
HAL Id: hal-00676203
https://hal.science/hal-00676203

Submitted on 3 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and refinement SOA design patterns with
Event-B method

Imen Tounsi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, Khalil Drira

To cite this version:
Imen Tounsi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, Khalil Drira. Modeling and refinement
SOA design patterns with Event-B method. 2012. �hal-00676203�

https://hal.science/hal-00676203
https://hal.archives-ouvertes.fr


Modeling and re�nement SOA design patterns

with Event-B method

Imen Tounsi1, Mohamed Hadj Kacem1, Ahmed Hadj Kacem1, and Khalil
Drira2,3

1 ReDCAD-Research unit, University of Sfax, Sfax, Tunisia,
{Imen.Tounsi, mohamed.hadjkacem}@isimsf.rnu.tn,

ahmed.hadjkacem@fsegs.rnu.tn
2 CNRS, LAAS, 7 avenue du colonel Roche,F-31400 Toulouse, France

3 Univ de Toulouse, LAAS, F-31400 Toulouse, France
khalil@lass.fr

Abstract. Using design patterns has become increasingly popular. Most
design patterns are proposed in an informal way, which can give rise to
ambiguity and may lead to incorrect usage. Patterns, proposed by the
SOA design pattern community, are described with an appropriate nota-
tion. So they require modeling with a standard notation and then formal-
ization. In this paper, we propose a formal architecture-centric approach
that aims �rst to model message-oriented SOA design patterns with the
SoaML standard language and second to formally specify these patterns
at a high level of abstraction using the Event-B language. These two
steps are performed before undertaking the e�ective coding of a design
pattern providing correct by design solutions. Our approach is experi-
mented through an example we present in this paper. We implemented
our approach under the Rodin platform which we use to prove model
consistency.

1 Introduction

The communication and the integration between heterogeneous applications are
great challenges of computing science research works. Several researches have
tried to solve them by various methods and technologies (message-oriented mid-
dleware, EAI, etc.). They have tried to bring a response to these problems but
without leading to real decisive success. The stack of applications led to an un-
bearable situation. The lack of an e�cient architectural solution led information
systems to a deadlock with respect to trade requirements.

Service-oriented architectures (SOA) is a technology that o�ers a model and
an opportunity to solve these problems [9]. Nevertheless these architectures are
subject to some quality attribute failures (e.g., reliability, availability, and per-
formance problems). Design patterns, as proven solutions to speci�c problems,
have been widely used to solve this weakness.

Most design patterns are proposed in an informal way that can raise ambi-
guity and may lead to incorrect usage. Patterns, proposed by the SOA design



pattern community, are described with an appropriate notation [9]. So they re-
quire modeling with a standard notation and then formalization. The intent of
our approach is to model and formalize message-oriented SOA design patterns.
These two steps are performed before undertaking the e�ective coding of a de-
sign pattern, so that the pattern in question will be correct by construction. Our
approach allows developers to reuse correct SOA design patterns, hence we can
save e�ort on proving pattern correctness.

In this paper, we propose a formal architecture-centric approach. The key
idea is to model SOA design patterns with the semi-formal Service oriented
architecture Modeling Language (SoaML) and to formally specify these design
patterns with the formal language Event-B. We illustrate our approach through
an example. We proceed by modeling the �Asynchronous Queuing" pattern pro-
posed by the SOA design pattern community using the SoaML language. This
modeling step is proposed in order to attribute a standard notation to SOA
design patterns. Then we propose a formal speci�cation of this design pattern
using the Event-B formal language. We implement these speci�cations under
the Rodin platform which we use to prove model consistency. We provide both
structural and behavioral features of SOA design patterns in the modeling phase
as well as in the speci�cation phase. Structural features of a design pattern are
generally speci�ed by assertions on the existence of types of components in the
pattern. The con�guration of the elements is also described, in terms of the static
relationships between them. Behavioral features are de�ned by assertions on the
temporal orders of the messages exchanged between the components.

The rest of this paper is organized as follows. Section 2 gives background
information of some concepts used in this paper. Section 3 discusses related
work. Section 4 focuses on the modeling of the �Asynchronous Queuing" pattern
using the SoaML language. Section 5 describes how to formally specify an SOA
design pattern using the Event-B language. Section 6 concludes and gives some
perspectives of our work.

2 Basic Concepts

In this section, we provide some background information on the patterns, the
SoaML modeling language [15] and the Event-B formal language [1].

2.1 Pattern

The concept of patterns is not new, the �rst de�nition was announced by Alexan-
der in 1977 in the �eld of architecture of buildings and towns. He declares that:
�Each pattern describes a problem which occurs over and over again in our en-
vironment, and then describes the core of the solution to that problem" [2]. In
the �eld of information systems, a pattern is de�ned as a model that provides a
proven solution to a common problem individually documented in a consistent
format and usually as part of a larger collection [9].



Patterns can be classi�ed relatively to their level of abstraction into three cat-
egories: architectural patterns (or architectural styles) that provide the skeleton
or template for the overall shape and the structure of software applications at a
high-level design [11], design patterns that encode a proven solution to a recur-
ring design common problem of automated systems [8, 16], and implementation
patterns that provide a solution to a given problem in programming [4]. It is
used to generate code.

