Imen Tounsi
email: imen.tounsi@isimsf.rnu.tn

Mohamed Hadj Kacem
email: mohamed.hadjkacem@isimsf.rnu.tn

Ahmed Hadj Kacem
email: ahmed.hadjkacem@fsegs.rnu.tn

Khalil Drira
email: khalil@lass.fr

Modeling and renement SOA design patterns with Event-B method

Using design patterns has become increasingly popular. Most design patterns are proposed in an informal way, which can give rise to ambiguity and may lead to incorrect usage. Patterns, proposed by the SOA design pattern community, are described with an appropriate notation. So they require modeling with a standard notation and then formalization. In this paper, we propose a formal architecture-centric approach that aims rst to model message-oriented SOA design patterns with the SoaML standard language and second to formally specify these patterns at a high level of abstraction using the Event-B language. These two steps are performed before undertaking the eective coding of a design pattern providing correct by design solutions. Our approach is experimented through an example we present in this paper. We implemented our approach under the Rodin platform which we use to prove model consistency.

Introduction

The communication and the integration between heterogeneous applications are great challenges of computing science research works. Several researches have tried to solve them by various methods and technologies (message-oriented middleware, EAI, etc.). They have tried to bring a response to these problems but without leading to real decisive success. The stack of applications led to an unbearable situation. The lack of an ecient architectural solution led information systems to a deadlock with respect to trade requirements.

Service-oriented architectures (SOA) is a technology that oers a model and an opportunity to solve these problems [START_REF] Thomas | SOA Design Patterns (The Prentice Hall Service-Oriented Computing Series from Thomas Erl)[END_REF]. Nevertheless these architectures are subject to some quality attribute failures (e.g., reliability, availability, and performance problems). Design patterns, as proven solutions to specic problems, have been widely used to solve this weakness.

Most design patterns are proposed in an informal way that can raise ambiguity and may lead to incorrect usage. Patterns, proposed by the SOA design pattern community, are described with an appropriate notation [START_REF] Thomas | SOA Design Patterns (The Prentice Hall Service-Oriented Computing Series from Thomas Erl)[END_REF]. So they require modeling with a standard notation and then formalization. The intent of our approach is to model and formalize message-oriented SOA design patterns.

These two steps are performed before undertaking the eective coding of a design pattern, so that the pattern in question will be correct by construction. Our approach allows developers to reuse correct SOA design patterns, hence we can save eort on proving pattern correctness.

In this paper, we propose a formal architecture-centric approach. The key idea is to model SOA design patterns with the semi-formal Service oriented architecture Modeling Language (SoaML) and to formally specify these design patterns with the formal language Event-B. We illustrate our approach through an example. We proceed by modeling the Asynchronous Queuing" pattern proposed by the SOA design pattern community using the SoaML language. This modeling step is proposed in order to attribute a standard notation to SOA design patterns. Then we propose a formal specication of this design pattern using the Event-B formal language. We implement these specications under the Rodin platform which we use to prove model consistency. We provide both structural and behavioral features of SOA design patterns in the modeling phase as well as in the specication phase. Structural features of a design pattern are generally specied by assertions on the existence of types of components in the pattern. The conguration of the elements is also described, in terms of the static relationships between them. Behavioral features are dened by assertions on the temporal orders of the messages exchanged between the components. The rest of this paper is organized as follows. Section 2 gives background information of some concepts used in this paper. Section 3 discusses related work. Section 4 focuses on the modeling of the Asynchronous Queuing" pattern using the SoaML language. Section 5 describes how to formally specify an SOA design pattern using the Event-B language. Section 6 concludes and gives some perspectives of our work.

Basic Concepts

In this section, we provide some background information on the patterns, the SoaML modeling language [START_REF]Object Management Group. Service oriented architecture Modeling Language (SoaML)-Specication UML Prole and metamodel for services (UPMS)[END_REF] and the Event-B formal language [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF].

