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We develop a three-parameter H, G 1 , G 2 magnitude phase function for asteroids starting from the current two-parameter H, G phase function. We describe stochastic optimization of the basis functions of the magnitude phase function based on a carefully chosen set of asteroid photometric observations covering the principal types of phase dependencies. We then illustrate the magnitude phase function with a chosen set of observations. It is shown that the H, G 1 , G 2 phase function systematically improves fits to the existing data and considerably so, warranting the utilization of three parameters instead of two. With the help of the linear three-parameter phase function, we derive a nonlinear two-parameter H, G 12 phase function, and demonstrate its applicability in predicting phase dependencies based on small numbers of observations.

Introduction

The absolute magnitude is a fundamental astronomical parameter. According to its current definition, the absolute magnitude (H) of an asteroid is its mean apparent magnitude in the Johnson V band over a full rotation cycle (to account for the irregular shape of most asteroids that produces a periodic variation in brightness) when observed at 1 AU from both the Sun and the Earth, and at zero degrees solar phase angle 1 . That is, the absolute magnitude quantifies the intrinsic brightness of an asteroid. This brightness is determined by the asteroid's size (D, diameter in km) 2 and geometric albedo (p V ); the latter parameter, which is used to quantify the intrinsic reflectance of the surface, is related to surface composition and texture. The relation between the diameter, geometric albedo, and absolute magnitude is given by: log 10 D = 3.1236 -0.2 H -0.5 log 10 p V .

(1)

It is used in many practical applications, in particular when determining the albedo, given the size and the absolute magnitude (e.g., when the size has been determined from spacecraft or adaptive-optics imaging or from thermal radiometric observations) or, conversely, when deriving the size, when the albedo and absolute magnitude are known (as in the case of polarimetric determination of the albedo). Accurate albedos and diameters are important for a number of fundamental studies, e.g., the inventory and size distribution of the asteroid population and the albedo distribution within dynamical families.

1 The solar phase angle (generally shortened to "phase angle") is the angle between the Sun and the Earth as seen from the object.

2 D is the diameter of a sphere having the same projected surface area as the asteroid.

When dealing with real photometric data, determining H for a given asteroid reduces to determining its phase function. This is because the dependence on the distances from the Earth and Sun, being merely an inverse square relation, is trivially accounted for. However, the fact that H is defined at zero phase angle introduces complications since few asteroids are observed near zero phase angle. Indeed, many main-belt asteroids are not observed at phase angles <10 • . Therefore, we must extrapolate from the phase angle of observation to zero degrees using what we know about the variation of the magnitude as a function of phase angle. This variation is mostly linear over a wide range of phase angles, but a nonlinear brightness surge takes place at small phase angles (roughly <7 • ). The origin of this so-called opposition effect is believed to be an interplay of shadowing and coherent-backscattering mechanisms (e.g., [START_REF] Muinonen | Asteroid photometric and polarimetric phase effects[END_REF].

To address this issue, in 1985, Commission 20 of the International Astronomical Union adopted the so-called H, G magnitude system (the Johnson V band at mean lightcurve brightness and the H, G phase function) to define asteroid absolute magnitudes. The two parameters of the H, G phase function have the following meaning: H corresponds to the mean brightness, in Johnson V magnitude, at zero degrees phase angle (i.e., the absolute magnitude), and G is the so-called slope parameter, which describes the shape of the magnitude phase function. In practice, the slope parameter has been derived for 0.1% of the known asteroids ( 100 from the Minor Planet Center's orbital-elements file and perhaps a score of others mostly from asteroid lightcurve studies). In general, only a handful of photometric observations, obtained at only a few phase angles, are available for any given asteroid, and this is insufficient to derive both H and G. In these cases, an assumed value of G, usually 0.15, is adopted [START_REF] Bowell | Application of photometric models to asteroids[END_REF]). Since the shape of the phase function is determined by G, this allows for the derivation of H from magnitudes at as few as one phase angle. When observations from multiple phase angles are available the resulting H values are averaged. To some extent this increases the reliability of H by taking into account brightness variations due to lightcurve and aspect3 effects.

The accuracy of V-band magnitudes predicted from available H, G values is usually poor, probably due to low-quality photometry used to obtain the H (and in a few cases, the G) values. The reason for this is that the vast majority of available asteroid photometry is from near-Earth-object search programs conducted over the past 15 years. Because these are discovery surveys, most of which obtain images using unfiltered CCDs, the emphasis is on limiting magnitude, sky area covered per unit time, and astrometric accuracy. In particular, for most surveys the "photometry", where it is provided at all, is not in the Johnson V band (or in any other standard photometric system) and does not use standard stars from photometric catalogs for calibration. Thus, it is not surprising that there is poor agreement between observed V magnitudes and those predicted using H, G values from the orbital-element catalogs all of which currently (except the AstDys database maintained by A. Milani at the University of Pisa) trace their values to the Minor Planet Center's database, the sole repository for H, G values recognized by the IAU. See Jurić et al. (2002), [START_REF] Jedicke | Observational selection effects in asteroid surveys[END_REF][START_REF] Parker | The size distributions of asteroid families in the SDSS Moving Object Catalog 4[END_REF] for further discussions of this issue.

In practice, there are at least three accuracy levels required for H: 1) On the order of a few hundredths of a magnitude for detailed physical studies4 , e.g., shape determination and thermophysical modeling, 2) ∼0.1 mag -∼0.2 mag for "statistical" physical studies, e.g., [START_REF] Durda | Collisional models and scaling laws: A new interpretation of the shape of the main-belt asteroid size distribution[END_REF]), Tedesco et al. (2002abc), and Tedesco et al. (2005), and 3) ∼0.2 mag -∼0.5 mag for astrometric studies, e.g., for planning follow-up observations. Our work focuses on improving H for uses 1) and 2) by developing improved asteroid phase functions. In particular, as shown below, these new phase functions derive from basis functions that were originally determined using results from the best light-scattering models available, and which have been tested using the best magnitude phase curves available. We also demonstrate how a nonlinear two-parameter version of the linear three-parameter phase function can be used to predict asteroid brightnesses from sparse observational data and will provide an estimate of the accuracies to be expected for observations from various phase-angle ranges.

