First, by assuming that Φ3 is of the same functional form as the approximate

H, G basis functions (Eq. 6), the stochastic optimization suggests

Φ3(α) = exp
(
−4π tan

2
3

1

2
α
)

(21)

with m = 0.0230 mag. For the two numerical coefficients, having in mind

realistic amplitudes for the opposition effect, we have adopted 4π and 2
3
. We

point out, however, that there turns out to be an infinite number of other
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suitable pairs of coefficients that also allow for satisfactory phase-curve fits.

Second, by using cubic splines for Φ3(α), we obtain fits with m = 0.0213 mag

indicating further improvement.

We can now search for the general H, G1, G2 phase function valid across

0◦ ≤ α ≤ 150◦ and thus the full phase-angle range covered by the observations,

that is, 0◦ ≤ α ≤ 140◦ (for the phase-angle grids, see Tables 3 and 4). For

the derivation of the H, G1, G2 phase function, we recall that N = 5 with

N1 = N2 = N3 = N4 = 1 and N5 = 4.

As a starting point for stochastic optimization, we assume Φ1 and Φ2 equal

to the linear dependences in Eq. 20 for α ≤ 7.5◦ and equal to the H, G

basis functions for α > 7.5◦, respectively, and assume Φ3 based on Eq. 21.

We stress that this starting point does not result in acceptable fits to the

observations but only serves to initiate the optimization successfully with three

non-intersecting basis functions within α . 120◦. In the optimization, we do

not vary the linear parts of Φ1 and Φ2 within α ≤ 7.5◦. For the spline parts

of Φ1 and Φ2, the first derivatives at α = 7.5◦ are then fixed according to the

linear dependences, whereas the first derivatives at α = 150◦ are treated as

free parameters constrained to have negative values. In optimizing Φ3 using

splines, it is assumed that Φ3(α ≥ π
6
) = 0 and Φ′3(

π
6
) = 0, whereas the first

derivative at α = 0◦ is treated as a free parameter with a negative value. To

summarize, the number of free basis-function parameters is NP = 20.

After optimization, the m-metric reaches the value of m = 0.0188 mag that

is clearly the best value for the m-metric of all the phase functions presently

assessed and is even smaller than the nominal observational errors assumed.

Note that the H, G1, G2 phase function works over the full phase-angle range
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of 0−140◦ covered by the observations. In particular, the phase function nicely

fits the small-phase-angle observations of E-class asteroids. It is nevertheless

plausible that the H, G1, G2 phase function will need to be improved once

more observational data become available at large phase angles.

The basis functions of the H, G1, G2 phase function following from the opti-

mization are depicted in Fig. 1 and given explicitly in Tables 3 and 4. There

are three additional dependent parameters of interest in applications of the

H, G1, G2 phase function. First, the phase integral is written as a function of

G1 and G2 as

q= 0.009082 + 0.4061G1 + 0.8092G2 (22)

Second, we introduce a photometric phase coefficient k defined as follows:

k=−
G1

6
π

+G2
9
5π

G1 +G2

=− 1

5π

30G1 + 9G2

G1 +G2

. (23)

Thus, k is the normalized slope of the phase-curve part represented by Φ1 and

Φ2 for α ≤ 7.5◦. Third, we introduce the amplitude of the opposition effect

ζ − 1, where ζ is the so-called enhancement factor:

ζ − 1 =
1−G1 −G2

G1 +G2

. (24)

3.3 Application of the H, G1, G2 Phase Function

In order to illustrate how well the new H, G1, G2 magnitude phase func-

tion manages to describe phase curves, we utilize the observational data in

Bowell et al. (1989). We thus fit the phase curves of (24) Themis, (44) Nysa,
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(69) Hesperia, (82) Alkmene, (133) Cyrene, (419) Aurelia, (1862) Apollo, and

the Moon by using the H, G phase function (with the precise basis functions

in Eq. 5) and the new H, G1, G2 phase function. 8 The data are described

briefly in Tables 5, 1, and 2 with references to the original observations.