Pattern

The concept of patterns is not new, the rst denition was announced by Alexander in 1977 in the eld of architecture of buildings and towns. He declares that: Each pattern describes a problem which occurs over and over again in our environment, and then describes the core of the solution to that problem" [START_REF] Alexander | A Pattern Language: Towns, Buildings, Construction[END_REF]. In the eld of information systems, a pattern is dened as a model that provides a proven solution to a common problem individually documented in a consistent format and usually as part of a larger collection [START_REF] Thomas | SOA Design Patterns (The Prentice Hall Service-Oriented Computing Series from Thomas Erl)[END_REF].

Patterns can be classied relatively to their level of abstraction into three categories: architectural patterns (or architectural styles) that provide the skeleton or template for the overall shape and the structure of software applications at a high-level design [START_REF] Gomaa | Designing Software Product Lines with UML: From Use Cases to Pattern-Based Software Architectures (The Addison-Wesley Object Technology Series[END_REF], design patterns that encode a proven solution to a recurring design common problem of automated systems [START_REF] El-Boussaidi | A model-driven framework for representing and applying design patterns[END_REF][START_REF] Ramirez | Developing and applying design patterns for dynamically adaptive systems[END_REF], and implementation patterns that provide a solution to a given problem in programming [START_REF] Beck | Implementation Patterns[END_REF]. It is used to generate code.

Service oriented architecture Modeling Language (SoaML)

Service-Oriented Architecture is an architectural style for building systems based on interacting services. Each service exposes processes and behaviors through contracts, which are composed of messages at discoverable addresses called endpoints [START_REF] Bruno | SOA Patterns. MEAP (Manning Early Access Program)[END_REF]. SoaML [START_REF]Object Management Group. Service oriented architecture Modeling Language (SoaML)-Specication UML Prole and metamodel for services (UPMS)[END_REF] is a specication developed by the OMG that provides a standard way to architect and model SOA solutions. It consists of a UML prole and a meta-model that extends the UML 2.0 (Unied Modeling Language).

Event-B

Event-B is an evolution of B-Method developed by Jean-Raymond Abrial [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF]. It is a formal modeling method for developing systems via stepwise renement, based on rst-order logic. The method is enhanced by its supporting Rodin Platform for analyzing and reasoning rigorously about Event-B models.

The Event-B modeling notation The basic concept in the Event-B develop- ment is the model. A model is made of two types of components: contexts and machines. A context describes the static part of a model, whereas a machine describes the dynamic behavior of a model. Machines and contexts can be interrelated: a machine can be refined by another one, a context can be extended by another one and a machine can see one or several contexts.

Each context has a name and other clauses:

"Extends": The current context can extend other ones by adding their names in this clause. The resulting context consists of the context itself and all constants and axioms of all extended ones. "Sets": Declares a new data type. To specify a set S with elements e1,...,en, we declare S as a set and e1,...,en as constants then we add the axiom partition(S , e1, ..., en) "Constants": Declares the various constants introduced in the context. Names of constants must be all distinct.

"Axioms": Denotes the type of the constants and the various predicates which the constants obey. It is a statement that is assumed to be true in the rest of the model and it consists of a label and a predicate.

Like a context, a machine has an identication name and several clauses. In the following, we present in detail the clauses that we will use: "Renes": The current machine can optionally rene another one by adding its name in this clause.

"Sees": Lists the contexts referenced by the machine in order to use sets and constants dened in them.

"Variables": Lists the variables introduced in this machine. They constitute the state of the machine. Their values are determined by an initialization and can be changed by events. "Invariants": Lists the predicates that should be true for every reachable state.

"Events": Lists the events that change the state of the model and assign new values to variables. Each event is composed of one or several guards grd and one or several actions act. The guard states the necessary condition under which an event may occur, and the action describes how the state variables evolve when the event occurs. An event can be represented by the following form:

Event Event Name when grd : Condition then act : Action end A relation is used to describe ways in which elements of two distinct sets are related. If A and B are two distinct sets, then R ∈ A ↔ B denotes the set of all relations between A and B . The domain of R is the set of elements in A related to something in B : dom(R). The range of R is the set of elements of B to which some element of A is related: ran(R). We also say that A and B are the source and target sets of R, respectively.