2.2 Service oriented architecture Modeling Language (SoaML)

Service-Oriented Architecture is an architectural style for building systems based
on interacting services. Each service exposes processes and behaviors through
contracts, which are composed of messages at discoverable addresses called end-
points [3]. SoaML [15] is a speci�cation developed by the OMG that provides a
standard way to architect and model SOA solutions. It consists of a UML pro�le
and a meta-model that extends the UML 2.0 (Uni�ed Modeling Language).

2.3 Event-B

Event-B is an evolution of B-Method developed by Jean-Raymond Abrial [1]. It is
a formal modeling method for developing systems via stepwise re�nement, based
on �rst-order logic. The method is enhanced by its supporting Rodin Platform
for analyzing and reasoning rigorously about Event-B models.

The Event-B modeling notation The basic concept in the Event-B develop-
ment is the model. A model is made of two types of components: contexts and
machines. A context describes the static part of a model, whereas a machine
describes the dynamic behavior of a model. Machines and contexts can be inter-
related: a machine can be refined by another one, a context can be extended by
another one and a machine can see one or several contexts.

Each context has a name and other clauses:

� "Extends": The current context can extend other ones by adding their names
in this clause. The resulting context consists of the context itself and all
constants and axioms of all extended ones.

� "Sets": Declares a new data type. To specify a set S with elements e1,...,en,
we declare S as a set and e1,...,en as constants then we add the axiom
partition(S , e1, ..., en)

� "Constants": Declares the various constants introduced in the context. Names
of constants must be all distinct.

� "Axioms": Denotes the type of the constants and the various predicates
which the constants obey. It is a statement that is assumed to be true in the
rest of the model and it consists of a label and a predicate.

Like a context, a machine has an identi�cation name and several clauses. In
the following, we present in detail the clauses that we will use:



� "Re�nes": The current machine can optionally re�ne another one by adding
its name in this clause.

� "Sees": Lists the contexts referenced by the machine in order to use sets and
constants de�ned in them.

� "Variables": Lists the variables introduced in this machine. They constitute
the state of the machine. Their values are determined by an initialization
and can be changed by events.

� "Invariants": Lists the predicates that should be true for every reachable
state.

� "Events": Lists the events that change the state of the model and assign new
values to variables. Each event is composed of one or several guards grd and
one or several actions act . The guard states the necessary condition under
which an event may occur, and the action describes how the state variables
evolve when the event occurs. An event can be represented by the following
form:

Event Event Name

when

grd : Condition
then

act : Action
end

A relation is used to describe ways in which elements of two distinct sets
are related. If A and B are two distinct sets, then R ∈ A ↔ B denotes the set
of all relations between A and B . The domain of R is the set of elements in A
related to something in B : dom(R). The range of R is the set of elements of B
to which some element of A is related: ran(R). We also say that A and B are
the source and target sets of R, respectively.

Given two elements a and b belonging to A and B respectively, we call
ordered pair a to b, the pair having the �rst element a (start element) and
the last element b (arrival element). We note: a 7→ b or (a,b).

An important special case of relations are functions. A partial functions is
a relation where each element of the domain is uniquely related to one element
of the range. If A and B are two distinct sets, then A 7→ B denotes the set of all
partial functions between A and B .

3 Related work

This section surveys related researches to patterns used in the �eld of software
architecture. As it is represented in Figure 1, these researches can be classi�ed
into three axes according to their abstraction level. The �rst axis deals with
architectural patterns, the second axis deals with implementation patterns and
the third axis deals with design patterns. Compared to architectural patterns,
design patterns address smaller reusable designs such as the structure of subsys-
tems within a system [10]. In this paper, we focus only on the third axis since it
belongs to our research activities.



Patterns

������

HHHHHH

Architectural
patterns
[12]

Implementation
patterns

[4]

Design
patterns

[9]
[13]

Fig. 1. Classi�cation of Patterns

Design Patterns

��������

HHHHHHHH

Object Oriented
Architectures

[10]

Enterprise
Application Integration

[13]

Service Oriented
Architectures

[9]

Fig. 2. Classi�cation of Design Patterns

Researches connected to design patterns axis, are mainly classi�ed into three
branches of work according to their architectural style (Figure 2).

Among researches related to design patterns for Object Oriented Architec-
tures, we present the work of Gamma et al.. They have proposed a set of design
patterns in the �eld of object-oriented software design [10]. These patterns are
described with graphical notations by using three diagrams based principally on
the OMT (Object Modeling Technique) notation. These diagrams are the class
diagram, the object diagram and the interaction diagram. For each design pat-
tern, they include at least one class diagram and the other notations are used
as needed to supplement the discussion.

Several researches have proposed the formalization of object-oriented de-
sign patterns. Since the most famous one are those proposed by Gamma [10]
(hereafter referred to as GoF), most researches refer to these patterns. Several
approaches have been proposed in the literature, we quote:

Zhu et al. [19] specify design patterns and pattern composition formally.
They specify 23 GoF patterns. Zhu et al. use the �rst order logic induced from
the abstract syntax of UML de�ned in GEBNF to de�ne both structural and
behavioral features of design patterns.