In 

H, G Magnitude Phase Function

The H, G phase function for asteroids can be described as follows. If we call α the phase angle, and V (α) the V magnitude (reduced to unit distance)

expected for an object characterized by given values of H and G, the following relation holds:

V (α) = H -2.5 log 10 [(1 -G)Φ 1 (α) + GΦ 2 (α)], (2) 
where Φ 1 (α) and Φ 2 (α) are two basis functions normalized at unity for α = 0 • .

According to Eq. 2, the magnitude phase curve (hereinafter, "phase curve") of an object is described as the partitioning of the Φ 1 and Φ 2 functions in the ratio (1 -G) : G. In turn, the slope parameter G is scaled in such a way that it is close to 0 for steep phase curves, and close to 1 for shallow phase curves, but values outside this interval are not excluded a priori.

In the H, G magnitude phase function for asteroids, the reduced observed magnitudes V (α) can be obtained from

10 -0.4V (α) = a 1 Φ 1 (α) + a 2 Φ 2 (α) = 10 -0.4H [(1 -G)Φ 1 (α) + GΦ 2 (α)], (3) 
where the absolute magnitude H and the coefficient

G are 5 H = -2.5 log 10 (a 1 + a 2 ), G = a 2 a 1 + a 2 . ( 4 
)
The coefficients a 1 and a 2 are estimated from the observations by using the linear least-squares method. Thereafter, H and G follow from Eq. 4. In the H, G phase function, the basis functions are

Φ 1 (α) = w 1 - 0.986 sin α 0.119 + 1.341 sin α -0.754 sin 2 α + (1 -w) exp -3.332 tan 0.631 1 2 α , Φ 2 (α) = w 1 - 0.238 sin α 0.119 + 1.341 sin α -0.754 sin 2 α + (1 -w) exp -1.862 tan 1.218 1 2 α , w = exp(-90.56 tan 2 1 2 α). (5) 
These functions are accurately approximated by

Φ 1 (α) = exp(-3.33 tan 0.63 1 2 α), Φ 2 (α) = exp(-1.87 tan 1.22 1 2 α). (6) 
The two functions in Eq. More than 20 years since its adoption, there are reasons to try and improve the H, G phase function. This function still does a reasonably good job in fitting phase curves for many asteroids, especially in the region from ∼10 • to ∼60 • . However, there exist some high-quality phase curves for which this is not true, especially in the region of the opposition brightness surge.

This problem is not too serious in many practical cases, in particular, when trying to derive the absolute magnitude of asteroids for which only a few observations are available, in which cases the uncertainty in the derived absolute magnitude is not due to the adopted phase function, but rather to the quality, quantity, and distribution over phase angle of the data. Nevertheless, an optimal phase function should provide accurate fits to high-quality data, and this is not always true for the current version of the H, G phase function.

Before proceeding to describe revising the H, G phase function, we wish to present five relevant facts concerning it. First, it is clear that the H and G parameters have been introduced with the aim to be two fundamental parameters to describe the photometric behavior of asteroids, or more generally, that of atmosphereless solar-system bodies. On one hand, knowledge of these two parameters allows one to predict the magnitude expected for an object at any given phase angle. Conversely, fitting a given magnitude-phase data set using the H, G phase function allows one to directly obtain H (the absolute magnitude). However, [START_REF] Bowell | Application of photometric models to asteroids[END_REF] noted that the relation between size, albedo, and H, as given in Eq. 1, should be taken with a grain of salt.

In particular, it was suggested that the albedo derived via H and size, being not a direct measurement, should be referred to as a "pseudoalbedo".

Second, the so-called phase integral6 (q), is a linear function of G, viz.:7 q = 0.290 + 0.684 G.

The importance of the phase integral q is that it is used to link the value of the geometric albedo to the value of the Bond albedo, which is by definition the ratio between the total flux of sunlight scattered (i.e., not absorbed) by an object and the incoming sunlight flux incident on the object. The simple relation between the geometric albedo p V , Bond albedo A, and the phase integral q is the following:

A = p V q. ( 8 
)
Since the Bond albedo is an important parameter, for instance for studies of thermal infrared emission, the simple relation linking G to q is something generally useful.

Third, it is a fact that real objects have irregular shapes, and so exhibit a rotational modulation in their brightness. However, by definition, H refers to the average brightness during a rotational cycle. In practical terms, [START_REF] Bowell | Application of photometric models to asteroids[END_REF] noted that the phase function should be expected to work using magnitude values obtained at unknown rotational phases, although with greater uncertainty in the resultant parameters. In the future, when huge databases of sparse photometric data will be produced by surveys like Gaia and Pan-STARRS, modern techniques to invert sparse photometric data will, in principle, allow the rotational phase, at which each given observation was obtained, to be estimated [START_REF] Cellino | Asteroid science with Gaia: Sizes, spin properties, overall shapes and taxonomy[END_REF]).

Fourth, there have been several analyses to find relations between G and some physical properties of asteroids. The results of these investigations [START_REF] Tedesco | Ground-based data for asteroids and comets[END_REF]Harris and Young, 1989) indicate that there is a general trend of increasing G for increasing albedo. Taken at face value, these results indicate that the parameter G and albedo correlate but that this correlation is not particularly strong.

Finally, we note that it is inadvisable to combine magnitude data obtained at different apparitions (the interval of time around opposition during which an asteroid is observable) unless it has been established that the apparitions correspond to similar aspect angles, because different apparitions may correspond to different viewing geometries. In particular, the aspect angle may change from apparition to apparition, resulting in the object presenting different views of its surface to the observer. Thus, combining data from different apparitions can produce misleading results. In particular, the value of H for a given object may change from apparition to apparition. However, the consequences of this fact are beyond the scope of the present paper because it is something that is independent of the actual phase function.

