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ABSTRACT: Photovoltaic (PV) installations are typically optimized on the basis of simplified considerations that 
draw design conclusions from insolation data and heavily-averaged consumption trends (e.g. using daily averages) 
and/or standard consumption profiles. The analysis proposed herein begins with the premise of working on averaged 
time series data using much narrower time intervals (e.g. 1-hour series). Design of both the installed PV power and 
storage capacity (lead-acid battery technology for purposes of this article, yet the underlying principle remains 
applicable to any other technology) is optimized by incorporating accumulator cycling aging. The energy 
management strategy that serves, among other things, to reduce cycling costs (sizable in the case of lead-acid 
batteries [1]) can in turn be optimized according to this design procedure. The solid correlation between design and 
energy management functions is also taken into account herein. The objectives (optimization criteria) considered in 
this approach are not limited to the classical notion of financial costs, but instead encompass environmental energy 
costs as well (Global Energy Requirement, or GER), in addition to the rate of consumer satisfaction (load shedding 
has been envisaged). 
Keywords: Battery storage and control, Lifetime simulation, PV system. 
 

 
1. INTRODUCTION 
 

Given the sizable initial outlay for an autonomous 
installation producing photovoltaic electricity, the design 
process must be highly exacting and detailed. In order to 
ensure thoroughness, all components placed in the power 
system would naturally have to be considered during this 
process. 

The present article proposes an original approach to 
optimizing the design of an autonomous photovoltaic 
energy production facility associated with a storage 
system. The objectives behind this approach were chosen 
so as to provide the design team not just with a unique 
optimal solution, but with a whole array of tradeoff 
configurations, each capable of standing out based on at 
least one criterion. In order to incite an effective 
convergence routine leading to compromise solutions, the 
objectives to be minimized must be contradictory. These 
solutions are all displayed in the form of a Pareto front. 

Through application of a technical-economic analysis 
tool previously developed and [2], we are now able to 
simulate, using data presumed to be deterministic, the 
electrical and energy operations of each installation 
component and then deduce total system costs as well as 
system capacity to meet consumer needs. 

Both the models and analysis tool generated for this 
purpose rely upon insolation profiles and hour-by-hour 
sampled consumption data over a 15-year period (other 
durations could obviously be studied as well). A timely 
and accurate analysis can thus be conducted of a 
complete production system: from the PV panels to the 
undulator, including the storage system. 

This "step-by-step" simulation allows computing 
energy flux as it varies with production/consumption 
cycles; moreover, it serves to refine the more typical 
design methods that use constant daily consumption 
patterns and overly-averaged renewable output. The 
battery state of charge (SOC), which determines the 
efficiency during charging or discharging, may be 
computed at any point in time. 

 
Figure 1: Method for a design and energy management 

optimization using life-cycle simulation:  
General overview 

 
2. MODELING SET-UP FOR THE INSTALLATION 

The installation considered comprises a variable 
number of photovoltaic panels, in association with 
DC/DC converters that enable adjusting the power 
generated (up to the MPPT operating threshold, i.e. the 
full extent of solar resources). 

All installation component models have been 
validated experimentally ([2], [3]). We decided to focus 
this part of the article on modeling accumulators for the 
purpose of explaining the role of management parameters 
within the optimization process. The model incorporates 
the influence of both battery charge state and 
instantaneous recharge power on accumulator efficiency. 
This specific feature in our set-up will allow determining 
the impact of management parameters on overall output 
(which also takes accumulator cycling into account). 

We have made use of the electric model from 
CIEMAT [4]. It proves difficult to overcome the 
Coulomb (electrical) orientation inherent in this model, 
which derives the battery charge state at each instant; the 
CIEMAT model however offers a good compromise 
between resolution speed and model detail. 
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This model has been based on the electrical diagram 
shown in Figure 2, which describes the battery with just 
two elements (whose characteristics depend on a whole 
set of parameters): voltage source, and internal resistance. 

SOC, Ibat
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nb.Eb

Ibat

SOC, Ibat

 
Figure 2: Equivalent electrical diagram of nb battery 

elements in series 
 

 
Figure 3: Computation algorithm for battery modeling 

Both the accumulator charge and discharge, as 
depicted in Figure 4, modify the battery state of charge, 
which in turn affects the level of efficiency (especially 
due to variations in internal resistance Ri). Figure 5 
illustrates this dependence of instantaneous accumulator 
efficiency on state of charge. 