Taibi et al. [17, 18] develop a language called Balanced Pattern Speci�ca-
tion Language (BPSL) to formally specify patterns, pattern composition and
instances of patterns. This language is used as a formal basis to specify struc-
tural features of design patterns in the First-Order Logic (FOL) and behavioral
features in the Temporal Logic of Action (TLA). Taibi et al. use as a case study
the Observer-Mediator pattern composition proposed by GoF.

Dong et al. [7, 6] focus on the structural and behavioral fetures of a design
pattern component. They use the First-Order Logic theories to specify the struc-



tural features of patterns by means of Object-Z and Temporal Logic of Action
(TLA) to specify their behavioral features. As examples, they use GoF patterns.

Kim et al. [14] present an approach to describe design patterns based on
role concepts. First, they develop an initial role meta-model using an existing
modeling framework, Eclipse Modeling Framework (EMF), then they transform
the meta-model to Object-Z using model transformation techniques in order
to specify structural features. Behavioral features of patterns are also speci�ed
using Object-Z and integrated in the pattern role models. Kim et al. also use
GoF patterns as examples to represent their approach.

Blazy et al. [5] propose an approach for specifying design patterns and how
to reuse them formally. They use the B method to specify structural features
of design patterns but they do not consider the speci�cation of their behavioral
features.

Among researches related to design patterns for Enterprise Application In-
tegration, we present the work of Hohpe and Woolf. They have proposed a set
of design patterns which are dealing with enterprise integration using messaging
[13]. These design patterns are represented with a visual notation using their
appropriate notation. Hohpe and Woolf argue their choice by saying that there
is no a comprehensive notation that is geared toward the description of all as-
pects of an integration solution. The Uni�ed Modeling Language (UML) does
not contain semantics to describe messaging solutions and the UML Pro�le for
EAI enriches the semantics of collaboration diagrams to describe message �ows
between components but it does not capture all the patterns described in their
pattern language.

To our knowledge, there is no research work that propose the formalization
of enterprise integration design patterns and as examples they refer to Hohpe
and Woolf patterns and to enterprise integration patterns in general.

In the branch of SOA design patterns, we �nd out the work of Erl. Erl have
proposed a set of design patterns for service-oriented architecture and service-
orientation [9]. Each pattern is modeled with an appropriate notation represented
in a symbol legend. These patterns are modeled without any formal speci�cation.
In order to understand these patterns, the �rst step is to form a knowledge on the
pattern-related terminology and notation. In addition to the pattern notation,
Erl proposes a set of speci�c pattern symbols used to represent a design pattern,
a compound design pattern and a group of related design patterns. Erl argues his
choice by saying that there is a lack of abstract de�nitions, architectural models,
and vocabularies for SOA but there are several e�orts underway by di�erent
standards and research organizations.

In our research work we are interested in SOA design patterns de�ned by
Erl [9]. Erl presents SOA design patterns with an appropriate notation because
there is no a standard modeling notation for SOA, but now OMG announces the
publication of a Service oriented architecture Modeling Language (SoaML), it is
a speci�cation for the UML Pro�le and a Meta-model for Services (UPMS). So,
in our work, we propose to model SOA design patterns with the SoaML standard
language and we focus on the structural and behavioral features of SOA design



patterns. After the modeling step, we propose to specify SOA design patterns
formally. We use the Event-B language, which is an extension to the B method,
to de�ne both structural and behavioral features of design patterns.

In this paper we concentrate on a speci�c category of patterns called �Service
messaging patterns", it is a collection of patterns witch are message oriented. It
is focused on inter-service message exchange, and provides design solutions for a
wide range of messaging concerns. From this collection, we use the �Asynchronous
Queuing" pattern.

In conclusion, most proposed patterns are described using a combination of
textual description and a graphical appropriate notations in order to make them
easy to read and understand. However, using these descriptions makes patterns
ambiguous and may lack details. There have been many researches that de�ne
pattern speci�cations using formal techniques but researches that model design
patterns with semi-formal languages are few. We �nd a number of approaches
that formally specify di�erent sorts of fetures of patterns: structural, behavioral,
or both. Table 1 is a recapitulation of related works that contains a comparison
between the above-mentioned approaches and our approach.

Approach
Object Oriented Design Patterns EAI

Design

Pat-

terns

SOA Design

Patterns

Gamma

et al.

1995

Zhu

et al.

2010

Taibi

et al.

2006

Dong

et al.

2007

Kim

et al.

2009

Blazy

et al.