Stochastic Optimization

We make use of a stochastic optimization method for the basis functions that is, in principle, independent of any a priori analytical choices for the shape of the functions. We present the basis functions with a discretization and cubicspline interpolation scheme relying on a fixed discrete set of phase angles, with the function values at the fixed angles and, occasionally, the first derivatives of the functions at the ends of the entire angular interpolation range as the free parameters (or unknowns). As a result, the number of free parameters is large but manageable. The optimization method includes ingredients from simulated annealing methods (e.g., [START_REF] Press | Numerical Recipes in Fortran[END_REF]; also compare to MCMC or Markov-Chain Monte-Carlo methods, [START_REF] Gilks | Markov Chain Monte Carlo in Practice[END_REF]. The optimization of the basis-function values proceeds from a chosen starting point via a Monte Carlo method that proposes random moves based on Gaussian proposal probability densities, but gives rise to a move only if the proposed new point in the parameter space results in improved fits to all the observational data. The data are grouped according to differing phase-curve shapes to allow for wide applicability of the new basis functions. In optimizing the basis functions, the data are properly weighted by the asteroid groups and number of members within each group.

In the optimization, it is necessary to utilize regularization procedures to constrain the basis functions to be members of reasonable function classes. Among the typical constraints are, for example, that a basis function needs to be a monotonically decreasing function of the phase angle or that a basis function needs to have a positive second derivative close to the opposition to be able to describe common opposition-effect characteristics. The phase-angle discretization for cubic-spline interpolation needs to be defined so as to secure, preferably, numerous photometric observations of different asteroids within each of the discrete intervals. It is important to require that the basis functions be nonintersecting at phase angles most typically covered by observations: should the basis functions intersect, all resulting phase functions would pass through the point of intersection, which would be in disagreement with observational data.
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Furthermore, if the first derivatives of the basis functions coincide for some phase angle, the linear least-squares fitting becomes ill-posed in the vicinity of that phase angle. It is desirable to rule out this caveat, again, at phase angles most typically covered by observations.

The optimization scheme also works well for smaller numbers of parameters, i.e., when we optimize basis functions that use a small number of parameters (like the numerical coefficients of the basis functions in Eq. 6 for the approximate H, G phase function). In what follows, we utilize stochastic optimization methods in numerous tasks connected with the search for improved photometric phase functions.

Deriving the basis functions for the magnitude phase function entails solving a global optimization problem iteratively so that, at each iteration step, a number of linear least-squares minimization problems are solved for individual asteroid phase curves. We group the individual asteroid phase curves based on their similarities and differences so as to guarantee a balanced coverage of phase-curve variability.

The global metric to be minimized with respect to the N P parameters P = (P 1 , P 2 , P 3 , . . . , P N P ) T characterizing the basis functions is termed m 2 :

m 2 (P ) = 1 N N i=1 N i j=1 N ij k=1 [V ijk -V ij (α ijk , P )] 2 σ 2 ijk , ( 9 
)
where N is the number of asteroid groups involved, N i is the number of asteroids in group i, N ij is the number of observations of the jth asteroid in group i, V ijk and α ijk denote the kth observed magnitude and corresponding phase angle of asteroid j in group i, V ij (α ijk , P ) is the computed magnitude, and σ -2 ijk denotes the weight factor for each observation.

The computed magnitudes V ij (α ijk , P ) in Eq. 9 follow from solving the linear least-squares problems concerning the observed disk-integrated brightnesses L ijk , their error standard deviations σ

(L)
ijk , and the computed disk-integrated brightnesses L ij (α ijk , a ij ), where a ij = (a 1,ij , a 2,ij , . . . , a Na,ij ) T denotes the N a parameters to be fitted in the linear least-squares sense for each asteroid ij.

We have the interrelations

L ijk = 10 -0.4V ijk , σ (L) ijk = L ijk (10 0.4σ (V ) ijk -1), ( 10 
)
where σ

(V )
ijk stands for the error standard deviations of the magnitudes. The χ 2 -value to be minimized here with respect to the parameters a ij is

χ 2 ij (a ij ) = N ij k=1 [L ijk -L ij (α ijk , a ij )] 2 [σ (L) ijk ] 2 . ( 11 
)
The computed disk-integrated brightnesses are expressed with the help of the N a basis functions Φ 1 (α, P ), Φ 2 (α, P ), . . . , Φ Na (α, P ),

L ij (α ijk , a ij ) = Na l=1 a ijl Φ l (α ijk , P ), Φ l (0, P ) = 1, l = 1, 2, . . . , N a . (12) 
The minimization gives us a ij,ls , the linear least-squares a ij , for a given set of basis functions parameterized by P . The magnitudes are then computed from

V ij (α ijk , P ) = -2.5 log 10 L ij (α ijk , a ij,ls ). ( 13 
)
The metric m 2 (P ) now follows from Eq. 9. The steps in Eqs. 9-13 are iteratively repeated for varying P until convergence on the minimum m 2 (P )-metric parameters P = P ls is achieved. Note that individual asteroid brightnesses are being fitted in the linear least-squares sense, whereas the computation of m 2 (P ) entails the least-squares solution in terms of magnitudes. We have verified that the least-squares parameters P ls are not sensitive to whether magnitudes or brightnesses are utilized in the definition of m 2 (P ).

The weight factors σ -2 ijk in Eq. 9 describe the weight of each asteroid observation in the global m 2 -metric. The weight factors depend on the number of asteroids in each group N i and σ

(V )
ijk as follows:

σ 2 ijk = [σ (V ) ijk ] 2 w i , w i =   N i j=1 N ij k=1 1 [σ (V ) ijk ] 2   -1 . ( 14 
)
The weight factor w i ensures that each asteroid group i obtains the same weight in the global optimization, without regard to the number or accuracy of the observations. Within individual data sets and within each group, accurate observations obtain more weight than inaccurate ones.

