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This paper describes an original method for the elaboration of control laws for Switched Reluctance Motor for high speed operation. In this case, the control optimization relies on the choice of optimal turn-on and turn-off angles to ensure, in general, high global efficiency, in classical supply mode with full wave voltage. Then, after showing the influence of number of turns, a new supply mode called the continuous mode is described. This mode, used with a higher number of turns, allows to reduce the inverter current rating and hence silicon requirements without compromising performance at high speed. This make SRM competitive compared to other technologies (synchronous and induction motors). The simulation results for a 12/8 SRM are presented and compared to those for an induction motor.

Introduction

he switched reluctance motors (SRM) are being used in a growing number of applications, which range from mass-production low cost-drives [START_REF] Long | Design of a Switched Reluctance Machine for Extended Speed Operation[END_REF][START_REF] Richter | Switched Reluctance Machines for high Performance Operations in Harsh Environment-A Review Paper[END_REF] (domestic appliances, automotive industry…) to high efficiency drives [START_REF] Radun | High Power Density Switched Reluctance Motor Drive for Aerospace Applications[END_REF][START_REF] Dragu | Optimal Firing Angles Control For Four-Quadrant Operation Of AN 8/6 SRM[END_REF] (aeronautics). They offer attractive characteristics, from the point of view of manufacturing cost and performances including:

-Simple construction -Robust structure -Low cost Indeed, stator and rotor have salient poles and are constituted solely by a stack of laminations (Fig. 1a). Rotor does not contain conductors or magnet, which allows working in extreme atmospheres (high and low temperatures) and achieving very high speeds. Furthermore, if well designed and controlled, this motor works well in flux weakening operation [START_REF] Dhifaoui | Maximum Power Limits in the Field-Weakening Mode of Doubly Salient Variable Reluctance Motors[END_REF], which is particularly interesting in automotive applications. The SRM converter used for this study is an asymmetrical half-bridge converter (Fig. 1b). SRM controllers are designed to ensure the lowest torque ripple (especially at low speed), maximum efficiency, minimum acoustic noise… These objectives can be targeted together or individually depending on the application. The first part of the paper contains a description of a three-phase 12/8 SRM motor and its associated control. It includes the optimized parameters to ensure maximum efficiency for motoring operation at high speed. These parameters were obtained by using a parametric method elaborated with the aim of obtaining smooth control maps, which are required to T achieve a robust digital control. The second part shows the influence of the number of turns on the performances of the machine and describes a new control mode called the continuous mode [START_REF] Long | Design of a Switched Reluctance Machine for Extended Speed Operation[END_REF]. This mode has the advantage to allow reducing number of turns without compromising performances at high speed. 

Actuator Control

The main characteristics of the 12/8 SRM and its power converter used in this application are given in Table 1: 

A. Computation of performances

The phase voltage equation for a switched reluctance machine is:

dt d Ri V φ + = (1)
Where R is the phase resistance, φ the flux linkage of phase and i the phase current φ is a function of phase current and rotor position:

dt d dt di i Ri V θ θ ∂ φ ∂ + ∂ φ ∂ + = (2)
The co-energy is calculated from the flux linking the coil:

∫ φ = i 0 m di . ' W (3)
The single phase torque T 1 (i, θ), which give the instantaneous torque value for any given instantaneous current and rotor position, is calculated by deriving the co-energy :

θ ∂ θ ∂ = θ ∂ θ ∂ = ) , i ( ' W . N ) , i ( ' W T m 1 m r m m 1 m 1 (4)
Where θ m is the mechanical rotor position and θ is the electrical rotor position. Neglecting magnetic coupling between phases, global polyphase torque is obtained by:

∑ = = q 1 j j T T
Where q is the number of phases The network of flux versus current and rotor position curves are computed by finite element analysis. The network of torque versus current and rotor position are calculated by deriving the co-energy. Fig. 2 shows the curves of flux and torque versus current and rotor position curves for the studied SRM. θp, called conduction (or magnetization) angle, corresponds to the duration of the magnetization of the phase. θ p = θ off -θ on where θ off is the turn-off angle.

Classically, two control modes are used: Below the base speed, the back-emf is lower than DC bus voltage. From equation (2), it can be seen that when the converter switches are turned on or off to energize or deenergize the phase, the phase current will rise or drop accordingly. The phase current amplitude can be regulated from 0 to the rated value by turning on or off the switches. Maximal torque is available in this case when the phase is turned on at unaligned position and turned off at the aligned position and the phase current is regulated at the rated value by hysteresis or PWM control. The typical waveforms of the phase current and voltage of the SRM below base speed are shown in Fig. 4. Note that positive voltage is applied to the coil during the rise of inductance in motoring mode and during the decrease of inductance in generating mode. The phase current amplitude and the switching angles adjust the operating point. Above the base speed, the back-emf is higher than the DC-Bus voltage. At the rotor position at which the phase has a positive inductance slope with respect to the rotor position, the phase current may drop even if the switches of the power inverter are turned on. The phase current is limited by the back EMF. In order to impose high current, hence, produce high motoring torque in SRM, the phase is usually excited ahead of the unaligned position and the turn-on position is gradually advanced as the rotor speed increases. Since the back-emf increases as the rotor speed, the phase current, hence the torque, drops as the rotor speed increases. If the turn-on position is advanced to obtain as high as possible current in the SRM phase, the maximum SRM torque almost drops as a linear function of the reciprocal of the rotor speed. The typical waveforms of the current phase and voltage at high speed operation are depicted in Fig. 5. The average electromagnetic torque (T) is:

π = 2 Nr . W . q T (5)
Where q is the number of phases, W the converted energy per stroke and Nr the  number of rotor poles.