2006

Hope et

al. 2003

Erl

2009

Ours

2012

Pattern model-

ing

OMT GoF
(OMT)

GoF
(OMT)

GoF
(OMT)

GoF
(OMT)

GoF
(OMT)

Appropriate
Notation

Appropriate
Nota-
tion

SoaML

Structural for-

mal speci�ca-

tion

GEBNF
(FOL)

BPSL
(FOL)

Object
Z (FOL)

Object
Z (FOL)

B
Method

Event-
B

Behavioral for-

mal speci�ca-

tion

GEBNF
(FOL)

BPSL
(TLA)

TLA Object
Z (FOL)

Event-
B

Table 1. Summary table of related works

4 Modeling SOA design patterns with the SoaML

language

We provide a modeling solution for describing SOA design patterns using a
visual notation based on the graphical SoaML notation. Two main reasons lead
to use SoaML for modeling these patterns. First, SoaML is a standard modeling
language de�ned by OMG to describe service oriented architectures. Second,
diagrams used in the SoaML language, allow to represent structural features as
well as behavioral features of SOA design patterns.



To model an SOA architecture, we can represent many levels of description.
The highest level is described as a Services Architectures where participants are
working together using services. Services Architectures is modeled using UML
collaborations diagram stereotyped � ServicesArchitecture �. The next level is
described as Participants using UML class diagram stereotyped � Participant �.
The Service Contract is at the middle of the SoaML set of SOA architecture
constructs, it describes the services mentioned above and it is modeled using
UML collaborations stereotyped � ServiceContract �. In the next level, we �nd
the speci�cation of Interfaces and Message Types using respectively UML class
diagram stereotyped � ServiceInterface � and UML class diagram stereotyped
� MessageType �. For both the service contract and the interface levels we can
specify behavioral features of services using any UML behavior (e.g sequence or
activity diagrams).

In this paper, we model the Asynchronous Queuing pattern proposed by Erl
[9]. This pattern is described in detail within the next section.

4.1 Asynchronous Queuing

Asynchronous Queuing pattern is an SOA design pattern for inter-service mes-
sage exchange [9]. It belongs to the category "Service Messaging Patterns". It
establishes an intermediate queuing mechanism that enables asynchronous mes-
sage exchanges and increases the reliability of message transmissions when ser-
vice availability is uncertain.

The problem addressed by Asynchronous Queuing pattern is that when ser-
vices interact synchronously, it can inhibit performance and compromise reliabil-
ity when one of services cannot guarantee its availability to receive the message.

Synchronous message exchanges can impose processing overhead, because
the service consumer needs to wait until it receives a response from its original
request before proceeding to its next action. Responses can introduce latency by
temporally locking both consumer and service.

The proposed solution by this pattern is to introduce an intermediate queuing
technology into the architecture (Figure 3). The queue receives request messages
sent by the ServiceA and then forwards them on behalf of the ServiceB. If the
target service is unavailable, the queue acts as temporary storage and retains
the message. It then periodically attempts retransmission. Similarly, if there is
a response, it can be issued through the same queue that will forward it back to
the ServiceA when it is available. While either ServiceA or ServiceB is processing
message contents, the other can deactivate itself in order to minimize memory
consumption.

4.2 Structural features of the Asynchronous Queueing pattern

In the structural modeling phase, we specify components of the pattern and their
dependencies or connections in the � Participant � diagram (Figure 4) and we
specify their interfaces and exchanged messages in the � ServiceInterface � and
� MessageType � diagrams respectively (Figure 5).



Request
message

ServiceA ServiceB

Response
Message 

ServiceA ServiceB� �Queue
���

ServiceA ServiceB ServiceA ServiceB� �

ServiceA ServiceB ServiceA ServiceB��

Fig. 3. Asynchronous Queuing solution

ServiceA, ServiceB and the Queue are de�ned as participants because they
provide and use services. As shown in Figure 4, the ServiceB provides a ServiceX
service used by the ServiceA and the Queue provides a storage service. We didn't
represent the storage service provided by the Queue in order to concentrate
principally on the communication between ServiceA and ServiceB and to not
complicate the presented diagrams.

Participants provide capabilities through service ports typed by UML inter-
faces that de�ne their provided capabilities. Both ServiceA and ServiceB have
a port typed with the �ServiceX". The ServiceB is the provider of the Ser-
viceX and has a � Service � port. The ServiceA is a consumer of the ServiceX
and uses a � Request � port. We note that the ServiceB 's port provides the
�ProviderServiceX" interface and requires the �OrderServiceX" interface.

Since the ServiceA uses a � Request � the conjugate interfaces are used,
so the ServiceA's port provides the �OrderServiceX" interfaces and uses the
�ProviderServiceX". Since they are conjugate, ports on ServiceA and ServiceB
can be connected to enact the service. The � Request � port is preceded with a
tilde (∼) to show that the conjugate type is being used. In this diagram, � Ser-
viceChannels � are explicitly represented, they enables communication between
the di�erent participants.

Figure 5 shows a couple of � MessageType � that are used to de�ne the
information exchanged between ServiceA (consumer) and ServiceB (provider).
These � MessageType � are �RequestMessage" and �ResponseMessage", they
will be used as types for operation parameters of the service interfaces.