Given two elements a and b belonging to A and B respectively, we call ordered pair a to b, the pair having the rst element a (start element) and the last element b (arrival element). We note: a → b or (a ,b).

An important special case of relations are functions. A partial functions is a relation where each element of the domain is uniquely related to one element of the range. If A and B are two distinct sets, then A → B denotes the set of all partial functions between A and B .

Related work

This section surveys related researches to patterns used in the eld of software architecture. As it is represented in Figure 1, these researches can be classied into three axes according to their abstraction level. The rst axis deals with architectural patterns, the second axis deals with implementation patterns and the third axis deals with design patterns. Compared to architectural patterns, design patterns address smaller reusable designs such as the structure of subsystems within a system [START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF]. In this paper, we focus only on the third axis since it belongs to our research activities. Enterprise Application Integration [START_REF] Woolf | Enterprise Integration Patterns -Designing, Building, and Deploying Messaging Solutions[END_REF] Service Oriented Architectures [START_REF] Thomas | SOA Design Patterns (The Prentice Hall Service-Oriented Computing Series from Thomas Erl)[END_REF] Fig.

Classication of Design Patterns

Researches connected to design patterns axis, are mainly classied into three branches of work according to their architectural style (Figure 2). Blazy et al. [START_REF] Blazy | Reuse of specication patterns with the b method[END_REF] propose an approach for specifying design patterns and how to reuse them formally. They use the B method to specify structural features of design patterns but they do not consider the specication of their behavioral features.

Among researches related to design patterns for Enterprise Application Integration, we present the work of Hohpe and Woolf. They have proposed a set of design patterns which are dealing with enterprise integration using messaging [START_REF] Woolf | Enterprise Integration Patterns -Designing, Building, and Deploying Messaging Solutions[END_REF]. These design patterns are represented with a visual notation using their appropriate notation. Hohpe and Woolf argue their choice by saying that there is no a comprehensive notation that is geared toward the description of all aspects of an integration solution. The Unied Modeling Language (UML) does not contain semantics to describe messaging solutions and the UML Prole for EAI enriches the semantics of collaboration diagrams to describe message ows between components but it does not capture all the patterns described in their pattern language.

To our knowledge, there is no research work that propose the formalization of enterprise integration design patterns and as examples they refer to Hohpe and Woolf patterns and to enterprise integration patterns in general.

In the branch of SOA design patterns, we nd out the work of Erl. Erl have proposed a set of design patterns for service-oriented architecture and serviceorientation [START_REF] Thomas | SOA Design Patterns (The Prentice Hall Service-Oriented Computing Series from Thomas Erl)[END_REF]. Each pattern is modeled with an appropriate notation represented in a symbol legend. These patterns are modeled without any formal specication.

In order to understand these patterns, the rst step is to form a knowledge on the pattern-related terminology and notation. In addition to the pattern notation, Erl proposes a set of specic pattern symbols used to represent a design pattern, a compound design pattern and a group of related design patterns. Erl argues his choice by saying that there is a lack of abstract denitions, architectural models, and vocabularies for SOA but there are several eorts underway by dierent standards and research organizations.

In our research work we are interested in SOA design patterns dened by Erl [START_REF] Thomas | SOA Design Patterns (The Prentice Hall Service-Oriented Computing Series from Thomas Erl)[END_REF]. Erl presents SOA design patterns with an appropriate notation because there is no a standard modeling notation for SOA, but now OMG announces the publication of a Service oriented architecture Modeling Language (SoaML), it is a specication for the UML Prole and a Meta-model for Services (UPMS). So, in our work, we propose to model SOA design patterns with the SoaML standard language and we focus on the structural and behavioral features of SOA design patterns. After the modeling step, we propose to specify SOA design patterns formally. We use the Event-B language, which is an extension to the B method, to dene both structural and behavioral features of design patterns.