 

 
Figure 4: Evolution in State Of Charge 

 
Figure 5: Evolution of storage efficiency during both the 
charge and discharge, as a function of the state of charge, 
at constant power (24 VRLA batteries – C10 = 325 Ah or 

Wbat = 15.6 kWh) 
 
Acting upon energy flux via the storage system, by 

means of adapting recharge power to the level of 
available energy, makes it possible to add one degree of 
freedom to the system. The optimization algorithm must 
then determine the most pertinent management strategy 
in terms of energy efficiency and accumulator aging, so 

as to minimize optimization objectives. This strategy 
corresponds to the choice of Ki factors that represent the 
ratio of recharge power to available power. In this case: 

 
Battery aging, also to be taken into account during 

simulations, constitutes a key factor when calculating the 
system's financial and environmental costs. The cycling 
of these accumulators, particularly if poorly managed, 
can wind up as the installation's primary investment 
expense. Manufacturers' data have guided us in modeling 
accumulator aging by associating the life cycle duration 
with a constant quantity of total exchanged energy, i.e.: 

(Number of cycles * Depth of Discharge = Cste) 
Cycling 2,700 kWh for Wbat = 1 kWh installed 

Although this cycling-based life cycle modeling has 
been simplified, it still yields a reasonable approximation 
for this factor. 

Figure 6 shows, given a set of 4 Ki parameters, the 
normalized battery charge command for all available 
power during the cycle. 

 
Figure 6: Management parameters: 4 discrete values - 

A configuration example 

Figure 7 shows the result derived from the principle 
of managing charge power (negative) throughout the life 
cycle. The charging power command (negative) is 
smaller than available power: the Ki coefficients (which 
correspond with a given available power range) serve to 
attenuate this power in establishing the set value. Each 
coefficient would then correspond with an available 
power threshold and is optimized over the life cycle like 
other parameters (PPV and Wbat). 

 
Figure 7: Managing battery charge power during the 

simulation, for different levels of available power 
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3. LIFE CYCLE-BASED SIMULATION 
 

The models featured herein (electrical, energy and 
system aging - emphasis on batteries) are simulated over 
a 15-year life cycle (131,496 hours). The deterministic 
simulation thus imposes generating a database on 
insolation and consumption over the entire simulation 
period. Consumption data are based on actual trends from 
French household measurements, not including hot water 
and heating usage. Insolation values have been drawn 
from a Météo-France meteorological recording of solar 
radiation near a laboratory site in Rennes. Figure 8 shows 
the shapes of the hourly input profiles. To enhance 
clarity, these profiles have been averaged over daily time 
intervals to generate annual profiles and, conversely, 
averaged over the year to yield the daily profiles. 

 
Figure 8: Consumption and solar resource profiles: 

15 years or 131,496 hours 

Beyond the "actual" consumption profile based on 
actual trends from French household measurements, we 
examined the results from an optimization conducted on 
various consumption profiles: at a constant level of 
service, i.e. for the same quantity of electrical energy 
supplied to the consumer (82 MWh over 15 years), both 
the installation cost and optimal parameters will depend 
on how the energy is getting consumed, and in particular 
on its correlation with electrical energy produced by the 
PV panels. In all, three profiles were studied: the original 
composed using on-site measurements; the second simply 
held constant, with the power consumed at any instant 
corresponding to average power; and the third in phase 
with solar production. 

 
 

4. THE MULTI-OBJECTIVE OPTIMIZATION 
STRATEGY 

 
4.1 Introducing the Global Energy Requirement (GER) 

Minimizing financial costs most certainly represents 
the primary objective behind any photovoltaic installation 
design method. Within a context dictated however by 
environmental concerns and in the presence of strong 
disparities in installation financing and subsidization, 
environmental costs may in some instances serve as a 
better indication for drawing comparisons between 
installations, based on intrinsic technological criteria. We 
used data from life cycle analyses in order to determine, 
for illustration purposes, the values of equivalent primary 
energy necessary for the installation over its entire life 

cycle, i.e. "from cradle to grave". These data were drawn 
from research conducted in [5]; cost data may be further 
refined and has been used herein strictly for methodology 
validation. 

 
Table I: Global Energy Requirement data 

Total Energy  Primary fossil fuel 
Requirement  equivalent 
Photovoltaic panels (for 1 Wp)  12.5 kWhth 
VRLA batteries (for 1 kWh)  422 kWhth 
DC/AC converter (for 1 W)  0.833 kWhth 
 
 The kWhth unit is basically used to relate costs. It 
represents the primary fossil fuel equivalent energy used 
to produce and maintain a system. In order to compare 
the system costs and service, the following equivalence 
may be used: 1 kWhth ↔ 0.4 kWhel, which implies that the 
global efficiency of electricity production is 40%. 
 
4.2 Second objective: Dissatisfaction ratio (%) 

In order to provide a set of tradeoff solutions (called 
"Pareto solutions"), we introduce as a second 
(minimization) objective the consumer's dissatisfaction 
ratio, which consists of the proportion of total energy 
(82 MWh) demanded by the consumer that is unable to 
be supplied. The cumulative load-shedding time has been 
limited, through adding a constraint, to 10% of total time. 
This objective enables studying the influence of 
consumer behavior on system design and, over the long 
run, identifying specific actions taken on the 
consumption profile that could lower system costs. 