Figure 5 depicts a ServiceB participant providing a �serviceX" service. The
type of the service port is the UML interface �ProviderServiceX" that has the
operation �processServiceXProvider". This operation has a message style pa-



� ���������	� 


��������

� ���������	� 


�	�	�

� ��
���� 


������������
����������������

�����������		��
�

������

�����������		��


������

�����������		��
�������

�������������

� ���������	� 


�������


����������

����������������
�������������

������
�����������		��
�������

� ������� 


	��

Fig. 4. � Participant � diagram

rameter where the type of the parameter is the MessageType �ResponseMessage".
The ServiceA participant expresses its request for the �serviceX" service using its
request port. The type of this service port is the UML interface �OrderServiceX".
This interface has an operation �ProcessServiceXOrder" and the type of pa-
rameter of this operation is the MessageType �RequestMessage".

4.3 Behavioral features of the Asynchronous Queueing pattern

During a course of exchanging messages, the �rst service (ServiceA) sends a
request message to the second service (ServiceB), at that time, its resources
are locked and consumes memory. This message is intercepted and stored by
an intermediary queue. ServiceB receives the message forwarded by the Queue
and ServiceA releases its resources and memory. While ServiceB is processing
the message, ServiceA consumes no resources. After completing its processing,
ServiceB issues a response message back to ServiceA (this response is also re-
ceived and stored by the intermediary Queue). ServiceA receives the response
and completes the processing of the response while ServiceB is deactivated.

To specify behavioral features of design patterns we use the UML2.0 sequence
diagram. As depicted in Figure 6, this diagram speci�es the valid interactions
between participants.



« Interface »
ProviderServiceX

« Interface »
OrderServiceX

���������	��
����
���� ��� ������������������

«MessageType»
RequestMessage

«MessageType»
ResponseMessage

«ServiceInterface»
~ServiceX

«ServiceInterface»
ServiceX

«use»

«use»

ProviderServiceX

���������	��
�������
���� ��� �������������������

«Participant»
ServiceA

«Request»
: ~ServiceX

OrderServiceX «Participant»
ServiceB

«Service»
: ServiceX

«use»

Type Type

+

processServiceXOrder

ProviderServiceX

processServiceXProvider

+

new

Fig. 5. � ServiceInterface � and � MessageType � diagrams

������� ���	�
�

�
��
��

��� ���	�
�
�
���

���

���	�
�

������� ��
���
�

���
��� ���	�
�

���
���

��
���
�
�
��
��

��� ��
���
�

�������� ��������	
�
�

AQM2

��
���
�
�
��
��

��� ��
���
�

�
���

���

��
���
�

AQM1 AQM2 AQM3

���

Fig. 6. Sequence diagram

5 Formal semantics of SOA Design Patterns

In this section, we describe semantics of design patterns with the Event-B no-
tation. In order to prove the correctness of the pattern speci�cation we use the
Rodin Platform.

As we have mentioned in section 2.3, contexts are used to model static proper-
ties of a model, so we specify structural features of design patterns with a context
(AQC ). Whereas, with machines we model the dynamic properties, so we specify
behavioral features of design patterns with machines. Our model is composed of
three machines named respectively AQM 1, AQM 2 and AQM 3 (AQM denotes
Asynchronous Queuing Machine). In the �rst machine (AQM 1), we specify the
pattern at a hight level of abstraction, i.e. we suppose that the communication
happens only between ServiceA and ServiceB . In the second machine (AQM 2),
we add the process function to the model. Finally, in the third machine(AQM 3),



we add the Queue and all its behavior to the model. We use the re�nement tech-
niques to gradually introduce details and complexity into our model. Machines
and context relationships are illustrated in Figure 7.

MACHINE 
AQM2

MACHINE 
AQM3

Refines

Sees

Sees

MACHINE 
AQM1

CONTEXT
AQC

Refines

Sees

Fig. 7. Context and machines relationship

5.1 Structural features of SOA Design Patterns

In the Asynchronous Queueing pattern, we have three Participants: ServiceA,
ServiceB and the Queue. Using Event-B, we specify in the context AQC the
three participants as constants (one constant for each participant). These con-
stants or participants are part of a set Participant . We model this by creating a
partition (section 2.3) in the AXIOMS section:

CONSTANTS

ServiceA
ServiceB
Queue

SETS

Participant

AXIOMS

Participant partition : partition(Participant, {Queue},
{ServiceA}, {ServiceB})

We create four more constants to specify relations between participants, mod-
eled as � ServiceChannel � in the SoaML modeling. These constants are speci-
�ed as relations in the AXIOMS clause and they are named PushAQ , PushQB ,
PushBQ and PushQA.



AXIOMS

PushAQ Relation : PushAQ ∈ Partcipant ↔ Partcipant
PushQB Relation : PushQB ∈ Partcipant ↔ Partcipant
PushBQ Relation : PushBQ ∈ Partcipant ↔ Partcipant
PushQA Relation : PushQA ∈ Partcipant ↔ Partcipant

For each relation, we add two axioms in order to de�ne the domain and the
rang. For example, for the PushAQ relation we add the following two axioms to
denote that the source of the relation PushAQ is ServiceA and its target is the
Queue:

PushAQ Domain : dom(PushAQ) = {ServiceA}
PushAQ Range : ran(PushAQ) = {Queue}

In this context AQC , we didn't specify ports and interfaces because they are
�ne details that we will not use them in machines. Whereas, we specify messages
to know what message is being exchanged. So, we de�ne another SET named
MesaageType, two constants RequestMessage and ResponseMessage and then
the Message Partition.

