
HAL Id: hal-00676202
https://hal.science/hal-00676202v2

Submitted on 13 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Lazy Real-Time System Architecture For Interactive
Music

David Janin

To cite this version:
David Janin. A Lazy Real-Time System Architecture For Interactive Music. JIM 2012, May 2012,
Mons, Belgium. pp.133-139. �hal-00676202v2�

https://hal.science/hal-00676202v2
https://hal.archives-ouvertes.fr

LaBRI, CNRS UMR 5800
Laboratoire Bordelais de Recherche en Informatique

Rapport de recherche RR-1460-12

A Lazy Real-Time System Architecture For Interactive
Music

April 13, 2012

David Janin,
LaBRI, IPB, Université de Bordeaux

Contents
1 Introduction 3

2 General architecture 5

3 Lazy real time loop 7

4 Real time vs symbolic time management 9
4.1 Real and symbolic current time handling 9
4.2 Scheduled dates updates . 11
4.3 Last dates updates . 11
4.4 Robustness properties of the lazy time handling 12

5 Interactive music scores 13
5.1 Some basic musical programs . 13
5.2 Music programs as symbolic timed automata 14

6 Conclusion 14

2

A Lazy Real-Time System Architecture For
Interactive Music

David Janin
Université de Bordeaux, LaBRI UMR 5800,

351, cours de la libération,
F-33405 Talence
janin@labri.fr

April 13, 2012

Abstract

Designing systems that are both real-time and interactive, features
commonly encountered in computational music, is a challenging task. It
becomes even more difficult if we require these systems to be generic in
the underlying interactive scores that are to be followed.

In this paper, we aim at defining such a generic system architecture.
Our proposal is based on a lazy real-time kernel that manages, in a reactive
way, both scheduled synchronous events and unpredictable asynchronous
inputs.

This reactive approach contrasts with standard real-time architectures
where the real time kernel is built upon an active periodic loop. It also
permits a clear distinction between interactive music programs: written in
symbolic time, and interactive music performance: executed in real time.

1 Introduction
Designing systems that are both real-time and interactive, features commonly
encountered in computational music, is a challenging task.

At the lowest level, real-time requirements induce a synchronous slicing of
time with a period defined by a fixed time quantum. Computations are limited
for they need to be performed fast. For instance, at such a small time scale step,
inputs are audio streams possibly filtered by some analyzers and some fixed set
of data-flow diagrams produce outputs from inputs [4, 6]. Streams synthesis can
even be delegated to specialized subcomponents, be them hardware or software,
systems providing then higher level parameters for such synthesis. At this level,
systems’ behaviors are essentially unstructured.

On the opposite side, at the interaction level, systems’ behaviors are struc-
tured by means of high level concepts. Some processes are guarded by arrivals

3

of external events: asynchronous events that may change the structure of the
system behavior itself. In particular, data-flow diagrams that produce outputs
from inputs can be dynamically changed at that level.

In other words, at the lowest level, interactive music systems synchronously
compute sound values. At the highest level, interactive music systems asyn-
chronously compute time structures upon which music itself is built. Even if
systems delegate the actual sound production to subcomponents, there is still a
need of low level synchronous management of these delegations.

This distinction between low level real-time computations and high-level
interactions also appears in the underlying time scale they are based upon.
At the lowest level, the time quantum is generally measured in 10−5th of a
second, e.g. at 44kHz of audio sampling rate. At the interaction level, the
musical tempo is measured in 10−1th of a second, e.g. from 30 to 300 beats
per minute. In between, the expected reaction or precision time of the system
after an asynchronous event is measured in 10−3th of a second, i.e. the limit
under which standard human perception no longer make the difference in beat
positions.

This tells us that mixing real-time and interaction requirements requires a
clear distinction between, on the one hand, high level interactive music controls
governed by a symbolic time progression in the underlying interactive score and,
on the other hand, low level music production based on a real time clock.

Merging these two levels in a design will probably lead to design flaws with
non modular and non reusable resulting software. Still, these two levels of design
must collaborate. This is the purpose of our proposed system architecture.

Main contribution
In this paper, we aim at proposing an abstract generic system architecture for
interactive real-time music performance that will fulfill all the above require-
ments. Raised at the system architecture level, the central question we adress
is how the various components in an interactive music software will interact.

Our proposal is based on a lazy real-time kernel that handles, in a reactive
way, both scheduled synchronous events and unpredictable asynchronous in-
puts. This contrasts with standard real-time architecture built upon a periodic
reactive loops.