The formation of a Pareto front during convergence 
of the genetic NSGA-II algorithm [6] serves to 
characterize a dichotomy between minimized overall 
system costs and fulfillment of consumer needs. 
 
 
5. RESULTS 
 
5.1 Influence of consumption profile 

It obviously appears that correlations between 
consumption and production will give rise to a key design 
factor. Acting upon the consumption profile may even 
further reduce costs and improve the satisfaction of 
consumer needs. 

 
Figure 9: Definition of consumption profiles used for 

optimization and solar radiation:  
The total energy consumed over the cycle (15 years) is 

the same (82 MWh) in all profiles. 
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Figure 10 indicates the optimization results obtained 
for three types of consumption profiles (Figure 9): 
• constant consumption, 
• consumption proportional to solar production, and 
• "actual" consumption established from on-site 

measurements (see Figure 8). 
 These three profiles (Figure 9) all consume the same 
amount of energy accumulated over the cycle (82 MWh). 

Figure 11 provides an example of optimization 
parameter distribution within the constant consumption 
profile, which consists of the peak photovoltaic power 
and maximum storage capacity of each optimal 
configuration. 

Figure 10 clearly shows that the Pareto front is 
"compressed" in the case where the consumption profile 
is positioned in phase with production (i.e. the "solar 
profile"); in this case, consumer load-shedding will only 
be due to poor solar panel sizing. With this specific 
consumption profile, an optimal Pareto front boundary is 
obtained: regardless of the selected consumption profile, 
no single profile will lead to a "best solution". 

On the other hand, in the case of a sizable difference 
between production and consumption profiles, it can be 
observed that even the slightest consumer load-shedding 
considerably decreases the quantity of batteries / solar 
panels installed. The quantity of batteries installed 
constitutes the parameter that initially enables heavily 
reducing costs, while guaranteeing minimum load-
shedding for the consumer. 

 
Figure 10: 3 optimization results for 3 consumption 

profiles: The same total energy is being supplied to the 
consumer (82 MWhth), yet the curve has been modified. 

 

 
Figure 11: Main Pareto solution parameters (PPV and 

battery capacity): Distribution along an increasing 
dissatisfaction ratio, in the constant consumption case 

5.2 Influence of energy management parameters 
The optimization results presented in Figure 12, as 

obtained using 0, 1 and 5 optimized energy management 
parameters, show that the influence of these parameters 
ultimately proves to be quite small with respect to the 
final optimization result. 

 
Figure 12: Optimization results for three different types 

of optimization (constant consumption profile): 0, 1 and 5 
management parameters optimized 

Their utility principally lies in providing insight when 
several storage and/or production means are combined 
(network connection would also be included herein). This 
feature is primarily due to the fact that battery recharge 
power is naturally limited by the gassing phenomenon 
(see Figure 13), which "naturally" clips the recharge 
power, even if the set point remains very high. Under this 
configuration therefore, managing just the recharge set 
point provides for automatic adjustment. The 
optimization procedure however may identify different 
solutions in the case where one degree of freedom gets 
added: network connection, additional storage, etc. 

 

 
Figure 13: Gassing limit for battery voltage:  

Vbat = Vgassing if recharging power is too high 
(dependent on SOC = [0.3:0.03:0.9]) 
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6. CONCLUSION 
 

For the purpose of optimizing autonomous 
photovoltaic electricity production systems, we have 
implemented a multi-objective optimization tool that 
yields, for any given situation, a set of optimal solutions. 
Simulations were run over long life cycles (15 years) in 
order to effectively incorporate cycling aging of the 
accumulator used. 

Moreover, system design was performed by 
optimizing not just the standard parameters PPV and Wbat, 
but the battery recharge management as well. Three 
consumption profiles were also analyzed as part of this 
research effort. 

Optimization results, obtained using the evolutionary 
(NSGA-II) algorithm and displayed in the form of Pareto 
fronts, have highlighted the following: 
• The optimized battery recharge management 

strategy does not appear extremely relevant 
within the simplified configuration examined 
herein (PV production alone on an isolated site), 
in part due to the forced recharge power limitation 
as a result of the gassing phenomenon. 

• Consumer behavior (given the same level of 
energy supplied) exerts considerable influence on 
installation design. 

Furthermore, the assignment of optimization 
objectives has allowed identifying dichotomous 
objectives that we found pertinent to the problem of 
improving overall energy efficiency, especially as regards 
the rate of satisfying consumer energy needs. 

It should be pointed out that this article has purposely 
been confined to optimizing a photovoltaic installation at 
an isolated site so as to focus attention on the method 
employed. This "life-cycle" design tool however may be 
applied to more complex configurations; the utility of 
these techniques in managing instantaneous energy fluxes 
may be enhanced for multi-source systems or grid-
connected systems. 
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