SETS

MessageType
CONSTANTS

RequestMessage
ResponseMessage

AXIOMS

Message Partition : partition(MessageType, {RequestMessage},
{ResponseMessage})

This part of speci�cation belongs to the � Participant � diagram and � Mes-
sageType � diagram represented respectively in Figure 4 and Figure 5.

5.2 Behavioral features of SOA Design Patterns

In order to specify behavioral features of the pattern, we have three steps: in the
�rst step we specify the pattern with a machine at a hight level of abstraction. In
the second step, we add more details to the �rst machine by using the re�nement
technique. In the third and the �nal step we add all necessary details to the
second machine by using the re�nement technique too.

Specifying the pattern at a high level of abstraction As already men-
tioned above, in the Asynchronous Queueing pattern there are three parties
participating in it namely the ServiceA, the ServiceB and the Queue. In this
�rst machine AQM 1, we only specify the communication between ServiceA and
ServiceB , i.e. the queue is completely transparent, meaning that neither ServiceA
nor ServiceB may know that a queue was involved in the data exchange. So, the
behavior is described as follows:

� The ServiceA sends a RequestMessage to the ServiceB and then remains
released from resources and memory (becomes unavailable).



� When the ServiceB becomes available, it receives the RequestMessage and
sends the ResponseMessage.

� When the ServiceA becomes available, it receives the ResponseMessage and
then returns deactivated.

Formally, we can use two variables to represent the state of the pattern:
Dispo to denote the state of the participant either available or not, and Send to
indicate who sends what message. The �rst invariant Dispo Function speci�es
the availability feature of participants. This feature is speci�ed with a partial
function which is a special kind of relation (each domain element has at most
one range element associated with it) i.e. the function Dispo relates Participants
to a Boolean value indicating that it is either available or not. We use the partial
function because a participant can't be available and not available at the same
time. The second invariant, i.e. Send Relation, speci�es what is the message sent
and who is the sender.

INVARIANTS

Dispo Function : Dispo ∈ Partcipant 7→ BOOL
Send Relation : Send ∈ Partcipant ↔ MessageType

Initially, ServiceA is available and ServiceB is not available and there are no
messages sent, hence Send relation is initialized to the empty set.

INITIALISATION

begin

act1 : Dispo := {ServiceA 7→ TRUE ,ServiceB 7→ FALSE}
act2 : Send := ∅

end

The dynamic system can be seen in Figure 6. Sending the request starts when
there is no messages sent and the ServiceA is available, then ServiceA sends the
RequestMessage and becomes unavailable. Sending the response starts after the
questioning phase (when the request message is sent) and when the ServiceB
is available and then ServiceB sends the ResponseMessage and becomes also
unavailable. This scenario is formalized by the following two events, namely
Sending Req (Sending Request) and Sending Resp (Sending Response).

Event Sending Req

when

grd1 : Send = ∅
grd2 : ServiceA ∈ dom(Dispo) ∧ Dispo(ServiceA) = TRUE

then

act1 : Send := Send ∪ {ServiceA 7→ RequestMessage}
act2 : Dispo(ServiceA) := FALSE

end

Event Sending Resp

when

grd1 : RequestMessage ∈ ran(Send)
grd2 : ServiceB ∈ dom(Dispo) ∧ Dispo(ServiceB) = TRUE

then

act1 : Send := Send ∪ {ServiceB 7→ ResponseMessage}
act2 : Dispo(ServiceB) := FALSE

end



After sending the response message and when the ServieA is available, re-
ceiving the response message becomes possible. After receiving the response,
ServiceA becomes not available again. So, we assign the value FALSE to the
ServiceA disponibility. Formally, this action is speci�ed with the eventReceiving Resp
(Receiving Response).

Event Receiving Resp

when

grd1 : ResponseMessage ∈ ran(Send)
grd2 : ServiceA ∈ dom(Dispo) ∧ Dispo(ServiceA) = TRUE

then

act1 : Dispo(ServiceA) := FALSE
end

Each time when a service is unavailable and an event can't be triggered only if
this service becomes available, we use a special event namedActivating Participant.
This event is with a parameter of type Participant (represented in the clause
any) and it has the functionality of modifying the availability of a participant.
For this event, we use the function overriding operator (�−), this operator re-
places existing mappings with new ones in the Dispo function, here we replace
the availability of a service from FALSE to TRUE.

Event Activating Participant

any

P Participant
where

grd1 : P ∈ Partcipant
grd2 : P ∈ dom(Dispo) ∧ Dispo(P) = FALSE

then

act1 : Dispo := Dispo �− {P 7→ TRUE}
end

First re�nement: Adding the message processing The second machine
AQM 2 (concrete machine) re�nes the cited above AQM 1 machine (abstract
machine) and uses the AQC context. In this machine we introduce the notion
of processing messages. So we add a new variable named Process. This variable
is speci�ed with a partial function that relates a Participant to a MessageType
indicating who participant is processing what message. Initially, the Process
function is initialized to the empty set.