In this paper we concentrate on a specic category of patterns called Service messaging patterns", it is a collection of patterns witch are message oriented. It is focused on inter-service message exchange, and provides design solutions for a wide range of messaging concerns. From this collection, we use the Asynchronous Queuing" pattern.

In conclusion, most proposed patterns are described using a combination of textual description and a graphical appropriate notations in order to make them easy to read and understand. However, using these descriptions makes patterns ambiguous and may lack details. There have been many researches that dene pattern specications using formal techniques but researches that model design patterns with semi-formal languages are few. We nd a number of approaches that formally specify dierent sorts of fetures of patterns: structural, behavioral, or both. We provide a modeling solution for describing SOA design patterns using a visual notation based on the graphical SoaML notation. Two main reasons lead to use SoaML for modeling these patterns. First, SoaML is a standard modeling language dened by OMG to describe service oriented architectures. Second, diagrams used in the SoaML language, allow to represent structural features as well as behavioral features of SOA design patterns.

To model an SOA architecture, we can represent many levels of description.

The highest level is described as a Services Architectures where participants are working together using services. Services Architectures is modeled using UML In this paper, we model the Asynchronous Queuing pattern proposed by Erl [START_REF] Thomas | SOA Design Patterns (The Prentice Hall Service-Oriented Computing Series from Thomas Erl)[END_REF]. This pattern is described in detail within the next section.

Asynchronous Queuing

Asynchronous Queuing pattern is an SOA design pattern for inter-service message exchange [START_REF] Thomas | SOA Design Patterns (The Prentice Hall Service-Oriented Computing Series from Thomas Erl)[END_REF]. It belongs to the category "Service Messaging Patterns". It establishes an intermediate queuing mechanism that enables asynchronous message exchanges and increases the reliability of message transmissions when service availability is uncertain.

The problem addressed by Asynchronous Queuing pattern is that when services interact synchronously, it can inhibit performance and compromise reliability when one of services cannot guarantee its availability to receive the message.

Synchronous message exchanges can impose processing overhead, because the service consumer needs to wait until it receives a response from its original request before proceeding to its next action. Responses can introduce latency by temporally locking both consumer and service.

The proposed solution by this pattern is to introduce an intermediate queuing technology into the architecture (Figure 3). The queue receives request messages sent by the ServiceA and then forwards them on behalf of the ServiceB. If the target service is unavailable, the queue acts as temporary storage and retains the message. It then periodically attempts retransmission. Similarly, if there is a response, it can be issued through the same queue that will forward it back to the ServiceA when it is available. While either ServiceA or ServiceB is processing message contents, the other can deactivate itself in order to minimize memory consumption.

Structural features of the Asynchronous Queueing pattern

In the structural modeling phase, we specify components of the pattern and their dependencies or connections in the Participant diagram (Figure 4) and we specify their interfaces and exchanged messages in the ServiceInterface and MessageType diagrams respectively (Figure 5). ServiceA, ServiceB and the Queue are dened as participants because they provide and use services. As shown in Figure 4, the ServiceB provides a ServiceX service used by the ServiceA and the Queue provides a storage service. We didn't represent the storage service provided by the Queue in order to concentrate principally on the communication between ServiceA and ServiceB and to not complicate the presented diagrams.

Request message

Participants provide capabilities through service ports typed by UML interfaces that dene their provided capabilities. Both ServiceA and ServiceB have a port typed with the ServiceX". The ServiceB is the provider of the Ser-viceX and has a Service port. The ServiceA is a consumer of the ServiceX and uses a Request port. We note that the ServiceB 's port provides the ProviderServiceX" interface and requires the OrderServiceX" interface.

Since the ServiceA uses a Request the conjugate interfaces are used, so the ServiceA's port provides the OrderServiceX" interfaces and uses the ProviderServiceX". Since they are conjugate, ports on ServiceA and ServiceB can be connected to enact the service. The Request port is preceded with a tilde (∼) to show that the conjugate type is being used. In this diagram, Ser-viceChannels are explicitly represented, they enables communication between the dierent participants.