The resulting real-time and interactive system architecture turns out to be
peculiarly robust w.r.t. occasional time drifts: whenever forced out of time, the
running system will auto-stabilize on time as if no time drift had ever occur.

More specifically oriented towards music, we also encode, at the architecture
level a clear distinction between symbolic time (beats) and real-time (seconds),
each being related with the other via a possibly evolving tempo.

As a consequence, despite its simplicity, this model induces several archi-
tecture layers: from low-level input/output controllers to high-level music con-
trollers, that have clear and distinct functional specifications. In particular, the

4

music controller layer can just be seen as an abstract interpreter of (arbitrary)
symbolic interactive scores. This guarantees genericity.

Related works and subject position in the field
These last decades have seen the development of many softwares for Com-
puter Assisted Music either used on stage for live performances or used within
multimedia applications for rich interactive audio supports. These softwares
range from low level sound synthesis and control tools such as Faust [6] or
Max/MSP [4], to high level composition assistants such as Elody [14] or Open-
Music [1] to mention just a few of them.

However, the design and the execution of computer assisted interactive mu-
sics still remain challenging tasks. The way low level (synchronous) sound syn-
thesis and control is to be combined with high level (asynchronous) musical
inputs still remains to be understood deeper. It some sense, there is a increas-
ing need of mixed systems that provide high level interactive control structures
for the description of potentially complex interactions between lower level sound
or music features.

Many of such systems, see [5] among others as an example, can be seen as
sorts of domain specific languages (DSL) that are adapted to the design and
implementation of interactive scores.

Are these languages reaching a good abstraction level ? Do they induce a
rich enough notion of interactive scores ? The pragmatic reuse of existing and
reliable low level tools somehow mess up the picture.

There is yet no appropriate expressiveness yardstick for interactive music
description. Even worse, temporal and spacial structurations of such interactive
scores, highly relevant in order to ease composers’ task when writing interactive
scores, still need to be better understood and developed.

In the present paper, while we do not know what exactly is an interactive
musical score, we still aim at understanding precisely where and how such in-
teractive scores can be played. As a result, we obtain an abstract operational
semantics for such scores that has some similarity with Alur and Dill timed
automata [3] or, more generally, hybrid systems [?].

This enforces the general and well admitted idea that known models, de-
veloped for years in the presumably distinct application context of critical em-
bedded systems, can still be adapted efficiently to the application context of
interactive music.

2 General architecture
The main purpose of a system is to bridge the gap between the program layer and
a hardware layer. Our proposal, oriented towards interactive music performance,
follows this general specification.

5

Its main components and its connection with the environment are depicted
in the following picture.

Hardware

Musicians Sound devices

Program

Interactive Music Program

System

Interactive Music Controller

Input Monitor Output Controller

Asynchronous inputs
Synchronous outputs

Next Events Queries Next Events Records

Lazy Real-Time Kernel Symbolic Time

Real Time

The system itself is composed of three components’ layers which functionality
can be described as follows.

The interactive music controller. This component acts as an interactive
partition (or interactive music program) follower; it receives from the real-time
kernel musical events queries with symbolic time stamps and produces back to
the real-time kernel, in coherence with the followed score, the record of musical
events to be performed at the next relevant symbolic time stamps.

6

Lazy real-time kernel. This component handles the lazy real-time loop (de-
scribed below in detail): sort of lazy tough real-time scheduler; functionally,
it handles the communication between the symbolic time layer defined by the
music controller and the real time layer defined by both the input monitor and
the output controller;

Input monitor / output controller. These components are in charge of the
communication between the interactive music system and the musical hardware:

(a) the input subcomponent receives asynchronous input events from musical
instrument users (musicians) and transmit with no delay their formated
descriptions to the real-time kernel,

(b) the output subcomponent produces musical streams upon reception of
their formated descriptions received from the real-time kernel.

3 Lazy real time loop
The lazy real time loop, running in the real-time kernel, is essentially in charge
of the reactive communication between the music controller denoted M, the input
monitor denoted by I and the output controller denoted by O.

It is described below in an object-oriented like syntax.