INVARIANTS

Process Function : Process ∈ Partcipant 7→ MessageType

The AQM 2machine events are now de�ned below. We keep the Sending Req
event as it is, we add a new event Processing Req (re�ning skip), we add more
details to the abstract event Sending Resp and the abstract eventReceiving Resp
is re�ned by the concrete event Processing Resp. This is illustrated in Figure
8.

Processing Req (Processing Request) event is triggered when the mes-
sage is sent (grd1), not yet processed (grd2) and the ServiceB is available
(grd3). In the action part, we add to the process function the pair ServiceB 7→



Sending_Req Processing_Req Sending_Resp Processing_Resp

skip Sending_Resp Receiving_Resp

refines refines refines

Fig. 8. Re�nement of AQM 1

RequestMessage to denote that the ServiceB is processing the RequestMessage
(act1).

Event Processing Req

when

grd1 : RequestMessage ∈ ran(Send)
grd2 : RequestMessage ̸∈ ran(Process)
grd3 : ServiceB ∈ dom(Dispo) ∧ Dispo(ServiceB) = TRUE

then

act1 : Process := Process �− {ServiceB 7→ RequestMessage}
end

Now the event Sending Resp, is triggered after processing the RequestMessage
and when the ResponseMessage is not yet send. So, we re�ne this event by adding
two new guards (grd3 and grd4).

grd3 : RequestMessage ∈ ran(Process)
grd4 : ResponseMessage ̸∈ ran(Send)

For the event Processing Resp, it re�nes the event Receiving Resp by
adding the action of processing the message.

act2 : Process := Process �− {ServiceA 7→ ResponseMessage}

Second re�nement: Adding the storage service In the third machine
(AQM 3), we introduce the behavior of the Queue, so as to complete all the
behavior of the Asynchronous Queuing pattern. We add two new variables named
respectively Store and Transmit . Store is speci�ed with a relation that relates a
Participant to a MessageType and we add an invariant that restrict the domain
of this relation to only the Queue indicating that the queue is storing what
message. Transmit is speci�ed with a partial function that relates a Participant
to a MessageType and we add an invariant that restrict the domain of this
function to only the Queue indicating that the Queue is transmitting what
message. Initially the Store relation and Transmit function are both initialized
to the empty set.

INVARIANTS

Store Relation : Store ∈ Partcipant ↔ MessageType
Store Dom Rest : dom(Store) = {Queue} ∨ Store = ∅
Transmit Function : Transmit ∈ Partcipant 7→ MessageType
Transmit Dom Rest : dom(Transmit) = {Queue} ∨ Transmit = ∅



The AQM 3machine events are now de�ned below. We keep the Sending Req
and the Sending Resp events as they are. We add four new events namely
Storing Req, Transmissing Req, Storing Resp and Transmissing Resp.
These events are related to the Queue behavior. We add more details to the ab-
stract events Processing Req and Processing Resp. This is illustrated in
Figure 9.

Sending_Req Processing_Req Sending_Resp Processing_Resp

Processing_Req Processing_Resp

refines refines

Storing_Req
Transmissing_Req

Storing_Resp
Transmissing_Resp

skip

refines

skip

refines

skip

refines

skip

refines

Fig. 9. Re�nement of AQM 2

Due to space restrictions, we didn't represent the four new events in this pa-
per. We present only Storing Req and Transmissing Req events, the other
two events, Storing Resp and Transmissing Resp, are similar to them. The
event Storing Req is triggered when the RequestMessage is sent and not yet
processed and the ServiceB is available. When the message is stored, theTransmissing Req
event can be triggered.

Event Storing Req

when

grd1 : RequestMessage ∈ ran(Send)
grd2 : RequestMessage ̸∈ ran(Process)
grd3 : ServiceB ∈ dom(Dispo) ∧ Dispo(ServiceB) = FALSE
grd4 : Stores = ∅

then

act1 : Stores := Stores ∪ {Queue 7→ RequestMessage}
end

Event Transmissing Req

when

grd1 : RequestMessage ∈ ran(Stores)
then

act1 : Transmit := Transmit �− {Queue 7→ RequestMessage}
end

If a participant (ServiceA or ServiceB) receives a message, the storage of
this message in the queue becomes unnecessary, so, the only modi�cation in the
processing event is to empty the Queue.



5.3 Proof obligations

The proof obligations de�ne what is to be proved to show the consistency of an
Event-B model. They are automatically generated by the Rodin Platform. In
this section, we give an overview about proof obligations belonging to our whole
speci�cation. Each proof obligation is identi�ed by its label. The proof statistics
belonging to our speci�cation is given in Table 2.

� Well-de�nedness of an axiom (axiomLabel/WD): This proof obligation rule
ensures that an axiom is Well-de�ned. In our model we have 14 well-de�nedness
axiom proof obligations.

� Well-de�nedness of a guard (guardLabel/WD): This proof obligation rule en-
sures that a guard is Well-de�ned. Some expressions, especially function ap-
plications, may not be de�ned everywhere. For example, Dispo(ServiceB) is
only de�ned if ServiceB is in the domain ofDispo, i.e. ServiceB ∈ dom(Dispo).
In our model we have 7 well-de�nedness guard proof obligations.