Figure 5 shows a couple of MessageType that are used to dene the information exchanged between ServiceA (consumer) and ServiceB (provider). These MessageType are RequestMessage" and ResponseMessage", they will be used as types for operation parameters of the service interfaces. The ServiceA participant expresses its request for the serviceX" service using its request port. The type of this service port is the UML interface OrderServiceX". This interface has an operation ProcessServiceXOrder" and the type of parameter of this operation is the MessageType RequestMessage".

Behavioral features of the Asynchronous Queueing pattern

During a course of exchanging messages, the rst service (ServiceA) sends a request message to the second service (ServiceB), at that time, its resources are locked and consumes memory. This message is intercepted and stored by an intermediary queue. ServiceB receives the message forwarded by the Queue and ServiceA releases its resources and memory. While ServiceB is processing the message, ServiceA consumes no resources. After completing its processing, ServiceB issues a response message back to ServiceA (this response is also received and stored by the intermediary Queue). ServiceA receives the response and completes the processing of the response while ServiceB is deactivated.

To specify behavioral features of design patterns we use the UML2.0 sequence diagram. As depicted in Figure 6, this diagram species the valid interactions between participants. In this section, we describe semantics of design patterns with the Event-B notation. In order to prove the correctness of the pattern specication we use the Rodin Platform.

As we have mentioned in section 2.3, contexts are used to model static properties of a model, so we specify structural features of design patterns with a context (AQC). Whereas, with machines we model the dynamic properties, so we specify behavioral features of design patterns with machines. Our model is composed of three machines named respectively AQM 1, AQM 2 and AQM 3 (AQM denotes Asynchronous Queuing Machine). In the rst machine (AQM 1), we specify the pattern at a hight level of abstraction, i.e. we suppose that the communication happens only between ServiceA and ServiceB . In the second machine (AQM 2), we add the process function to the model. Finally, in the third machine(AQM 3),

we add the Queue and all its behavior to the model. We use the renement techniques to gradually introduce details and complexity into our model. Machines and context relationships are illustrated in Figure 7.

MACHINE AQM2

MACHINE AQM3

Refines Sees

Sees

MACHINE AQM1

CONTEXT AQC

Refines Sees

Behavioral features of SOA Design Patterns

In order to specify behavioral features of the pattern, we have three steps: in the rst step we specify the pattern with a machine at a hight level of abstraction. In the second step, we add more details to the rst machine by using the renement technique. In the third and the nal step we add all necessary details to the second machine by using the renement technique too.

Specifying the pattern at a high level of abstraction As already mentioned above, in the Asynchronous Queueing pattern there are three parties participating in it namely the ServiceA, the ServiceB and the Queue. In this rst machine AQM 1, we only specify the communication between ServiceA and ServiceB , i.e. the queue is completely transparent, meaning that neither ServiceA nor ServiceB may know that a queue was involved in the data exchange. So, the behavior is described as follows:

The ServiceA sends a RequestMessage to the ServiceB and then remains released from resources and memory (becomes unavailable).

When the ServiceB becomes available, it receives the RequestMessage and sends the ResponseMessage. The dynamic system can be seen in Figure 6. Sending the request starts when there is no messages sent and the ServiceA is available, then ServiceA sends the RequestMessage and becomes unavailable. Sending the response starts after the questioning phase (when the request message is sent) and when the ServiceB is available and then ServiceB sends the ResponseMessage and becomes also unavailable. This scenario is formalized by the following two events, namely This event is with a parameter of type Participant (represented in the clause any) and it has the functionality of modifying the availability of a participant. For this event, we use the function overriding operator (¡ -), this operator replaces existing mappings with new ones in the Dispo function, here we replace the availability of a service from FALSE to TRUE.

Event Activating Participant any

INVARIANTS

Process Function : Process ∈ Partcipant → MessageType

The AQM 2 machine events are now dened below. We keep the Sending Req event as it is, we add a new event Processing Req (rening skip), we add more details to the abstract event Sending Resp and the abstract event Receiving Resp is rened by the concrete event Processing Resp. This is illustrated in Figure 8.