Event * E; // eventsList
Time * T; // next firing date
T = M.getNextEventDate();
While (T.isDefined()) do
{

Event * E = I.WaitEventUntil(T);
if (E.isDefined())

// Received event case
E = M.updateReceiEvent(E,Now);

else
// Planed event case
E = M.getNextEventAtTime(T);

O.fireEventAtTime(E);
T = M.getNextEventDate();

}

This loop structure calls for some explanation. As opposed to standard real
time architectures, it is built upon a mechanism of a lazy reactive evaluation
schema triggered by two competing events:

(1) an unpredictable asynchronous event E is received from the input monitor
I; in that case, the event is passed with no delay to the music controller
that sends back a possibly enriched event description that is fired imme-
diately; such an event is called a received event,

7

(2) a scheduled next event date is expired and the new scheduled synchronous
event E, provided by the music controller M, is passed to the output con-
troller to be fired at time T; such an event is called scheduled or planned
events.

The monitoring of these two competing events is implemented via the call of
WaitEventUntil(T) on the input monitor I. This method returns the undefined
object nil when no received event had occur and the current date is greater1 or
equal than the next event date encoded in T. We describe below a little further
how these events are managed.

Management of a received event. By default, when an unpredictable
event E is received, a copycat scenario can take place. This default scenario
is implemented as follows: the updateReceiEvent(E,Now) method sends back
the event E and the next event scheduled date, returned by the next call to
getNextEventDate(T), remains unchanged.

In all cases, the received event is passed to the music controller that can,
upon reception, update its own control states. The event actually fired, sent
back by the controller, can even be different from the received event. It can
have been enriched. It can even be ignored when the music controller send back
nil.

More precisely, the musical consequence of the reception of an asynchronous
unpredictable event, that depends both on its reception date and its value, is
governed by the interactive score followed by the music controller. For instance,
it may even be the case that the next planned event date changes after that
update of the music controller. This happens in particular when a received
event induces a change of tempo.

Management of a planned event. When a scheduled event date expires,
the music controller is asked for the event E to be fired. This is done by the
lazy real-ime kernel, calling the getNextEventAtTime(T) method. By default,
it just read the music score, send back the next event, and update its own record
of the next schedule event date.

Till that firing date, there is no need to know the event to be fired. It follows
that this event can just be computed by the music controller, just when asked
via the getNextEventAtTime(T). This means that the music score can truly be
an interactive music score, in the sense that, at any time, the played event may
depend on all the history of the music that has been received and produced so
far.

At any time, the next musical event to be played depends on the some
internal current state of the interactive music score. This programmatic feature
of the interactive music score is discussed a little further in Section 5 below.

1this may happend when the all system is late

8

Firing events on time. In all cases, both (enriched) received events or
planned events are sent to the output monitor to be fired immediately.

In implementations, the firing of planned event can be made a little more
subtle.

More precisely, methodWaitEventUntil(T)may resumes some delta seconds
before the real time scheduled date expires. The computation of the next event
E can thus be anticipated.

Firing a planned event is then performed as follows:

(1) if the current date is smaller than the scheduled firing date, the real-time
kernel wait the remaining time; the event is then fired just on time, i.e.
this is the expected default case,

(2) if the current date is equal or gamma seconds greater than the scheduled
firing date, the event is immediately fire almost on time, i.e. gamma is the
allowed time precision error,

(3) if the current date is greater than the scheduled firing date plus gamma,
this means the system is late; the firing of the event can be omitted in
order to avoid out of time parasit noise; it is expected that the system will
auto-stabilize.

Parameters delta and gamme can be set adequately according to the perfor-
mance of the computer the system is running on.

4 Real time vs symbolic time management
One of the major task of the lazy real-time kernel is to ensure the conversion
between the real time handled by the input monitor and the output controller
and the symbolic time handled by the interactive music controller.

In the lazy real-time loop described above we have just hidden how real-time
dates are converted into symbolic dates and vice-versa, how symbolic dates are
converted into real-time dates.

The methods and attribues of class Time manage these back and forth con-
versions.

4.1 Real and symbolic current time handling
The first basic attributes of the class Time are:

(1) SymbCurrentD defined to be the symbolic current date, i.e. the (float)
number of symbolic time units (say beats) elapsed since the beginning of
the play till now,

(2) RealCurrentD defined to be the real-time current date, i.e. the (float)
number of real time units (say minutes) elapsed since the beginning of the
play till now,

9

(3) tempo defined to be the evolving speed of the symbolic date w.r.t. the
real-time date (say in beats per minute).

Observe that at any time, the value of the real-time current date is defined while
the value of the symbolic current date needs to be computed.

In the simplest case, when the tempo is constant, the following invariant
property holds.