The global χ 2 -value corresponding to the m 2 -metric of Eq. 9 is available from

χ 2 (P ) = N m 2 (P ) N i=1 w i -1 . (15) 
In what follows, we nevertheless characterize the goodness of each basisfunction set by the global m-metric value (in mag) following from the square root of the m 2 -metric in Eq. 9. In characterizing the goodness of the linear least-squares fits for the individual brightness phase curves, we make use of the rms values of the fits (in mag, again).

Note that the m-metric could, in principle, include terms measuring the predictive power of the magnitude phase function, as well as terms measuring the errors in the parameters a (omitting the subscripts ij). In the present work, we are making use of the m-metric as given in Eq. 9.

Monte-Carlo Inverse Methods

For a given magnitude phase function, the a posteriori probability density function (p.d.f.) for the parameters a is obtained from (cf. Eq. 11)

p(a) ∝ exp[- 1 2 χ 2 (a)], (16) 
where χ 2 denotes the product of the residuals in a row vector (observed minus computed), the covariance matrix for the random observational errors, and the residuals in a column vector. In what follows, for simplicity, the covariance matrix is assumed to be diagonal. If the model is linear, p(a) is a multivariate Gaussian p.d.f. and can be Monte-Carlo sampled using standard methods, whereafter samples of dependent nonlinear parameters follow in a straightforward way.

For a model with one nonlinear parameter (b) and a number of linear parameters (a), we obtain varying multivariate Gaussian p.d.f.s for a given the value of b. Furthermore, the marginal p.d.f. of b is

p(b) ∝ det Σ a (b) exp[- 1 2 χ 2 a (b)], (17) 
where Σ a (b) and χ 2 a (b) denote the covariance matrix and value of χ 2 due to the least-squares solution for a given the value of b. The a posteriori p.d.f. in Eq. 17 can be efficiently sampled by drawing b from its marginal p.d.f. and then drawing a from the multivariate Gaussian p.d.f. corresponding to the value of b sampled.
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We choose to characterize the parameter errors using the 3σ (99.7%) and 1σ

(68.3%) criteria in the following way: from the set of sampled parameters, we determine the χ 2 (a)-value corresponding to the 99.7% or 68.3% boundaries, whereafter we give the two-sided error bars of the parameters corresponding to the minimum and maximum values of the parameters within the 99.7% or 68.3% set of sampled parameters.

3 Results and Discussion

Optimizing the H, G Phase Function

Our first attempt to obtain an improvement of the H, G phase function consists of trying to derive improved expressions for the basis functions Φ 1 (α)

and Φ 2 (α). The shapes of the phase curves observed for E-class and F-class asteroids are such that the phase curves intersect each other at a small but nonzero phase angle when normalized to an equal magnitude value at zero phase angle (see references in Tables 1 and2). Thus, a linear two-parameter phase function with non-intersecting basis functions cannot result in excellent fits to the entire current asteroid phase-curve data. In what follows, we assess in detail the price of having such a phase function.

The data used in this analysis are summarized in Tables 1 and2, which also list the original references for each phase curve. We selected what we believe to be the best data available today, in terms of good phase-angle coverage at small phase angles, good phase-angle range, and small scatter within the observational data (typically 0.03 mag). In particular, we used a total of 18 phase curves, subdivided into five groups I-V. Four of the groups (I-IV) were
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established because of similar photometric behavior of the objects. Differences between the phase curves of individual asteroids in each of these groups are within the uncertainties of the magnitude measurements, and the data are utilized to produce four composite phase curves pertaining to groups I-IV.

These four groups are mainly characterized by differences in geometric albedo, but we did not do any a priori selection based on albedo and/or taxonomic class, but rather focused on the apparent photometric behavior by looking at the data on a case-by-case basis. In simple terms, the four groups include asteroids which exhibit increasing extents of the opposition brightness surge, from objects displaying mostly linear phase curves with very little opposition effect, if any, up to objects displaying a pronounced opposition effect (the latter objects belonging to the E taxonomic class).

The remaining group V consists of photometry for four objects with phase- 
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The standard deviation σ (V ) (subscripts suppressed) of Sect. 2.2 obtains the value of 0.03 mag for all objects except the Moon (0.023 mag, [START_REF] Bowell | Application of photometric models to asteroids[END_REF]) and ( 2867) Steins (0.023 mag). For observations at large phase angles α ≥ 100 • , we assume σ (V ) = 0.2 mag mainly due to the relevance of unmodeled physical properties of the objects such as the irregular shape and variegation of scattering properties on the surfaces. For observations at small phase angles α ≤ 0.2 • for members in groups I-IV, we halve the σ (V ) -value in order for the resulting phase functions to be able to produce particularly accurate fits at small phase angles.

In attempting to revise the two H, G basis functions, we follow two principal approaches: first, by discretizing the basis functions and introducing a fixed cubic-spline interpolation grid of phase angles (0 and150 • ), we search for function values resulting in minimum global m 2 in Eq. 9; second, we fine-tune the numerical coefficients of the current H, G basis functions in Eq. 6. In both approaches, we require that 0 ≤ G ≤ 1. Before revising the basis functions, we note that the H, G phase function fits the data set with m = 0.0361 mag.

• , 0.3 • , 1 • , 2 • , 4 • , 8 • , 15 • , 30 • , 60 • , 90 • , 120 • ,
Within the first approach, first, we further require that the two basis functions do not intersect at phase angles α > 0 • . Second, we require that the values of the basis functions at the discretization points be monotonically decreasing across the full phase-angle range; and, third, we require that the approximate second derivative of the first basis function (when computed using finite differences at the discretization points) is positive everywhere and that the second derivative of the second basis function is positive for α > 8 • . Applying these constraints and carrying out the stochastic optimization procedure results in a phase function for which m = 0.0304 mag, that is, we have removed about one third of the original m 2 -value for the H, G phase function. However, strong trends in the residuals are present at large phase angles and the basis functions are by no means simple.

Within the second approach, as above, we do not allow the basis functions to intersect. We do not incorporate additional constraints and obtain m = 0.0351 mag with new numerical coefficients to replace those in Eq. 6. This

shows only minute improvement compared to the fit using the H, G phase function and shows that the H, G phase function has been well optimized.