Figures 2–5 show the least-squares fits to the observations in detail, allow-

ing for a comparison between the fits using the H, G and H, G1, G2 phase

functions. Table 6 gives the parameters with 99.7% error estimates. We do not

give the corresponding numbers as resulting from the original H, G magnitude

system, as the official H, G error analysis differs from the analyses presently

adopted (Sect. 2.3). In the figures, we have chosen to give the best-fit curves

only, in order to allow easy comparison of the curves resulting from differ-

ent phase functions. The 99.7% error envelopes are available upon request.

Note, however, that the tabulated error estimates for H partly characterize

the extents of the envelopes.

We conclude that reasonable accuracies follow for the absolute magnitudes

H, phase integrals q, and photometric slopes k; whereas, for the G1 and G2

parameters and the opposition-effect amplitude ζ − 1, the errors are typically

large. For (1862) Apollo and the Moon, we obtain G1 and G2 with improved

accuracies. In this context, it is worth emphasizing that the parameter er-

ror estimates are to be interpreted by bearing in mind the purely empirical

character of the phase functions.

(24) Themis. Both phase functions yield acceptable fits to the phase curve of

(24) Themis, but it is notable that the H, G1, G2 phase function is capable

of removing about half of the rms-value for the H, G fit.

8 Note that Bowell et al. (1989) did not provide figures for H, G fits.
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(44) Nysa. Based on the rms-values only, both phase functions again yield ac-

ceptable fits. However, the H, G phase function fails to reproduce the sharp-

ness of the opposition effect at the smallest phase angles.

(69) Hesperia. The H, G phase function provides a better fit to the phase

curve of (69) Hesperia. Note that there is particularly strong fluctuation in

the photometric observations of this asteroid which may explain the slightly

larger rms-value for the H, G1, G2 fit.

(82) Alkmene. The two least-squares fits are almost equally good for (82) Alkmene,

but there are clear differences close to the zero phase angle, where the H, G1,

G2 phase function suggests an opposition effect stronger than that from the

H, G phase function. According to Table 6, the H-value resulting from the

H, G1, G2 phase function has rather large error bars, thus nicely allowing for

more realistic less pronounced opposition effects.

(133) Cyrene. The H, G1, G2 phase function produces an excellent fit to the

phase-curve data of (133) Cyrene, whereas the H, G phase function faces

challenges at small phase angles.

(419) Aurelia. The H, G phase function fails to reproduce the quasi-linear

phase-angle dependence for (419) Aurelia, whereas the H, G1, G2 phase func-

tion produces an excellent fit. The rms-value for the H, G1, G2 fit is less than

a quarter of the one for the H, G fit.

(1862) Apollo. The H, G1, G2 phase function reproduces the full phase curve

of (1862) Apollo accurately, whereas fitting the H, G phase function appears

to result in systematic residual trends at small phase angles.

Moon. The H, G1, G2 phase function fits the lunar phase curve for α ∈
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[0.5◦, 100◦] accurately and provides a reasonable description of the phase curve

for α ≥ 100◦. The H, G phase function provides a satisfactory fit to the phase

curve for α ∈ [0.5◦, 100◦].

Note that the phase curves of (24) Themis, (44) Nysa, (1862) Apollo, and

the Moon have been included in the derivation of the new magnitude phase

function, which partly explains the remarkably small rms-values for the H,

G1, G2 fits for these objects. Recall that, for large phase angles, there are

observations of the martian moon Deimos, the Moon, asteroid (1862) Apollo,

as well as the simulated observations of (2867) Steins that have been utilized

in developing the new phase function.