SymbCurrentD == tempo * RealCurrentD;

It tells how the symbolic current date can be computed from the (constant)
value of the tempo and the real-time current date.

In the general case, when the tempo is not constant, things are a little more
complex. We make the following hypothesis:

(H) Between any two successive events, be them received or planned
events, tempo is constant.

Is that hypothesis a constraint ? We can observe that, provided any change of
tempo2 is modeled itself as an event, this hypothesis is just a modeling choice.

Under that simple hypothesis, managing the symbolic vs real-time conversion
can just be done by recording the last values of symbolic or real-time dates in
two extra attributes. More formally, these extra attributes of the class Time
are:

(4) SymbLastD defined to be the symbolic last event date,

(5) RealLastD defined to be the real-time last event date.

The invariant property associated with these new attributes is defined as follows:

SymbCurrentD == SymbLastD +
tempo * (RealCurrentD - RealLastD);

It tells, in the general case, how the value of the symbolic current date can be
computed from the value of the real-time current date.

Observe that this equation is essentially needed when updating the music
controller state upon the reception of an event E. Indeed, music controller M only
handles symbolic time in the interactive music score. Converting the real-time
date of reception of event E into its corresponding symbolic time value is thus a
necessity.

2either from the input monitor or from the music controller

10

4.2 Scheduled dates updates
In the lazy loop described above there is yet another notion of time that needs
to be modeled : it is the scheduled symbolic date and scheduled real-time date
of the next planned event.

This is done by using two more attributes in the class Time that are:

(6) SymbSchedD defined to be the symbolic scheduled date of the next planned
event,

(7) RealSchedD defined to be the real-time scheduled date of the next planned
event.

These scheduled dates are related with last dates in the same way current dates
are related with last dates. However, the symbolic scheduled date is provided by
the music controller when computing the next event date. It follows that we
need now to compute the real-time scheduled date from that symbolic value.

The relevant invariant property is thus defined as follows.

// whenever needed
RealSchedD = RealLastD +

(SymbSchedD - SymbLastD)/tempo;

It shows how the value of the real-time scheduled date is computed from the
value of the symbolic scheduled date.

This equation is essentially needed when the input monitor I is waiting for a
input event up to some scheduled date T. Since monitor I only handles real-time
date the symbolic scheduled date provided by the music controller will have to
be converted.

4.3 Last dates updates
We are now ready to describe the update procedure of the real-time last event
date and the symbolic last event date. By definition, these dates must be updated
every time an event is fired.

At first sight, intuition may tell that these updates values are to be done
with the values of the real-time and the symbolic current date of that event
production. But this intuition is wrong. Indeed, by definition, the real-time
current date is changing all the time. It may even occur for instance that real-
time current date is bigger than real-time scheduled date since firing an event
also takes time. Even worse, it may even be the case that the real-time current
date values changes from the moment we want to read its value from the moment
we actually get its value.

It turns out that these updates are to be done with the values of the real-
time and symbolic scheduled dates of the event that has just been performed.
In other words, we rather perform the following update:

11

// right after firing an event
RealLastD = RealSchedD;
SymbLastD = SymbSchedD;

The update of the tempo, update that may be associated to the event fired, just
occurs right after the last dates updates :

// right after last dates updates
tempo = E.newTempo();

In order to increase the robustness of the code, this new tempo associated to
any event can be set, by default, to the current tempo value.

4.4 Robustness properties of the lazy time handling
This handling of symbolic and real-time dates have several properties that are
worth mentioning.

Time precision. With this architecture, at any time in the run of an inter-
active score, scheduled dates are computed from previous scheduled dates and
tempo. It follows that the time precision can just be measure, say just before
firing an event, as follows:

timePrecision =
RealCurrentD - RealSchedD;

which is positive when the firing of the event occurs after the scheduled date.
Experiments on a prototype implementation of that system in ObjectiveC

under MacOSX shows that this time precision just remains below a few ms
which is just enough for musical performance.

Robustness w.r.t. time drifting. When firing an event, if the time preci-
sion is too big then we may want to avoid the sound resulting from this event
to be produced. It turns out that this is easily implemented by just guarding
the actual firing of an event by the adequate condition upon the measured time
precision.

Doing so, it occurs that the resulting system has a remarquable robustness
property: if ever the system is paused (either intentionally or because of an
overload of the computer where it is running on) then, upon resume, the system
not only omits to play the outdated events, but moreover, since the scheduled
dates are computed data, the system runs forward through the score until it
reaches the correct symbolic date that correspond to the actual real-time date.