Processing Req (Processing Request) event is triggered when the message is sent (grd1), not yet processed (grd2) and the ServiceB is available (grd3). In the action part, we add to the process function the pair ServiceB → The AQM 3 machine events are now dened below. We keep the Sending Req and the Sending Resp events as they are. We add four new events namely Storing Req, Transmissing Req, Storing Resp and Transmissing Resp.

These events are related to the Queue behavior. We add more details to the abstract events Processing Req and Processing Resp. This is illustrated in Figure 9. If a participant (ServiceA or ServiceB) receives a message, the storage of this message in the queue becomes unnecessary, so, the only modication in the processing event is to empty the Queue.

Sending_Req

Proof obligations

The proof obligations dene what is to be proved to show the consistency of an Event-B model. They are automatically generated by the Rodin Platform. In this section, we give an overview about proof obligations belonging to our whole specication. Each proof obligation is identied by its label. The proof statistics belonging to our specication is given in Table 2.

Well-denedness of an axiom (axiomLabel/WD): This proof obligation rule ensures that an axiom is Well-dened. In our model we have 14 well-denedness axiom proof obligations.

Well-denedness of a guard (guardLabel/WD): This proof obligation rule ensures that a guard is Well-dened. Some expressions, especially function applications, may not be dened everywhere. For example, Dispo(ServiceB) is only dened if ServiceB is in the domain of Dispo, i.e. ServiceB ∈ dom(Dispo).

In our model we have 7 well-denedness guard proof obligations. Table 2. Proof statistics

These proof obligation rules ensure that the specied SOA design pattern is correct by construction. Our approach allows developers to reuse correct SOA design patterns, hence can save eort on proving pattern correctness.

Conclusions

In this paper, we presented a formal architecture-centric approach supporting the modeling and the formalization of message-oriented SOA design patterns.

The modeling phase allows us to represent SOA design patterns with a graphical standard notation using the SoaML language proposed by the OMG. The formalization phase allows us to formally characterize both structural and behavioral features of these patterns at a high level of abstraction, so that they will be correct by construction. We implemented these specications under the Rodin platform. We outlined many categories of SOA design patterns. We illustrated our approach through a pattern example (Asynchronous Queuing pattern") under the "Service messaging patterns" category. Currently, we are working on generalizing our approach in order to examine the other categories and formally specifying pattern compositions. Currently, the passage from the SoaML modeling to the formal specication is done manually; in the future, we will work on automating this phase by using transformation rules.

 Fig. 1. Classication of Patterns Design Patterns

 Among researches related to design patterns for Object Oriented Architectures, we present the work of Gamma et al.. They have proposed a set of design patterns in the eld of object-oriented software design[START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF]. These patterns are described with graphical notations by using three diagrams based principally on the OMT (Object Modeling Technique) notation. These diagrams are the class diagram, the object diagram and the interaction diagram. For each design pattern, they include at least one class diagram and the other notations are used as needed to supplement the discussion.Several researches have proposed the formalization of object-oriented design patterns. Since the most famous one are those proposed by Gamma[START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF] (hereafter referred to as GoF), most researches refer to these patterns. Several approaches have been proposed in the literature, we quote: Zhu et al.[START_REF] Zhu | Laws of pattern composition[END_REF] specify design patterns and pattern composition formally. They specify 23 GoF patterns. Zhu et al. use the rst order logic induced from the abstract syntax of UML dened in GEBNF to dene both structural and behavioral features of design patterns. Taibi et al. [17, 18] develop a language called Balanced Pattern Specication Language (BPSL) to formally specify patterns, pattern composition and instances of patterns. This language is used as a formal basis to specify structural features of design patterns in the First-Order Logic (FOL) and behavioral features in the Temporal Logic of Action (TLA). Taibi et al. use as a case study the Observer-Mediator pattern composition proposed by GoF. Dong et al. [7, 6] focus on the structural and behavioral fetures of a design pattern component. They use the First-Order Logic theories to specify the struc-tural features of patterns by means of Object-Z and Temporal Logic of Action (TLA) to specify their behavioral features. As examples, they use GoF patterns. Kim et al. [14] present an approach to describe design patterns based on role concepts. First, they develop an initial role meta-model using an existing modeling framework, Eclipse Modeling Framework (EMF), then they transform the meta-model to Object-Z using model transformation techniques in order to specify structural features. Behavioral features of patterns are also specied using Object-Z and integrated in the pattern role models. Kim et al. also use GoF patterns as examples to represent their approach.