Figure 6 depicts the G2 parameter versus the G1 parameter with 68.3% error

domains for all objects presently studied using the H, G1, G2 magnitude

phase function. The scatter plot can be seen to consist of three clusters that

correspond to the objects with steep (typically asteroids with low geometric

albedos), intermediate (intermediate albedos), and shallow photometric slopes

(high albedos). Note that it is Deimos that is located in between the clusters in

the middle and to the right. The G1, G2 relation in Fig. 6 can now be utilized

in the development of a nonlinear two-parameter phase function, where the

first parameter relates to the H magnitude and the second parameter describes

the shape of the phase function. It is important to note that this “low-noise”

G1, G2 relation is allowed for by the linear dependences of Φ1(α) and Φ2(α)

at phase angles α ≤ 7.5◦.
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3.4 H, G12 Phase Function with Application

The main reason to search for a two-parameter phase function is that, in the

vast majority of cases, the goal is to derive reliable values for the absolute

magnitude H from generally very poorly sampled phase curves. The three-

parameter phase function lacks the predictive power to do so. In order to

derive the two-parameter magnitude phase function, we express G1 and G2 in

the H, G1, G2 phase function using a single nonlinear parameter G12, that is,

G1 =G1(G12),

G2 =G2(G12). (25)

In the two-parameter H, G12 magnitude phase function, the reduced observed

magnitudes can then be obtained from

10−0.4V (α) =L0[G1Φ1(α) +G2Φ2(α) + (1−G1 −G2)Φ3(α)], (26)

where L0 is the disk-integrated brightness at zero phase angle and where we

express G1 and G2 using the single parameter G12. The absolute magnitude

H is

H =−2.5 log10 L0, (27)

and the basis functions Φ1, Φ2, and Φ3 are those of the H, G1, G2 magnitude

phase function.

Here we present G1 and G2 as piecewise linear functions of G12, relying on

the G1, G2 relation in Fig. 6. We optimize the piecewise linear relationships

using the observational data from five groups I-V (Tables 1 and 2), keeping

the basis functions Φ1, Φ2, and Φ3 fixed. Once the optimized relationships

are available, the coefficients L0 and G12 are estimated from the observations
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by using the nonlinear least-squares method or by a sequence of linear least-

squares solutions as a function of the nonlinear parameter G12 (see Sect. 2.3).

Note that the piecewise linear model is but one possible nonlinear model that

can be utilized. After determining L0 and G12, H, G1, and G2 follow from the

nonlinear relations in Eqs. 27 and 25.

The optimizations yields the following result with the m-metric value of m =

0.0196 mag which is almost as good as that of the H, G1, G2 magnitude phase

function (m = 0.0188 mag):

G1 =


0.7527G12 + 0.06164, G12 < 0.2,

0.9529G12 + 0.02162, G12 ≥ 0.2,

G2 =


−0.9612G12 + 0.6270, G12 < 0.2,

−0.6125G12 + 0.5572, G12 ≥ 0.2.

(28)

The full range of phase-function shapes is illustrated in Fig. 7 and the G1,

G2 relation is described in Fig. 6. The phase functions intersect at α ≈ 120◦

(Fig. 7), where the H, G1, G2 basis functions Φ1 and Φ2 intersect. Studying the

reason for the intersection in detail is beyond the scope of the present work.

In Table 7, we show the resulting parameter and their error estimates for the

same objects that were utilized to illustrate the H, G1, G2 phase function.

The rms-values of the fits are almost as good as when using the H, G1, G2

phase function and the parameter error estimates are smaller.

In Fig. 8, we illustrate the predictice power of the H, G12 magnitude phase

function for (1862) Apollo and (419) Aurelia. The two-parameter phase func-
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tion produces acceptable predictions for both objects in two directions, that

is, from small to large phase angles and vice versa. First, in three cases out

of four, the prediction based on the best-fit curve accurately traces the ob-

servations excluded from the fit. Second, in all cases, the error envelopes are

realistic and the observations excluded are well within the envelopes.

4 Conclusions

We have developed a three-parameter cubic-spline H, G1, G2 magnitude phase

function for asteroids that provides excellent fits to magnitude-phase obser-

vations. We have shown that this three-parameter phase function succeeds in

removing the inability of the H, G magnitude phase function to adequately

fit the phase curves of high-albedo and low-albedo asteroids. Furthermore, the

H, G1, G2 phase function has allowed for the development of the nonlinear

two-parameter H, G12 phase function that provides predictive power for small

numbers of observations (sparse observational data) better than the H, G

phase function.