In other words, after a pause, the system resume as if no pause had ever
occurred ! In a live performance context, especially when real musicians keep on
playing while the system is paused, or when listener are dancing or even just
finger tapping, the fact that the system will resume on time is an especially
desirable property.

We can observe this property is not satisfied by standard streaming software
since, quite often, audio or video frames are not timed stamped.

12

5 Interactive music scores
At this point, the real-time kernel of the proposed system shall be clearly un-
derstood. As the input monitor and output controller are, at that level of
abstraction, rather simple, it remains to describe a litte bit further the way the
interactive music controller can be programmed.

In some sense, the interactive music controller is a symbolic execution layer
upon which runs an interactive music specification that is no longer seen as a
score to be followed. In our approach: an interactive score is defined as a timed
reactive program that produces on line the musical score, event after event, in
function of the history of the received input events.

In this section, we aim at describing a little further what are the charac-
teristic of such musical programs. We must say we are yet not interested in
defending such or such syntax for these programs. We are rather concerned by
the operational semantics features these programs may have.

5.1 Some basic musical programs
In order to give some more intuition on how such timed interactive program can
be defined, we describe below several typical (peaces of) musical scenarios and
we show how they can be encoded.

Immediate start. The first start scenario one can think of is when we want
the music to be started immediately upon activation of the system.

It occurs that this can be done by a controller that sets the initial next
scheduled event date to zero. Indeed, doing so, the real time kernel immediately
prompts the music controller for the first musical event to be performed.

Conditional start on input. On the opposite side, another start scenario
one can think of is when we want the music to be started by an external input
event that may occur after an unpredictable delay.

In turn, this can simply be done by a controller that sets the initial next
scheduled event date to infinity (+∞). This way, the system will necessarily
wait for an external event.

Observe that if such an infinite date value is not available, this can still
be done by just repeatedly producing a silent scheduled event until the first
external event is received.

End scenario. We may also ask how such a system can be stopped. Do our
architecture forces never ending musical pieces ?

Actually, the lazy loop makes it quite clear. The music controller stops the
system just by sending an undefined (or nil) next event date. In other words,
this undefined date just act as the final bar of an interactive score.

13

Play through metronome scenario with varying tempo. Last, a metronome
with play through capacity is also easily encoded as a music controller.

Indeed, repeatedly, the next scheduled event symbolic date is by default
increased at every beat by one : the metronome is expected to tick at every beat.
At any other date, upon reception of an external event E, the default behavior
described in Section 3 is executed, i.e. method updateReceiEvent(E,Now) just
send back the event E.

Doing so, a simple additional input interface with a tempo change cursor and
a start/stop button may complete the picture in order to produce the missing
start/stop and tempo changes events.

5.2 Music programs as symbolic timed automata
At any scheduled date, the interactive music controller essentially provides the
next scheduled event to be fired. Of course this event must be known before
being fired. However, until its firing date, any asynchronous external event may
occur that can change its characteristic. This means that this next scheduled
event must be computed right on time when needed to be fired: this computation
by need is precisely the definition of lazy computation.

But what are interactive scores ? The proposed architecture permits the
programming of timed controllers in an almost pure symbolic time setting. The
real time interpretation is solely governed by the evolving variable tempo. In-
deed, this tempo can be changed either by hand with adhoc input events or
programmatically by special control events from the symbolic controller (see
the end of Section 4.3).

This means that the interactive music controller behave like sort of a in-
put/output timed automata [3] interpreter. Reading a timed input event up-
dates the running automaton state (the automaton is reactive). After some
delay, depending on the active state, a default transition is always activated
sending back to the system a timed planned event (the automaton is time ac-
tive).

What exact type of timed automata are to be executed by the music con-
troller layer ? This is still a matter of research. Our proposal gives us some hint
about how to run an interactive score. What is an interactive score is still an
open question.

6 Conclusion
For an effective use of this proposed system we need now a deeper understanding
of how the music controller can be programmed. At the operational level, music
controllers look like timed automata. But this model, fairly low level, just seems
inadequate for interactive music composition.

There is still a need to develop a high level modular language for the descrip-
tion of interactive scores. This can be done pursuing the research that already

14

led to proposals such as iScore [2]. In particular, we may consider the following
three complementary research directions.

The first one concerns the capacity of such a score to describe rather sim-
ply musical anticipation which is one of the main conceptual tool for music
composition.