 collaborations diagram stereotyped ServicesArchitecture . The next level is described as Participants using UML class diagram stereotyped Participant . The Service Contract is at the middle of the SoaML set of SOA architecture constructs, it describes the services mentioned above and it is modeled using UML collaborations stereotyped ServiceContract . In the next level, we nd the specication of Interfaces and Message Types using respectively UML class diagram stereotyped ServiceInterface and UML class diagram stereotyped MessageType . For both the service contract and the interface levels we can specify behavioral features of services using any UML behavior (e.g sequence or activity diagrams).

Fig. 3 .

 3 Fig. 3. Asynchronous Queuing solution

Figure 5 Fig. 4 .

 54 Figure5depicts a ServiceB participant providing a serviceX" service. The type of the service port is the UML interface ProviderServiceX" that has the operation processServiceXProvider". This operation has a message style pa-

Fig. 6 .

 6 Fig. 5. ServiceInterface and MessageType diagrams

Fig. 7 .

 7 Fig. 7. Context and machines relationship

 Partcipant grd2 : P ∈ dom(Dispo) ∧ Dispo(P) = FALSE then act1 : Dispo := Dispo ¡-{P → TRUE } end First renement: Adding the message processing The second machine AQM 2 (concrete machine) renes the cited above AQM 1 machine (abstract machine) and uses the AQC context. In this machine we introduce the notion of processing messages. So we add a new variable named Process. This variable is specied with a partial function that relates a Participant to a MessageType indicating who participant is processing what message. Initially, the Process function is initialized to the empty set.

Fig. 8 .

 8 Fig. 8. Renement of AQM 1

grd3:

 RequestMessage ∈ ran(Process) grd4 : ResponseMessage ̸ ∈ ran(Send) For the event Processing Resp, it renes the event Receiving Resp by adding the action of processing the message. act2 : Process := Process ¡-{ServiceA → ResponseMessage} Second renement: Adding the storage service In the third machine (AQM 3), we introduce the behavior of the Queue, so as to complete all the behavior of the Asynchronous Queuing pattern. We add two new variables named respectively Store and Transmit. Store is specied with a relation that relates a Participant to a MessageType and we add an invariant that restrict the domain of this relation to only the Queue indicating that the queue is storing what message. Transmit is specied with a partial function that relates a Participant to a MessageType and we add an invariant that restrict the domain of this function to only the Queue indicating that the Queue is transmitting what message. Initially the Store relation and Transmit function are both initialized to the empty set. INVARIANTS Store Relation : Store ∈ Partcipant ↔ MessageType Store Dom Rest : dom(Store) = {Queue} ∨ Store = ∅ Transmit Function : Transmit ∈ Partcipant → MessageType Transmit Dom Rest : dom(Transmit) = {Queue} ∨ Transmit = ∅

 Invariant preservation proof obligation rule (invariantLabel/INV): This proof obligation rule ensures that each invariant in a machine is preserved whenever variable values change by each event. In our model we have 19 invariant preservation proof obligations.

Table 1 .