We point out that, should a new type of asteroid photometric phase-curve

data become available, it is possible to revise the magnitude phase functions

using the methods currently presented. Finally, the new phase functions can

turn useful in the interpretation of Gaia and Pan-STARRS photometry of

asteroids.
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Table 1

Asteroid groups I-II utilized in the development of the magnitude phase functions.

We show the V-band geometric albedo pV (Tedesco et al., 2002a), the number of

observations Nobs, the minimum and maximum phase angles of the observations

αmin and αmax, and the references to the observations.

Group Asteroid Class pV Nobs αmin αmax References

I (50) Virginia X, Ch 0.04 18 0.15 23.1 Shevchenko et al. (1997)

(59) Elpis CP, B 0.04 15 0.30 21.1 Shevchenko et al. (1996)

(102) Miriam P, C 0.05 11 0.11 23.7 Shevchenko et al. (1997)

(190) Ismene P 14 0.30 14.9 Shevchenko et al. (2008)

(1021) Flammario F, B 0.05 7 0.20 12.9 Belskaya et al., in preparation

II (10) Hygiea C 0.07 17 0.32 17.1 Shevchenko (1997)

(24) Themis C, B 0.08 22 0.34 20.8 Harris et al. (1989a)

(47) Aglaja C, B 0.08 25 0.10 11.2 Chernova et al. (1991)

(303) Josephina C 0.06 16 0.17 17.8 Shevchenko et al. (2008)
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Table 2

As in Table 1 for groups III-V except for (2867) Steins, for which simulated data is

being utilized.

Group Asteroid Class pV Nobs αmin αmax References

III (5) Astraea S 0.23 7 0.33 15.7 Shevchenko et al. (2002)

(6) Hebe S 0.27 11 1.3 22.9 Gehrels & Taylor (1977)

(20) Massalia S 0.21 16 0.09 27.4 Gehrels (1956),

Belskaya et al. (2003)

(79) Eurynome S 0.26 12 0.07 29.2 Shevchenko et al. (1996)

IV (44) Nysa E 0.54 23 0.17 21.5 Harris et al. (1989b)

(64) Angelina E 0.48 11 0.11 22.5 Harris et al. (1989b)

V (1862) Apollo Q 0.26 18 0.2 89.0 Harris et al. (1987)

The Moon - 0.17 17 0.5 140.0 Bowell et al. (1989)

Deimos - 0.07 15 1.0 120.0 Pang et al. (1983)
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Table 3

The basis functions Φ1 and Φ2 of the H, G1, G2 magnitude phase function. Values

at intermediate phase angles follow from cubic splines passing through the tabulated

points with the requirement that the first derivatives are Φ′1( π24) = − 6
π , Φ′2( π24) =

− 9
5π , Φ′1(5π

6 ) = −9.1328612× 10−2, and Φ′2(5π
6 ) = −8.6573138× 10−8. We give the

numerical values with high precision to allow for sufficient accuracy when utilized

in the cubic-spline analyses. For the basis function Φ3, see Table 4.

α (◦) Φ1 Φ2

7.5 7.5× 10−1 9.25× 10−1

30.0 3.3486016× 10−1 6.2884169× 10−1

60.0 1.3410560× 10−1 3.1755495× 10−1

90.0 5.1104756× 10−2 1.2716367× 10−1

120.0 2.1465687× 10−2 2.2373903× 10−2

150.0 3.6396989× 10−3 1.6505689× 10−4
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Table 4

The basis function Φ3 of the H, G1, G2 phase function. Values at intermediate

phase angles follow from cubic splines passing through the tabulated points with the

requirement that the first derivatives are Φ′3(0) = −1.0630097×10−1 and Φ′3(π6 ) = 0.

α (◦) Φ3

0.0 1

0.3 8.3381185× 10−1

1.0 5.7735424× 10−1

2.0 4.2144772× 10−1

4.0 2.3174230× 10−1

8.0 1.0348178× 10−1

12.0 6.1733473× 10−2

20.0 1.6107006× 10−2

30.0 0
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Table 5

Additional objects utilized in the illustration of the new magnitude phase function.

