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Abstract

Designing a system that is both real-time and interactive, features
that are commonly encountered in computational music, is a challenging
task. It becomes even more difficult if we require the designed system to
be not only reliable and maintainable, but also generic in the underlying
interactive scores that are to be followed. In this paper, we aim at defining
such a generic architecture.

Our proposal is based on a lazy real-time kernel that handles, somehow
in a reactive way, both scheduled synchronous events and unpredictable
asynchronous inputs. This reactive approach contrasts with standard real-
time architectures where the real time kernel is built upon an active peri-
odic loop.

As a result, we do obtain a real-time architecture that is robust w.r.t.
occasional time drifts. More precisely, whenever forced out of time (say
with an external pause) the running system (upon resume) auto-stabilizes
back on time as if no time drift had ever occur.

More specifically oriented towards music, we also encode, at the archi-
tecture level a clear distinction between symbolic time (beats) and real-
time (seconds), each being related with the other via a possibly evolving
tempo.

Despite its simplicity, our proposal induces several architecture layers
: real-time, mixed and symbolic, that have clear and distinct functional
specifications. In particular, the symbolic musical control layer can just
be seen as an abstract interpreter of symbolic interactive scores. In a
research context where the notion of interactif scores itself still needs to
be better understood, this is a rather good news.
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1 Introduction

Designing a system that is both real-time and interactive, features that are
commonly encountered in computational music, is a challenging task.

At the lowest level, the real-time requirement induces an apriori synchronous
periodic slicing of time with a period defined by the expected time precision.
However, most often at such a small time scale step, no event hence no compu-
tation is needed.

On the opposite side, the interaction requirement calls for an asynchronous
aperiodic availability of maximum computational power. Indeed, each external
asynchronous event must be treated as efficiently as possible in order to increase
system reactivity.

One may also notice that the elapsed time between two external events, i.e.
some factor or fraction of the underlying musical tempo, is generally considerably
larger than the expected time precision.

In other words, at the lowest level, the real-time and the interactive require-
ments seem to induce opposite efficiency constraints at rather incomparable
time scales.

At a more abstract level, the impact of asynchronous real-time external
inputs on the symbolically synchronous output flows can be complex.

For instance, a change of rhythmic intention in the inputs may induces a
change of the underlying musical tempo. It follows that, while the rhythmic
vocabulary of the music is left unchanged, the real-time realization of the music
can just be different.

Shall these two levels of design be merged and the resulting system will have
a high probability to be erroneous, non modular, and hardly generic w.r.t. the
underlying interactive scores that are performed.

In other words, at the abstract control level, the real-time and the interaction
requirements call for a clear distinction between, on the one hand, interactive
music control that is associated to a symbolic time progression in the underlying
interactive score and, on the other hand, music production that is associated to
a real time clock.

Last, a basic robustness constraint in such a interactive system is that, dur-
ing any live performance, the music produced by the system as well as the music
produced by any real musician must remain on time. More precisely, if ever the
computer system (as any musician) turns out to be out of time at some point,
then it must auto-synchronize back with the musicians (or any other compo-
nents) as if nothing had happend. It follows that the system must somehow
auto-stabilize w.r.t. the symbolic progression in the score itself.

Main contribution

In this paper, along the research lines exposed in [7], we aim at proposing an
abstract generic system architecture for interactive real-time music performance
that will fulfill all the above requirements.
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Our proposal is based on a lazy real-time kernel that handles, somehow
in a reactive way, both scheduled synchronous events and unpredictable asyn-
chronous inputs. The resulting real-time and interactive architecture turns out
to be peculiarly robust w.r.t. occasional time drifts. Indeed, whenever forced
out of time, the running system auto-stabilizes on time as if no time drift had
ever occur.

More specifically oriented towards music, we also encode, at the architecture
level a clear distinction between symbolic time (beats) and real-time (seconds),
each being related with the other via a possibly evolving tempo.

As a consequence, despite its simplicity, this model induces several architec-
ture layers that have clear and distinct functional specifications. In particular,
the symbolic musical control layer can just be seen as an abstract interpreter
of any symbolic interactive scores, i.e. our system architecture is generic w.r.t.
interactive scores.

Related works and subject position in the field

These last decades have seen the development of many softwares for Computer
Assisted Music. This software are increasingly used either on stage for live
performances or within multimedia applications that provide thus richer and
richer interactive audio supports.

These softwares range from low level sound synthesis and control softwares
such as Faust [6] or Max/MSP [4], to high level composition assistants such
as Elody [14] or OpenMusic [1] to mention just a few of them. However, the
design and the execution of computer assisted interactive musics still remain
challenging tasks. The way low level (synchronous) sound synthesis is to be
combined with high level (asynchronous) inputs still remains to be understood
deeper.