The main conclusions are similar to those of the first approach. Note that all the m-values being close to the typical observational error standard deviation of 0.03 mag shows that, overall, the phase functions fit the observational data reasonably well.

We do not include any figures showing the results of our attempt at simply improving the H, G phase function because the fits that we obtained were sometimes significantly better but sometimes worse than the corresponding H, G fits and because many cases of fits using the H, G phase function will be displayed in the figures presented in Sect. 3.3.

The results of this first exercise are thus negative concerning the development of a linear two-parameter phase function. In particular, we do not find a way to reach precise fits to the best data currently available. We are forced to conclude that any "improved" linear two-parameter phase function using fixed basis functions has serious problems in adequately fitting a number of very accurate magnitude phase curves.

On the basis of these results, we conclude that no "minor" revision of the H, G phase function will lead to a substantial improvement of the best fit to high-quality photometric phase data. This is essentially due to the intrinsic limits imposed by the adoption of a linear two-parameter phase function. Although this kind of model has the merit of being very simple, a better fit of highquality photometric phase data can only be obtained by adding an additional parameter to the photometric phase function.

H, G 1 , G 2 Phase Function

An immediate critical comment on the conclusion above is that adding parameters necessarily leads to better fits (e.g., by using N a > 3 free parameters one expects to get even better fits), therefore the reasons for adding even one single parameter must be compelling and well justified. In what follows, we assess the feasibility of a three-parameter magnitude phase function that, in the number of free parameters, represents the minimum change to the two-parameter H, G phase function.

In a three-parameter H, G 1 , G 2 magnitude phase function for asteroids, the reduced observed magnitudes V (α) can be obtained from

10 -0.4V (α) = a 1 Φ 1 (α) + a 2 Φ 2 (α) + a 3 Φ 3 (α) = 10 -0.4H [G 1 Φ 1 (α) + G 2 Φ 2 (α) + (1 -G 1 -G 2 )Φ 3 (α)], (18) 
where Φ 1 (0) = Φ 2 (0) = Φ 3 (0) = 1. The absolute magnitude H and the coefficients G 1 and G 2 are H = -2.5 log 10 (a 1 + a 2 + a 3 ),

G 1 = a 1 a 1 + a 2 + a 3 , G 2 = a 2 a 1 + a 2 + a 3 . ( 19 
)
The coefficients a 1 , a 2 , and a 3 are estimated from the observations by using the linear least-squares method. Thereafter, H, G 1 , and G 2 follow from the nonlinear relations in Eq. 19.

The next goal is to determine the basis functions Φ 1 (α), Φ 2 (α), and Φ 3 (α).

We start by searching for a magnitude phase function where there is a single opposition-effect function and where there is a possibility for obtaining arbitrary quasi-linear slopes of the phase functions at larger phase angles. Thus, we construct a magnitude phase function consisting of an opposition-effect function Φ 3 and two linear basis functions Φ 1 and Φ 2 , and study such a phase function for α < 30 • . Accordingly, the basis functions Φ 1 and Φ 2 are taken to be

Φ 1 (α) = 1 - 6α π , Φ 2 (α) = 1 - 9α 5π , (20) 
bracketing the photometric slopes currently observed for asteroids and partly mimicking the H, G basis functions. Note that Φ 1 ( π 6 ) = 0 and Φ 2 ( π 6 ) = 7 10 .

We search for Φ 3 by using the stochastic optimization method of Sect. 2.2 applied to the observational data in the five groups described above at α ≤ 30 • .

First, by assuming that Φ 3 is of the same functional form as the approximate H, G basis functions (Eq. 6), the stochastic optimization suggests

Φ 3 (α) = exp -4π tan 2 3 1 2 α ( 21 
)
with m = 0.0230 mag. For the two numerical coefficients, having in mind realistic amplitudes for the opposition effect, we have adopted 4π and 2 3 . We point out, however, that there turns out to be an infinite number of other suitable pairs of coefficients that also allow for satisfactory phase-curve fits.

Second, by using cubic splines for Φ 3 (α), we obtain fits with m = 0.0213 mag indicating further improvement.

We can now search for the general H, G 1 , G 2 phase function valid across 0 • ≤ α ≤ 150 • and thus the full phase-angle range covered by the observations, that is, 0 • ≤ α ≤ 140 • (for the phase-angle grids, see Tables 3 and4). For the derivation of the H, G 1 , G 2 phase function, we recall that N = 5 with

N 1 = N 2 = N 3 = N 4 = 1 and N 5 = 4.
As a starting point for stochastic optimization, we assume Φ 1 and Φ 2 equal to the linear dependences in Eq. 20 for α ≤ 7.5 • and equal to the H, G basis functions for α > 7.5 • , respectively, and assume Φ 3 based on Eq. 21.

We stress that this starting point does not result in acceptable fits to the observations but only serves to initiate the optimization successfully with three non-intersecting basis functions within α 120 • . In the optimization, we do not vary the linear parts of Φ 1 and Φ 2 within α ≤ 7.5 • . For the spline parts of Φ 1 and Φ 2 , the first derivatives at α = 7.5 • are then fixed according to the linear dependences, whereas the first derivatives at α = 150 • are treated as free parameters constrained to have negative values. In optimizing Φ 3 using splines, it is assumed that Φ 3 (α ≥ π 6 ) = 0 and Φ 3 ( π 6 ) = 0, whereas the first derivative at α = 0 • is treated as a free parameter with a negative value. To summarize, the number of free basis-function parameters is N P = 20.

After optimization, the m-metric reaches the value of m = 0.0188 mag that is clearly the best value for the m-metric of all the phase functions presently assessed and is even smaller than the nominal observational errors assumed.

Note that the H, G 1 , G 2 phase function works over the full phase-angle range of 0-140 • covered by the observations. In particular, the phase function nicely fits the small-phase-angle observations of E-class asteroids. It is nevertheless plausible that the H, G 1 , G 2 phase function will need to be improved once more observational data become available at large phase angles.