We show the V-band geometric albedo pV (Tedesco et al. 2002a), the number of

observations Nobs, the minimum and maximum phase angles of the observations

αmin and αmax, and the references to the observations. For (24) Themis, (44) Nysa,

(1862) Apollo, and the Moon, see Tables 1 and 2.

Asteroid Class pV Nobs αmin αmax References

(69) Hesperia M 0.14 21 0.13 16.0 Poutanen et al. (1985)

(82) Alkmene S 0.21 11 2.29 27.2 Harris et al. (1984b)

(133) Cyrene SR 0.26 11 0.20 13.2 Harris et al. (1984a)

(419) Aurelia F 0.05 7 0.62 15.4 Harris and Young (1988)
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Table 6

The H, G1, G2 magnitude phase function as fitted to the photometric observations

of asteroids and the Moon: the absolute magnitude H, coefficients G1 and G2, phase

integral q, opposition-effect amplitude ζ − 1, and the photometric slope k, all with

two-sided 99.7% (or 3σ) errors. On the final row, we give the rms-values of the

individual fits. For the Moon, the rms-value describes the residuals for 0− 100◦ in

phase angle.

(24) (44) (69) (82) (133) (419) (1862) Moon

Themis Nysa Hesperia Alkmene Cyrene Aurelia Apollo

H 7.063 6.929 6.940 8.00 7.853 8.47 16.260 −0.154

(mag) −0.048 −0.095 −0.083 −0.19 −0.110 −0.12 −0.108 −0.057

+0.104 +0.054 +0.055 +0.39 +0.076 +0.18 +0.089 +0.118

G1 0.62 0.050 0.36 0.17 0.21 0.95 0.38 0.36

−0.24 −0.259 −0.25 −0.28 −0.45 −0.54 −0.12 −0.12

+0.28 +0.269 +0.28 +0.46 +0.52 +0.69 +0.15 +0.14

G2 0.14 0.67 0.29 0.39 0.39 −0.057 0.354 0.338

−0.16 −0.15 −0.18 −0.13 −0.33 −0.399 −0.051 −0.052

+0.16 +0.14 +0.16 +0.11 +0.30 +0.318 +0.052 +0.049

q 0.379 0.573 0.393 0.395 0.411 0.348 0.451 0.429

−0.040 −0.037 −0.041 −0.070 −0.079 −0.072 −0.041 −0.035

+0.043 +0.040 +0.042 +0.122 +0.075 +0.073 +0.048 +0.038
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Table 6

Continued.

(24) (44) (69) (82) (133) (419) (1862) Moon

Themis Nysa Hesperia Alkmene Cyrene Aurelia Apollo

ζ − 1 0.30 0.39 0.53 0.79 0.66 0.12 0.36 0.43

−0.19 −0.24 −0.21 −0.69 −0.40 −0.30 −0.19 −0.20

+0.21 +0.30 +0.29 +1.06 +0.61 +0.42 +0.21 +0.21

k −0.0289 −0.0116 −0.0229 −0.0170 −0.018 −0.0348 −0.0221 −0.0220

(◦)−1 −0.0049 −0.0071 −0.0069 −0.0091 −0.013 −0.0078 −0.0024 −0.0026

+0.0058 +0.0097 +0.0082 +0.0138 +0.021 +0.0103 +0.0028 +0.0030

rms 0.011 0.009 0.034 0.024 0.011 0.008 0.027 0.016

(mag)
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Table 7

The H, G12 magnitude phase function as fitted to the photometric observations of

asteroids and the Moon: the absolute magnitude H, coefficients G12, G1, and G2,

phase integral q, opposition-effect amplitude ζ − 1, and the photometric slope k, all

with two-sided 99.7% (or 3σ) errors. On the final row, we give the rms-values of the

individual fits. For the Moon, the rms-value describes the residuals for 0− 100◦ in

phase angle.