It some sense, there is a increasing need of mixed systems that provide high
level interactive control structures for the description of potentially complex
interactions between lower level sound or music features. Most of such systems,
see [5] among others as an example, can then just be seen as sorts of domain
specific languages that are adapted to the design and to the implementation of
interactive scores.

Are these languages reaching a good abstraction level ? Do they induce
a rich enough notion of interactive scores ? The pragmatic reuses of existing
reliable low level softwares somehow mess up the picture. So far, there is yet
no appropriate expressiveness yardstick for interactive music description. Even
worse, temporal and spacial structurations of such interactive scores, highly
relevant in order to ease composers’ task when writing interactive scores, still
need to be better understood and developed.

In the present paper, while we do not know what exactly is an interactive
musical score, we still aim at understanding precisely where and how such in-
teractive scores can be played.

As a result, we obtain an abstract operational semantics for such scores that
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has some similarity with Alur and Dill timed automata [3]. This suggests that
some already known models, developed for years in the presumably distinct
application context of critical embedded systems, could be adapted efficiently
to the application context of interactive music. Even more, some static analysis
techniques could be used in order to help composers discovering design errors
in their compositions.

2 General architecture

The generic system architecture we propose is essentially composed of three
components’ layers with components connected as depicted in the following
picture.

Interactive Music Controller

Input Monitor Output Controller

Asynchronous inputs
Synchronous outputs

Next Events Queries
Next Events Records

Lazy Real-Time Kernel Symbolic Time

Real Time

The functionality of these components is described as follows.

The interactive music controller. This component acts as an interactive
partition follower; it receives from the real-time kernel musical events queries
with symbolic time stamps and produces back to the real-time kernel the records
of musical events to be performed at the next relevant symbolic time stamps.

Lazy real-time kernel. This component handles the lazy real-time loop de-
scribed below; functionally, it permits the communication between the symbolic
time layer defined by the music controller and the real time layer defined by
both the input monitor and the output controller;
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Input monitor / output controller. These components are in charge of
the communication between the interactive music system and the music itself.

(a) the input subcomponent receives asynchronous control input events from
musician instruments and transmit them with no delay to the real-time
kernel,

(b) the output subcomponent produces musical output events upon reception
of their symbolic descriptions from the real-time kernel.

3 Lazy real time loop

The lazy real time loop, that runs on the real-time kernel, is essentially in charge
of the reactive commutation between the music controller denoted M, the input
monitor denoted by I and the output controller denoted by O.

It is described below in an object-oriented like syntax.

Time * T = M.getNextEventDate();

While (T.isDefined()) do

{

Event * E = I.WaitEventUntil(T);

if (E.isDefined())

M.updateUponReceivedEvent(E,T);

else

{

E = M.getNextEventAtTime(T);

O.fireEventAtTime(E,T);

}

T = M.getNextEventDate();

}

This loop structure calls for some explanation. As opposed to standard
real time architectures, it is thus built upon a mechanism of a lazy reactive
evaluation schema triggered by two competing events:

(1) either an unpredictable asynchronous event E is received from the input
monitor I and in that case it is passed with no delay to the music controller
that handles it,

(2) or the scheduled next event date arrived and the new scheduled syn-
chronous event E, available from the music controller M, is passed to the
output controller to be fired.

The monitoring of these two events is then implemented via the call of the
method WaitEventUntil(T) on the input monitor I. It returns the undefined
object nil when the actual date is equal or greater than the scheduled date
encoded in T.
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One may also observe that when a new event is received, since it is passed
to the music controller, it can be updated, enriched or even just ignore. Indeed,
the musical consequence of the reception of an asynchronous event just depends
on the interactive score that is followed by the music controller.

For instance, as a particular case, upon reception of an event E, a copycat
scenario can take place. It is detailled as follows.

Right after being updated upon the reception of event E, the next sched-
uled date computed by the music controller M can be defined as the actual
reception date of event E. It follows that, executing the next the next loop,
the WaitEventUntil(T) performed by the input monitor I immediately returns
nil. Then the event to be fired computed by M.getNextEventAtTime(T) can
be defined as the previously received event E and it is then just fired by the
output controller O.

Here and in the remainder of the text, we speak about events, presumably
single, but it shall be clear that we rather deals with lists of events that are
received or produced at about the same time.

4 Real time vs symbolic time flows

As already mentioned, both input monitor and output controller handle real-
time dates while music controller handles symbolic dates. So far, in the lazy
real-time loop describe above we have just hidden how these real-time dates
are converted into symbolic dates and vice-versa, how these symbolic dates are
converted into real-time dates.

The class Time that has a single object T is in charge of such back and forth
conversions. It is described here and in the next section.