The basis functions of the H, G 1 , G 2 phase function following from the optimization are depicted in Fig. 1 and given explicitly in Tables 3 and4. There are three additional dependent parameters of interest in applications of the H, G 1 , G 2 phase function. First, the phase integral is written as a function of

G 1 and G 2 as q = 0.009082 + 0.4061G 1 + 0.8092G 2 (22) 
Second, we introduce a photometric phase coefficient k defined as follows:

k = - G 1 6 π + G 2 9 5π G 1 + G 2 = - 1 5π 30G 1 + 9G 2 G 1 + G 2 . ( 23 
)
Thus, k is the normalized slope of the phase-curve part represented by Φ 1 and Φ 2 for α ≤ 7.5 • . Third, we introduce the amplitude of the opposition effect ζ -1, where ζ is the so-called enhancement factor:

ζ -1 = 1 -G 1 -G 2 G 1 + G 2 . ( 24 
) 3.3 Application of the H, G 1 , G 2 Phase Function
In order to illustrate how well the new H, G 1 , G 2 magnitude phase function manages to describe phase curves, we utilize the observational data in [START_REF] Bowell | Application of photometric models to asteroids[END_REF]. We thus fit the phase curves of (24) Themis, (44) Nysa, (69) Hesperia, (82) Alkmene, (133) Cyrene, (419) Aurelia, (1862) Apollo, and the Moon by using the H, G phase function (with the precise basis functions in Eq. 5) and the new H, G 1 , G 2 phase function. 8 The data are described briefly in Tables 5,1, and 2 with references to the original observations.

Figures 2345show the least-squares fits to the observations in detail, allowing for a comparison between the fits using the H, G and H, G 1 , G 2 phase functions. Table 6 gives the parameters with 99.7% error estimates. We do not give the corresponding numbers as resulting from the original H, G magnitude system, as the official H, G error analysis differs from the analyses presently adopted (Sect. 2.3). In the figures, we have chosen to give the best-fit curves only, in order to allow easy comparison of the curves resulting from different phase functions. The 99.7% error envelopes are available upon request.

Note, however, that the tabulated error estimates for H partly characterize the extents of the envelopes.

We conclude that reasonable accuracies follow for the absolute magnitudes H, phase integrals q, and photometric slopes k; whereas, for the G 1 and G 2 parameters and the opposition-effect amplitude ζ -1, the errors are typically large. For (1862) Apollo and the Moon, we obtain G 1 and G 2 with improved accuracies. In this context, it is worth emphasizing that the parameter error estimates are to be interpreted by bearing in mind the purely empirical character of the phase functions.

(24) Themis. Both phase functions yield acceptable fits to the phase curve of (24) Themis, but it is notable that the H, G 1 , G 2 phase function is capable of removing about half of the rms-value for the H, G fit. ceptable fits. However, the H, G phase function fails to reproduce the sharpness of the opposition effect at the smallest phase angles.

(69) Hesperia. The H, G phase function provides a better fit to the phase curve of (69) Hesperia. Note that there is particularly strong fluctuation in the photometric observations of this asteroid which may explain the slightly larger rms-value for the H, G 1 , G 2 fit.

(82) Alkmene. The two least-squares fits are almost equally good for (82) Alkmene, but there are clear differences close to the zero phase angle, where the H, G 1 , G 2 phase function suggests an opposition effect stronger than that from the H, G phase function. According to Table 6, the H-value resulting from the H, G 1 , G 2 phase function has rather large error bars, thus nicely allowing for more realistic less pronounced opposition effects.

(133) Cyrene. The H, G 1 , G 2 phase function produces an excellent fit to the phase-curve data of (133) Cyrene, whereas the H, G phase function faces challenges at small phase angles.

(419) Aurelia. The H, G phase function fails to reproduce the quasi-linear phase-angle dependence for (419) Aurelia, whereas the H, G 1 , G 2 phase function produces an excellent fit. The rms-value for the H, G 1 , G 2 fit is less than a quarter of the one for the H, G fit.

(1862) Apollo. The H, G 1 , G 2 phase function reproduces the full phase curve of (1862) Apollo accurately, whereas fitting the H, G phase function appears to result in systematic residual trends at small phase angles.

Moon. The H, G 1 , G 2 phase function fits the lunar phase curve for α ∈ 
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H, G 12 Phase Function with Application

The main reason to search for a two-parameter phase function is that, in the vast majority of cases, the goal is to derive reliable values for the absolute magnitude H from generally very poorly sampled phase curves. The threeparameter phase function lacks the predictive power to do so. In order to derive the two-parameter magnitude phase function, we express G 1 and G 2 in the H, G 1 , G 2 phase function using a single nonlinear parameter G 12 , that is,

G 1 = G 1 (G 12 ), G 2 = G 2 (G 12 ). ( 25 
)
In the two-parameter H, G 12 magnitude phase function, the reduced observed magnitudes can then be obtained from

10 -0.4V (α) = L 0 [G 1 Φ 1 (α) + G 2 Φ 2 (α) + (1 -G 1 -G 2 )Φ 3 (α)], (26) 
where L 0 is the disk-integrated brightness at zero phase angle and where we express G 1 and G 2 using the single parameter G 12 . The absolute magnitude

H is H = -2.5 log 10 L 0 , (27) 
and the basis functions Φ 1 , Φ 2 , and Φ 3 are those of the H, G 1 , G 2 magnitude phase function.

Here we present G 1 and G 2 as piecewise linear functions of G 12 , relying on the G 1 , G 2 relation in Fig. 6. We optimize the piecewise linear relationships using the observational data from five groups I-V (Tables 1 and2), keeping the basis functions Φ 1 , Φ 2 , and Φ 3 fixed. Once the optimized relationships are available, the coefficients L 0 and G 12 are estimated from the observations by using the nonlinear least-squares method or by a sequence of linear leastsquares solutions as a function of the nonlinear parameter G 12 (see Sect. 2.3).