Already in the 80’s some proposals are made in this direction [?]. But
there are still many questions to be answered. Aside statistical analysis and
continuation techniques that are proposed by softwares such Continuator [15]
or OMax [8], we also believe that structural analysis of musical languages can
still be conducted. For instance, musical anticipation can be seen, at more
abstract level than music scores, as a generalization of musical anacrusis [10].

The second one concerns the various combination of interactive program one
may define. Sequential and parallel composition of pieces of interactive scores
are obviously needed. But what type of sequential composition ? What type
of parallel composition ? How input events are to be distributed among these
peaces of scores ? Shall they be duplicated ? Buffered ? A first study of
sequential composition, both in music modeling perspectives [10] or with purely
theoretical point view [11, 13] already shows that, together with anticipation
modeling, still a lot can be said.

The third one concerns hierarchical description of the music. It seems that
composers are in need of ways to think about their music at several abstraction
levels: say from elementary sounds up to concert via musical motifs, mouve-
ments, pieces, etc. . .

Hierarchical system modeling techniques have already been defined in various
areas in computer science. In particular, statecharts in UML [9] is based from
such hierarchical description. However, standard statecharts semantics may
need to be adapted for hierarchical interactive music descriptions. The music
produced by low level components cannot be ended any time a higher level
component changes of state.

These research tracks, on the musical side of our proposal, need also to be
combined with existing or still to be developed techniques and concepts for low
level audio stream analysis (as inputs) or audio stream production (as outputs).

Synchronizing on the fly two pieces of scores that result from real-time com-
putation that depends on the history of the global piece being performed is one
thing. Combining on the fly the associated audio streams that realize these
pieces of scores is another thing.

It seems that each operators defined on the symbolic side of music will need
its counterpart on the realization side.

In all cases, we expect that the present proposed system architecture, actu-
ally under development, will ease experimenting these proposals.

15

References
[1] Bresson J. Agon C. and Assayag G. The OM composer’s Book, Vol.1 &

Vol.2. Collection Musique/Sciences. Ircam/Delatour, 2006.

[2] Antoine Allombert, Myriam Desainte-Catherine, and Gérard Assayag. Is-
core: a system for writing interaction. In Third International Conference
on Digital Interactive Media in Entertainment and Arts (DIMEA 2008),
pages 360–367. ACM, 2008.

[3] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

[4] Alessandro Cipriani and Maurizio Giri. Electronic Music and Sound Design
- Theory and Practice with Max/Msp. Contemponet, 2010.

[5] Arshia Cont. Antescofo: Anticipatory synchronization and control of in-
teractive parameters in computer music. In International Computer Music
Conference (ICMC), 2008.

[6] P. Desain and H. Honing. Loco: a composition microworld in logo. Com-
puter Music Journal, 12(3):30–42, 1988.

[7] D. Fober, Y. Orlarey, and S. Letz. Faust architectures design and OSC
support. In 14th Int. Conference on Digital Audio Effects (DAFx-11), pages
231–216. IRCAM, 2011.

[8] M. Chemillier G. Assayag, G. Bloch. Omax-ofon. In Sound and Music
Computing (SMC) 2006, 2006.

[9] David Harel. Statecharts in the making: a personal account. In Proceedings
of the Third ACM SIGPLAN History of Programming Languages Confer-
ence (HOPL-III), San Diego, California, USA, 9-10 June 2007, pages 1–43.
ACM, 2007.

[10] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings,
11th Annual IEEE Symposium on Logic in Computer Science (LICS), pages
278–292. IEEE Computer Society, 1996.

[11] David Janin. Modélisation compositionnelle des structures rythmiques :
une exploration didactique. Technical Report RR-1455-11, LaBRI, Univer-
sité de Bordeaux, August 2011.

[12] David Janin. On languages of one-dimensional overlapping tiles. Technical
Report RR-1457-12, LaBRI, Université de Bordeaux, January 2012.

[13] David Janin. Quasi-recognizable vs MSO definable languages of one-
dimentionnal overlaping tiles. Technical Report RR-1458-12, LaBRI, Uni-
versité de Bordeaux, February 2012.

16

[14] S. Letz, Y. Orlarey, and D. Fober. Real-time composition in Elody. In
Proceedings of the International Computer Music Conference, pages 336–
339. ICMA, 2000.

[15] F. Pachet. The continuator: Musical interaction with style. In Proceedings
of ICMC, pages 211–218, Göteborg, Sweden, September 2002. ICMA. best
paper award.

17