The first basic attributes of the class Time are:

(1) SymbCurrentD defined to be the symbolic current date, i.e. the (float)
number of symbolic time units (say beats) elapsed since the beginning of
the play till now,

(2) RealCurrentD defined to be the real-time current date, i.e. the (float)
number of real time units (say minutes) elapsed since the beginning of the
play till now,

(3) tempo defined to be the evolving speed of the symbolic date w.r.t. the
real-time date (say in beats per minute).

Observe that at any time, the value of the real-time current date is defined while
the value of the symbolic current date needs to be computed.

In the simplest case when the tempo is constant, the following invariant
property :

SymbCurrentD == tempo * RealCurrentD;
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shows how the symbolic current date can be computed from the (constant) value
of the tempo and the real-time current date.

In the general case, when the tempo is not constant, things are a little more
complex.

We first make the following hypothesis:

(H) Between any two successive events, be them received or planned
events, tempo is constant.

Is that hypothesis a constraint ? We can immediately observe that, provided
any change of tempo1 is modeled as a peculiar event, this hypothesis is just a
matter of modeling choice.

Under that simple hypothesis, managing the symbolic vs real-time conversion
can just be done by recording the last values of symbolic or real-time dates in
two extra attributes. More formally, these extra attributes of the class Time

are:

(4) SymbLastD defined to be the symbolic last event date,

(5) RealLastD defined to be the real-time last event date.

The more general invariant property associated with these new attributes:

SymbCurrentD == SymbLastD +

tempo * (RealCurrentD - RealLastD);

shows, in that general case, how the value of the symbolic current date can be
computed from the value of the real-time current date.

Observe that this equation is essentially needed when updating the music
controller state upon the reception of an event E. Indeed, controller M only
handles symbolic time. Converting the real-time date of reception of event E

into its corresponding symbolic time value is thus a necessity.

5 Scheduled dates and last dates updates

In the lazy loop described above there is yet another notion of time that needs
to be modeled : it is the scheduled symbolic and real-time dates of the next
planned events.

This is done by using two more attributes in the class Time that are:

(6) SymbSchedD defined to be the symbolic scheduled date of the next planned
events,

(7) RealSchedD defined to be the real-time scheduled date of the next planned
events.

1either from the input monitor or from the music controller
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These scheduled dates are related with last dates in the same way current dates
are related with last dates.

Observe however, that it is the symbolic scheduled date that is now first
provided by the music controller when computing the next event date. It follows
that we need now to compute real-time scheduled date from that symbolic value.

The relevant invariant property defined by:

// whenever needed

RealSchedD = RealLastD +

(SymbSchedD - SymbLastD)/tempo;

shows how the value of the real-time scheduled date can be computed from the
value of the symbolic scheduled date.

Observe that this equation is essentially needed when the input monitor
I is waiting for a input event up to some scheduled date T. Since monitor I

only handles real-time date the symbolic scheduled date provided by the music
controller will have to be converted.

Having said so, we are now ready to describe the update procedure of the
real-time and the symbolic last event dates. By definition, these dates must be
updated every time an event is fired.

At first sight, intuition may tell that these updates values are to be done
with the values of the real-time and the symbolic current date of that event
production. But that intuition is wrong. Indeed, by definition, the real-time
current date is changing all the time. It may even occur for instance that real-
time current date is bigger than real-time scheduled date since firing an event
also takes time. Even worse, it may even be the case that the real-time current
date values changes from the moment we want to read its value from the moment
we actually get its value.

It turns out that these updates are to be done with the values of the real-time
and symbolic scheduled dates of the event that has just been performed.

In other words, we rather perform the following update:

// right after firing an event

RealLastD = RealSchedD;

SymbLastD = SymbSchedD;

The update of the tempo that may be associated to the event fired just occurs
right after that update :

// and right after last date updates

tempo = E.newTempo();

Observe that, in order to increase the robustness of the code, this new tempo
associated to any event can be set, by default, to the current tempo value.
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6 Properties of the lazy time handling

This handling of symbolic and real-time dates have several properties that are
worth mentioning.

Time precision. With this architecture, at any time in the run of an inter-
active score, scheduled dates are computed from previous scheduled dates and
tempo. It follows that the time precision can just be measure, say just before
firing an event, as follows:

timePrecision =

RealCurrentD - RealSchedD;

which is positive when the firing of the event occurs after the scheduled date.
Experiments on a prototype implementation of that system in ObjectiveC

under MacOSX shows that this time precision just remains below a few ms
which is just enough for musical performance.

Robustness w.r.t. time drifting. When firing an event, if the time preci-
sion is too big then we may want to avoid the sound resulting from this event
to be produced. It turns out that this is easily implemented by just guarding
the actual firing of an event by the adequate condition upon the measured time
precision.

Doing so, it occurs that the resulting system has a remarquable robustness
property. If ever the system is paused (either intentionally or because of an
overload of the computer where it is running on) then, upon resume, the system
not only omits to play the outdated events, but moreover, since the scheduled
dates are computed data, the system runs forward through the score until it
reaches the correct symbolic date that correspond to the actual real-time date.
In other words, after a pause, the system resume as if no pause had ever occurred !