Note that the piecewise linear model is but one possible nonlinear model that can be utilized. After determining L 0 and G 12 , H, G 1 , and G 2 follow from the nonlinear relations in Eqs. 27 and 25.

The optimizations yields the following result with the m-metric value of m = 0.0196 mag which is almost as good as that of the H, G 1 , G 2 magnitude phase function (m = 0.0188 mag):

G 1 =                0.7527G 12 + 0.06164, G 12 < 0.2, 0.9529G 12 + 0.02162, G 12 ≥ 0.2, G 2 =                -0.9612G 12 + 0.6270, G 12 < 0.2, -0.6125G 12 + 0.5572, G 12 ≥ 0.2. ( 28 
)
The full range of phase-function shapes is illustrated in Fig. 7 and the G 1 , G 2 relation is described in Fig. 6. The phase functions intersect at α ≈ 120 • (Fig. 7), where the H, G 1 , G 2 basis functions Φ 1 and Φ 2 intersect. Studying the reason for the intersection in detail is beyond the scope of the present work.

In Table 7, we show the resulting parameter and their error estimates for the same objects that were utilized to illustrate the H, G 1 , G 2 phase function.

The rms-values of the fits are almost as good as when using the H, G 1 , G 2 phase function and the parameter error estimates are smaller.

In Fig. 8, we illustrate the predictice power of the H, G 12 magnitude phase function for (1862) Apollo and (419) Aurelia. The two-parameter phase func-tion produces acceptable predictions for both objects in two directions, that is, from small to large phase angles and vice versa. First, in three cases out of four, the prediction based on the best-fit curve accurately traces the observations excluded from the fit. Second, in all cases, the error envelopes are realistic and the observations excluded are well within the envelopes.

Conclusions

We have developed a three-parameter cubic-spline H, G 1 , G 2 magnitude phase function for asteroids that provides excellent fits to magnitude-phase observations. We have shown that this three-parameter phase function succeeds in removing the inability of the H, G magnitude phase function to adequately fit the phase curves of high-albedo and low-albedo asteroids. Furthermore, the H, G 1 , G 2 phase function has allowed for the development of the nonlinear two-parameter H, G 12 phase function that provides predictive power for small numbers of observations (sparse observational data) better than the H, G phase function.

We point out that, should a new type of asteroid photometric phase-curve data become available, it is possible to revise the magnitude phase functions using the methods currently presented. Finally, the new phase functions can turn useful in the interpretation of Gaia and Pan-STARRS photometry of asteroids.

Table 1 Asteroid groups I-II utilized in the development of the magnitude phase functions.

We show the V-band geometric albedo p V (Tedesco et al., 2002a) 

( π 24 ) = -6 π , Φ 2 ( π 24 ) = -9 5π , Φ 1 ( 5π 6 ) = -9.1328612 × 10 -2
, and Φ 2 ( 5π 6 ) = -8.6573138 × 10 -8 . We give the numerical values with high precision to allow for sufficient accuracy when utilized in the cubic-spline analyses. For the basis function Φ 3 , see Table 4. Additional objects utilized in the illustration of the new magnitude phase function.

α ( • ) Φ 1 Φ 2 7 
We show the V-band geometric albedo p V (Tedesco et al. 2002a), the number of observations N obs , the minimum and maximum phase angles of the observations α min and α max , and the references to the observations. For (24) Themis, (44) Nysa, (1862) Apollo, and the Moon, see Tables 1 and2 The H, G 1 , G 2 magnitude phase function as fitted to the photometric observations of asteroids and the Moon: the absolute magnitude H, coefficients G 1 and G 2 , phase integral q, opposition-effect amplitude ζ -1, and the photometric slope k, all with two-sided 99.7% (or 3σ) errors. On the final row, we give the rms-values of the individual fits. For the Moon, the rms-value describes the residuals for 0 -100 3 and4). G 2 (left) and and H, G magnitude phase functions (right). For best-fit parameters and their error estimates, see Table 6. 

  Sect. 2, we review the H, G magnitude phase function, describe the stochastic optimization methods for deriving new phase functions, and summarize the error estimation of parameters using Monte Carlo methods. Section 3 describes the minimum-change effort for optimizing the H, G magnitude phase function, the derivation of the H, G 1 , G 2 phase function, as well as the least-squares analyses of a set of observed phase curves. Based on the new three-parameter phase function, we derive a nonlinear two-parameter H, G 12 phase function, and demonstrate the predictive power of the nonlinear phase function. Conclusions and future prospects close the article in Sect. 4.

  curve observations extending over extensive ranges of phase angles: (1862) Apollo, the Moon, (2867) Steins, and the martian moon Deimos. Note that the phase curve of asteroid (2867) Steins is simulated using the H, G phase function with G ≈ 0.4 in five-degree steps from α = 0 • to α = 150 • (with the standard deviation σ (V ) taken to be ∼0.02 mag). The simulation relies on the space-based ESA Rosetta observations(Sonia Fornasier, private communication 2009). Tables 1 and 2 show that the high-quality phase curves obtained in recent years have been mostly produced by V. Shevchenko at the Kharkiv Observatory.In summary, groups I-V contribute altogether eight different phase curves to the optimization process. Making the composite curves for groups I-IV is presently required in order to obtain a coverage as a function of the phase angle dense enough for successful optimization of basis functions. Following the notation in Sect. 2, we have N = 5, N i = 1 for i = 1, 2, 3, 4, and N 5 = 4.

  [0.5 • , 100 • ] accurately and provides a reasonable description of the phase curve for α ≥ 100 • . The H, G phase function provides a satisfactory fit to the phase curve for α ∈ [0.5 • , 100 • ].Note that the phase curves of (24) Themis, (44) Nysa, (1862) Apollo, and the Moon have been included in the derivation of the new magnitude phase function, which partly explains the remarkably small rms-values for the H, G 1 , G 2 fits for these objects. Recall that, for large phase angles, there are observations of the martian moon Deimos, the Moon, asteroid (1862) Apollo, as well as the simulated observations of (2867) Steins that have been utilized in developing the new phase function.