(24) (44) (69) (82) (133) (419) (1862) Moon

Themis Nysa Hesperia Alkmene Cyrene Aurelia Apollo

H 7.121 6.896 6.987 8.187 7.882 8.514 16.209 −0.124

(mag) −0.042 −0.041 −0.036 −0.032 −0.026 −0.074 −0.022 −0.020

+0.044 +0.044 +0.040 +0.034 +0.070 +0.052 +0.023 +0.022

G12 0.68 −0.066 0.41 0.30 0.20 1.04 0.334 0.358

−0.23 −0.077 −0.21 −0.14 −0.51 −0.46 −0.077 −0.073

+0.25 +0.072 +0.26 +0.19 +0.49 +0.16 +0.077 +0.073

G1 0.67 0.012 0.41 0.30 0.212 1.01 0.339 0.363

−0.22 −0.058 −0.20 −0.13 −0.038 −0.44 −0.074 −0.069

+0.24 +0.054 +0.25 +0.18 +0.463 +0.15 +0.073 +0.069

G2 0.14 0.690 0.30 0.38 0.435 −0.079 0.353 0.338

−0.15 −0.069 −0.16 −0.11 −0.297 −0.099 −0.047 −0.044

+0.14 +0.074 +0.13 +0.10 +0.049 +0.282 +0.047 +0.044
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Table 7

Continued.

(24) (44) (69) (82) (133) (419) (1862) Moon

Themis Nysa Hesperia Alkmene Cyrene Aurelia Apollo

q 0.395 0.573 0.424 0.437 0.447 0.356 0.4325 0.4298

−0.027 −0.034 −0.028 −0.020 −0.053 −0.018 −0.0083 −0.0079

+0.025 +0.036 +0.024 +0.032 +0.024 +0.050 +0.083 +0.0079

ζ − 1 0.24 0.424 0.39 0.471 0.545747 0.073 0.444 0.427

−0.12 −0.032 −0.15 −0.125 −0.314549 −0.060 −0.053 −0.049

+0.13 +0.031 +0.15 +0.075 +0.000011 +0.217 +0.057 +0.052

k −0.0292 −0.0104 −0.0234 −0.0204 −0.0177 −0.0353 −0.0214 −0.0221

(◦)−1 −0.0044 −0.0019 −0.0057 −0.0047 −0.0117 −0.0022 −0.0020 −0.0018

+0.0049 +0.0019 +0.0058 +0.0041 +0.0015 +0.0081 +0.0021 +0.0019

rms 0.016 0.009 0.042 0.028 0.028 0.011 0.029 0.016

(mag)
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Fig. 1. The basis functions of the three-parameter H, G1, G2 magnitude phase

function expressed using cubic splines (Tables 3 and 4).

46



ACCEPTED MANUSCRIPT 

Fig. 2. Linear least-squares fits (solid lines) to the phase curves of the C-class aster-

oid (24) Themis (top) and the E-class asteroid (44) Nysa (bottom) using the H, G1,

G2 (left) and and H, G magnitude phase functions (right). For best-fit parameters

and their error estimates, see Table 6.
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Fig. 3. As in Fig. 2 for the M-class asteroid (69) Hesperia and the S-class asteroid

(82) Alkmene.
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Fig. 4. As in Fig. 2 for the SR-class asteroid (133) Cyrene and the F-class asteroid

(419) Aurelia.
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Fig. 5. As in Fig. 2 for the Q-class near-Earth object (1862) Apollo and for the

Moon. For the latter, the rms-values describe the residuals for 0 − 100◦ in phase

angle.
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Fig. 6. The G1 and G2 parameters with 68.3% error domains for all objects presently

studied (Tables 1, 2, and 5).
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Fig. 7. The spectrum of phase-function shapes resulting from the nonlinear two-pa-

rameter H, G12 magnitude phase function.
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Fig. 8. Predictive power of the H, G12 magnitude phase function for (1862) Apollo

and (419) Aurelia: the observations illustrated using solid bullets are included in the

nonlinear least-squares solution and subsequent Monte-Carlo error analysis, whereas

the observations illustrated using plus-signs serve as control points for predictive

power. The dashed lines give the 99.7-% error envelopes for the predictions.
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