In a live performance context, especially when real musicians keep on playing
while the system is paused, or when listener are dancing or even just finger
tapping, the fact that the system will resume on time is an especially desirable
property.

We can observe this property is not satisfied by standard streaming software
since, quite often, audio or video frames are not timed stamped.

7 Interactive music controller

At this point, the real-time kernel of the proposed system shall be clearly un-
derstood. As the input monitor and output controller are, at that level of
abstraction, rather simple, it remains to describe a litte bit further the behavior
of the interactive music controller.

As described by the lazy real-time loop, at any (symbolic) time, the inter-
active music controller essentially provides the soonest next scheduled event.
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However, before that event is actually fired, any asynchronous external event
may occur possibly changing again that soonest next scheduled event.

In other words, this means that the interactive music controller is sort of a
timed automaton in the sense of Alur and Dill [3] that can typically read timed
input events (the controller is timed reactive) but where, moreover, a default
transition is always activated after some fixed elapsed time (the controller is
also timed active).

In order to give some more intuition on how such timed controllers can be
defined, we describe below several typical (peaces of) musical scenarios and we
show how they can be encoded.

Immediate start. The first start scenario one can think of is when we want
the music to be started immediately upon activation of the system.

It occurs that this can be done by a controller that sets the initial next
scheduled event date to zero. Indeed, doing so, the real time kernel immediately
prompts the music controller for the first musical event to be performed.

Conditional start on input. On the opposite side, another start scenario
one can think of is when we want the music to be started by an external input
event that may occur after an unpredictable delay.

In turn, this can simply be done by a controller that sets the initial next
scheduled event date to infinity (+∞). This way, the system will necessarily
wait for an external event.

Observe that if such an infinite date value is not available, this can still
be done by just repeatedly producing a silent scheduled event until the first
external event is received.

End scenario. We may also ask how such a system can be stopped. Do our
architecture forces never ending musical pieces ?

Actually, the lazy loop makes it quite clear. The music controller stops the
system just by sending an undefined (or nil) next event date. In other words,
this undefined date just act as the final bar of an interactive score.

Play through metronome scenario with varying tempo. Last, a metronome
with play through capacity is also easily encoded as a music controller.

Indeed, repeatedly, the next scheduled event symbolic date is by default
increased at every beat by one : the metronome is expected to tick at every
beats. At each beat date a metronome click is produced. At any other date,
upon reception of an external event E, the next beat scheduled date is saved, the
next scheduled date is reseted to the current time, the next event to be played
at current time is then set to be the received event E and is thus produced
immediately. After that event has been fired, the next beat scheduled date that
has been saved can thus be reactivated as such.
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Doing so, an simple additional input interface with a tempo change cur-
sor and a start/stop button may complete the picture in order to produce the
missing start/stop and tempo changes events.

8 Conclusion

As already mentioned in the text, a prototype of that system has already been
implemented in Objective C under Mac OSX. It must be added that a more
stable implementation is now currently under development in C++ for systems
as various as Unix, MacOSX or MS-Windows.

For an effective use of this proposed system we need now a deeper under-
standing of how the music controller can be programmed.

At the operational level, music controllers look like timed automata. But
this model, which is fairly low level, just seems inadequate for composition.
In other words, we still need to develop a high level modular language for the
description of interactive scores.

This can be done pursuing the research that already led to proposals such as
iScore [2]. In addition, we may consider two complementary research directions
for such a development.

The first one concerns the capacity of such a score to describe rather simply
musical anticipation. How received events can influence the next events to be
produced ? Aside statistical analysis and continuation techniques that are pro-
posed by software such Continuator[15] or OMax[8], we believe that this can also
be achieved by a careful encoding of what is known in music as anacrusis [10].

Indeed, any started anacrusis induces some musical coherence constraints
that somehow anticipate on the possible musical continuations. This approach
already led us to develop a model of overlapping tiles [11] that may well give a
rather versatile models of musical patterns.

The second one concerns hierarchization of the description of the music. It
seems that composers are in need of ways to think about their music at various
abstraction levels.

Hierarchical system modeling techniques are already defined in various ar-
eas such as, in particular, statecharts in UML [9]. It seems however that this
approach will need to be adapted for hierarchical interactive music descriptions.

More precisely, as suggested in a preliminary study [10], combining musi-
cal patterns with overlaps may lead to a rather robust and theoretically well-
founded formalism as already illustrated by a rather rich underlying algebraic
structure [13, 12].

However, we are still at an exploratory stage. This suggested model still
needs to be further developed for an effective use in a composition assistant.

In all case, we expect that the present proposed system architecture, that is
easily programable by any notion of interactive scores, will ease experimenting
these proposals.
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