 1 Table 1 is a recapitulation of related works that contains a comparison between the above-mentioned approaches and our approach. Summary table of related works 4 Modeling SOA design patterns with the SoaML language

	Approach Pattern model-ing Structural for-mal specica-tion Behavioral for-mal specica-tion	Object Oriented Design Patterns Gamma et al. 1995 Zhu et al. 2010 Taibi et al. 2006 Dong et al. 2007 Kim et al. 2009 OMT GoF (OMT) GoF (OMT) GoF (OMT) GoF (OMT) GEBNF (FOL) BPSL (FOL) Object Z (FOL) Object Z (FOL) GEBNF (FOL) BPSL (TLA) TLA Object Z (FOL)	Blazy et al. 2006 GoF (OMT) B Method	EAI Design Pat-terns Hope et al. 2003 Appropriate SOA Design Patterns Erl 2009 Ours 2012 Notation Appropriate SoaML Nota-tion Event-B Event-B

 When the ServiceA becomes available, it receives the ResponseMessage and then returns deactivated. Formally, we can use two variables to represent the state of the pattern: Dispo to denote the state of the participant either available or not, and Send to indicate who sends what message. The rst invariant Dispo Function species the availability feature of participants. This feature is specied with a partial function which is a special kind of relation (each domain element has at most one range element associated with it) i.e. the function Dispo relates Participants to a Boolean value indicating that it is either available or not. We use the partial function because a participant can't be available and not available at the same time. The second invariant, i.e. Send Relation, species what is the message sent and who is the sender. INVARIANTS Dispo Function : Dispo ∈ Partcipant → BOOL Send Relation : Send ∈ Partcipant ↔ MessageType Initially, ServiceA is available and ServiceB is not available and there are no messages sent, hence Send relation is initialized to the empty set.

INITIALISATION begin act1

:

Dispo := {ServiceA → TRUE , ServiceB → FALSE } act2 : Send := ∅ end

 Sending Req (Sending Request) and Sending Resp (Sending Response).After sending the response message and when the ServieA is available, receiving the response message becomes possible. After receiving the response, ServiceA becomes not available again. So, we assign the value FALSE to the ServiceA disponibility. Formally, this action is specied with the event Receiving Resp (Receiving Response).Each time when a service is unavailable and an event can't be triggered only if this service becomes available, we use a special event named Activating Participant.

	Event Receiving Resp when grd1 : ResponseMessage ∈ ran(Send) grd2 : ServiceA ∈ dom(Dispo) ∧ Dispo(ServiceA) = TRUE then act1 : Dispo(ServiceA) := FALSE end
	Event Sending Req when grd1 : Send = ∅ grd2 : ServiceA ∈ dom(Dispo) ∧ Dispo(ServiceA) = TRUE then act1 : Send := Send ∪ {ServiceA → RequestMessage} act2 : Dispo(ServiceA) := FALSE end
	Event Sending Resp when grd1 : RequestMessage ∈ ran(Send) grd2 : ServiceB ∈ dom(Dispo) ∧ Dispo(ServiceB) = TRUE then act1 : Send := Send ∪ {ServiceB → ResponseMessage} act2 : Dispo(ServiceB) := FALSE end

 Due to space restrictions, we didn't represent the four new events in this paper. We present only Storing Req and Transmissing Req events, the other two events, Storing Resp and Transmissing Resp, are similar to them. The event Storing Req is triggered when the RequestMessage is sent and not yet processed and the ServiceB is available. When the message is stored, the Transmissing Req event can be triggered. FALSE grd4 : Stores = ∅ then act1 : Stores := Stores ∪ {Queue → RequestMessage} end Transmit := Transmit ¡-{Queue → RequestMessage} end

	Processing_Req	Processing_Resp
		refines		refines
	Processing_Req	Sending_Resp Processing_Resp
	Storing_Req		Storing_Resp	
	Transmissing_Req	Transmissing_Resp
	refines	refines	refines	refines
	skip	skip	skip	skip
	Fig. 9. Renement of AQM 2	
	Event Storing Req when grd1 : RequestMessage ∈ ran(Send)	
	Event Transmissing Req when grd1 : RequestMessage ∈ ran(Stores) then act1 :	

grd2 : RequestMessage ̸ ∈ ran(Process) grd3 : ServiceB ∈ dom(Dispo) ∧ Dispo(ServiceB) =