� Invariant preservation proof obligation rule (invariantLabel/INV ): This proof
obligation rule ensures that each invariant in a machine is preserved when-
ever variable values change by each event. In our model we have 19 invariant
preservation proof obligations.

Proof obligations Number

Generated in the context

-Well-de�nedness of an axiom 14
Generated for machine

consistency

-Well-de�nedness of a guard
-Invariant preservation

7
19

Table 2. Proof statistics

These proof obligation rules ensure that the speci�ed SOA design pattern is
correct by construction. Our approach allows developers to reuse correct SOA
design patterns, hence we can save e�ort on proving pattern correctness.

6 Conclusions

In this paper, we presented a formal architecture-centric approach supporting
the modeling and the formalization of message-oriented SOA design patterns.
The modeling phase allows us to represent SOA design patterns with a graph-
ical standard notation using the SoaML language proposed by the OMG. The
formalization phase allows us to formally characterize both structural and be-
havioral features of these patterns at a high level of abstraction, so that they will
be correct by construction. We implemented these speci�cations under the Rodin
platform. We outlined many categories of SOA design patterns. We illustrated



our approach through a pattern example (�Asynchronous Queuing pattern") un-
der the "Service messaging patterns" category. Currently, we are working on
generalizing our approach in order to examine the other categories and formally
specifying pattern compositions. Currently, the passage from the SoaML model-
ing to the formal speci�cation is done manually; in the future, we will work on
automating this phase by using transformation rules.

References

1. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, New York, NY, USA, 1st edition, 2010.

2. Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Lan-
guage: Towns, Buildings, Construction. Oxford University Press, New York, Au-
gust 1977.

3. Eric Bruno Arnon Rotem-Gal-Oz and Udi Dahan. SOA Patterns. MEAP (Manning
Early Access Program), June 2007.

4. Kent Beck. Implementation Patterns. Addison Wesley; 1 edition (23 Oct 2007),
2007.

5. Sandrine Blazy, Frédéric Gervais, and Régine Laleau. Reuse of speci�cation pat-
terns with the b method. In Didier Bert, Jonathan Bowen, Steve King, and Marina
Waldén, editors, ZB 2003: Formal Speci�cation and Development in Z and B, vol-
ume 2651 of Lecture Notes in Computer Science, pages 626�626. Springer Berlin /
Heidelberg, 2003.

6. Jing Dong, Paulo S. C. Alencar, and Donald D. Cowan. A behavioral analysis and
veri�cation approach to pattern-based design composition. Software and System
Modeling, 3(4):262�272, 2004.

7. Jing Dong, Paulo S. C. Alencar, Donald D. Cowan, and Sheng Yang. Composing
pattern-based components and verifying correctness. J. Syst. Softw., 80:1755�1769,
November 2007.

8. Ghizlane El-Boussaidi and Hafedh Mili. A model-driven framework for representing
and applying design patterns. In COMPSAC (1), pages 97�100, 2007.

9. Thomas (with additional contributors) Erl. SOA Design Patterns (The Prentice
Hall Service-Oriented Computing Series from Thomas Erl). Prentice Hall PTR, 1
edition, January 2009.

10. Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
MA, 1995.

11. Hassan Gomaa. Designing Software Product Lines with UML: From Use Cases
to Pattern-Based Software Architectures (The Addison-Wesley Object Technology
Series). Addison-Wesley Professional, July 2004.

12. Hassan Gomaa, Koji Hashimoto, Minseong Kim, Sam Malek, and Daniel A.
Menascé. Software adaptation patterns for service-oriented architectures. In SAC
'10: Proceedings of the 2010 ACM Symposium on Applied Computing, pages 462�
469, New York, NY, USA, 2010. ACM.

13. Bobby Woolf Gregor Hohpe. Enterprise Integration Patterns - Designing, Building,
and Deploying Messaging Solutions. Addison Wesley, October 2003.

14. Soon-Kyeong Kim and David A. Carrington. A formalism to describe design pat-
terns based on role concepts. Formal Asp. Comput., 21(5):397�420, 2009.



15. O. M. G. Object Management Group. Service oriented architecture Modeling Lan-
guage (SoaML)- Speci�cation UML Pro�le and metamodel for services (UPMS).
August 2008.

16. Andres J. Ramirez and Betty H.C. Cheng. Developing and applying design patterns
for dynamically adaptive systems. Technical Report MSU-CSE-09-8, Department
of Computer Science, Michigan State University, East Lansing, Michigan, March
2009.

17. T Taibi. Formalising design patterns composition. Software IEE Proceedings,
153(3):127�136, 2006.

18. Tou�k Taibi and David Chek Ling Ngo. Formal speci�cation of design pattern
combination using bpsl. Information and Software Technology, 45(3):157 � 170,
2003.

19. Hong Zhu and Ian Bayley. Laws of pattern composition. In Proceedings of the 12th
international conference on Formal engineering methods and software engineering,
ICFEM'10, pages 630�645, Berlin, Heidelberg, 2010. Springer-Verlag.