Figure 6

 6 Figure 6 depicts the G 2 parameter versus the G 1 parameter with 68.3% error domains for all objects presently studied using the H, G 1 , G 2 magnitude phase function. The scatter plot can be seen to consist of three clusters that correspond to the objects with steep (typically asteroids with low geometric albedos), intermediate (intermediate albedos), and shallow photometric slopes (high albedos). Note that it is Deimos that is located in between the clusters in the middle and to the right. The G 1 , G 2 relation in Fig. 6 can now be utilized in the development of a nonlinear two-parameter phase function, where the first parameter relates to the H magnitude and the second parameter describes the shape of the phase function. It is important to note that this "low-noise" G 1 , G 2 relation is allowed for by the linear dependences of Φ 1 (α) and Φ 2 (α) at phase angles α ≤ 7.5 • .
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Fig. 1 .

 1 Fig. 1. The basis functions of the three-parameter H, G 1 , G 2 magnitude phase function expressed using cubic splines (Tables3 and 4).

Fig. 2 .

 2 Fig. 2. Linear least-squares fits (solid lines) to the phase curves of the C-class asteroid (24) Themis (top) and the E-class asteroid (44) Nysa (bottom) using the H, G 1 ,

Fig. 3 .

 3 Fig. 3. As in Fig. 2 for the M-class asteroid (69) Hesperia and the S-class asteroid (82) Alkmene.

Fig. 4 .

 4 Fig. 4. As in Fig. 2 for the SR-class asteroid (133) Cyrene and the F-class asteroid (419) Aurelia.

Fig. 5 .Fig. 6 .

 56 Fig. 5. As in Fig. 2 for the Q-class near-Earth object (1862) Apollo and for the Moon. For the latter, the rms-values describe the residuals for 0 -100 • in phase angle.

Fig. 7 .

 7 Fig. 7. The spectrum of phase-function shapes resulting from the nonlinear two-parameter H, G 12 magnitude phase function.

  , the number of observations N obs , the minimum and maximum phase angles of the observations α min and α max , and the references to the observations. The basis functions Φ 1 and Φ 2 of the H, G 1 , G 2 magnitude phase function. Values at intermediate phase angles follow from cubic splines passing through the tabulated points with the requirement that the first derivatives are Φ 1

	Table 2						
	As in Table 1 for groups III-V except for (2867) Steins, for which simulated data is Table 3
	being utilized.					
	Group Asteroid	Class p V	N obs α min α max References
	Group Asteroid III (5) Astraea	S	Class p V 0.23 7	N obs α min α max References 0.33 15.7 Shevchenko et al. (2002)
	I	(50) Virginia (6) Hebe	S	X, Ch 0.04 18 0.27 11	1.3	0.15 23.1 Shevchenko et al. (1997) 22.9 Gehrels Taylor (1977)
		(59) Elpis (20) Massalia	S	CP, B 0.04 15 0.21 16	0.30 21.1 Shevchenko et al. (1996) 0.09 27.4 Gehrels (1956),
		(102) Miriam		P, C		0.05 11	0.11 23.7 Shevchenko et al. (1997) Belskaya et al. (2003)
		(190) Ismene (79) Eurynome S	P	0.26 12	14	0.30 14.9 Shevchenko et al. (2008) 0.07 29.2 Shevchenko et al. (1996)
	IV	(1021) Flammario F, B (44) Nysa E	0.05 7 0.54 23	0.20 12.9 Belskaya et al., in preparation 0.17 21.5 Harris et al. (1989b)
	II	(10) Hygiea (64) Angelina	E	C	0.07 17 0.48 11	0.32 17.1 Shevchenko (1997) 0.11 22.5 Harris et al. (1989b)
	V	(24) Themis (1862) Apollo	Q	C, B	0.08 22 0.26 18	0.2	0.34 20.8 Harris et al. (1989a) 89.0 Harris et al. (1987)
		(47) Aglaja The Moon	-	C, B	0.08 25 0.17 17	0.5	0.10 11.2 Chernova et al. (1991) 140.0 Bowell et al. (1989)
		(303) Josephina Deimos	-	C	0.06 16 0.07 15	1.0	0.17 17.8 Shevchenko et al. (2008) 120.0 Pang et al. (1983)

Table 6

 6 .

	Asteroid	Class p V	N obs α min α max References
	(69) Hesperia M	0.14 21	0.13 16.0 Poutanen et al. (1985)
	(82) Alkmene S	0.21 11	2.29 27.2 Harris et al. (1984b)
	(133) Cyrene SR	0.26 11	0.20 13.2 Harris et al. (1984a)
	(419) Aurelia F	0.05 7	0.62 15.4 Harris and Young (1988)

The "aspect angle" is the angle between the asteroid rotation axis and the line of sight.

In which case, to account for aspect variations, observations over several different apparitions are required.

There is a misprint in[START_REF] Bowell | Application of photometric models to asteroids[END_REF] in the definition of the G-parameter.

The phase integral is the integral of the phase function between 0 • and 180 • .

Note that this H, G phase integral is numerically accurate to ∼5%.

Note that[START_REF] Bowell | Application of photometric models to asteroids[END_REF] did not provide figures for H, G fits.
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Table 7 The H, G 12 magnitude phase function as fitted to the photometric observations of asteroids and the Moon: the absolute magnitude H, coefficients G 12 , G 1 , and G 2 , phase integral q, opposition-effect amplitude ζ -1, and the photometric slope k, all with two-sided 99.7% (or 3σ) errors. On the final row, we give the rms-values of the individual fits. For the Moon, the rms-value describes the residuals for 0 -100 419) Aurelia: the observations illustrated using solid bullets are included in the nonlinear least-squares solution and subsequent Monte-Carlo error analysis, whereas the observations illustrated using plus-signs serve as control points for predictive power. The dashed lines give the 99.7-% error envelopes for the predictions.