The network of flux versus current and rotor position is computed by finite element method [START_REF] Besbes | MRVSIM, Simulation software for sizing and preliminary design of doubly salient switched reluctance machines[END_REF]. Then, the maximum power and torque-speed curves at a 222 V DC bus voltage, 150 A maximum phase-current and 48 turns per pole are plotted in Fig. 7. These curves are obtained by magnetizing a phase as long as possible, while ensuring its complete demagnetization, and by optimizing the turn-on angle θ on using the simplex method. In other words, the conduction angle is fixed at 180° electrical and we seek the optimal turn-on angle to obtain the maximum torque.

B. Control laws at high speed

At high speed, the machine is supplied by a full wave voltage (Fig. 5). The only control parameters of the machine are the switching angles (θ on and θ p ). These angles can be optimized according to various criteria [START_REF] Miller | Electronic control of switched reluctance machines[END_REF][START_REF] Stephenson | Control of switched reluctance machines[END_REF]: reducing torque ripple, maximizing global efficiency, etc… Here, the criterion retained in the high speed range is the highest global efficiency of the machine-inverter system. The optimization method is based on a parametric study, which consists in covering, for a given speed, the entire (θ on , θ p ) plane by varying θ p from 40° to 180° and θ on from -120° to 20°. Thus, for each operating point characterized by a pair of values (θ on , θ p ), several characteristic values are saved: torque, efficiency, torque ripple, peak current etc The curve of desired torque is extracted from the equipotential torque curves on Fig. 8. It shows the pairs (θ on , θ p ) that allow achieving it. The pair that gives maximum efficiency is extracted from the curve of desired torque (that can be another constraint). As shown in Fig. 11 and Fig. 12, the optimal control angles vary in a monotonous way with respect to torque and speed. This monotony allows a simple implementation into an embedded numerical control. 

Continuous mode

In classical discontinous mode, the trade-off between torque at low speed and power at high speed is shown in Fig. 13 with respect to number of turns. A gain in torque at low speeds is achieved with a high number of turns for a constant current. However, for high speeds, increasing the number of turns decreases the power while respecting the constraints related to the supply voltage. This drawback can be avoided with continuous mode.

The energy resulting from electromagnetic conversion is proportional to the area delimited by the current-flux trajectory during one electrical period. As shown in Fig. 6a the potential energy, which is delimited by aligned and unaligned position trajectories and the maximum phase current I lim is totally used at low speed. However, as illustrated on Fig. 6b, at high speed, the actual coenergy is much lower than the potential value. To better use the potential coenergy given by a certain quantity of iron and a given maximal inverter current, it is desirable to increase the flux by extending the duration of the magnetisation phase. In that case the risk is a loss of current control: the starting current increases by each period until the inverter limits the current or shuts down. To avoid any instability caused by a divergence of flux and current, it is mandatory to use a regulation loop. An example of torque control loop is illustrated in Fig. 14. The magnetization flux during the conduction phase (θ p ) will exceed the de-magnetization flux, between turn-off and phase current actually vanishing. Consequently, the flux-linkage and current will be continuous, meaning they will not fall to zero. This is called the continuous mode. Fig. 16 shows the new maximum power-speed curve using a continuous mode at high speed with an rms-current limit. In this specific case, the continuous mode increases power and torque by a factor of 2 or more at high speed and leads to a very significant improvement in performance. A slight increase in iron losses has been detected but it does not affect significantly the efficiency of the system. It is important to point out that this new control mode can be used with a high number of turns to reduce the inverter current rating and hence silicon requirements without compromising performance at high speed obtained by discoutinuous (classical) mode using a lower number of turns. The trade-off between torque at low speed and power at high speed depicted on Fig. 13 disappears by using this mode.

Competitiveness of the SRM

The new control mode explained above makes SRM competitive compared to other technologies such as induction or synchronous motors for all applications where power is needed over a wide speed range.

In order to demonstrate this competitiveness, a comparison of the performances and efficiency between an SRM and an induction motor (Fig. 17) has been conducted. The two compared motors have the same external dimensions and the same DC bus voltage and maximum RMS current phase.

In automotive applications like electric traction, it is the low speed peak torque requirement which dictates the rating of power semiconductors and therefore the cost of the inverter [START_REF] Inderka | Control of Switched Reluctance Drives for Electric Vehicle Applications[END_REF]. The two motors are optimized to achieve the same torque at low speed at about 130N.m Figure 17.: Cross section of induction motor used for comparison with SRM

The main characteristics of the 12/8 SRM and the induction motor used for comparison are given in Table 2: Figure 18 plots the torque-speed envelope of the induction motor and the SRM with and without continuous mode control. The performances of induction motor and SRM with classic mode are nearly the same. The use of the continuous mode in SRM shows the benefits in torque and power at high speed. Moreover, it can be used with a high number of turns to achieve the required torque at low speed. Therefore it allows reducing the inverter current rating and hence silicon requirements without compromising performance at high speed.

For a low speed peak torque requirement, in the case of induction motor, the increase in power at high speed requires an increase in voltage supply. However, in the case of SRM, the increase in power at high speed can be achieved with the continuous mode, and hence without any increase in voltage supply. Despites the fact that SRM has the advantage of the low cost fabrication and the high performances in case of use of continuous mode, it is obvious that SRM has the disadvantage of generating a large torque ripple especially at low speed which leads to vibration and acoustic noise compared to induction motors. Moreover, the control of SRM is quite challenging compared to sine-wave motors, and it needs 6 cables instead of 3 to be supplied. Much work is under way to solve problems of torque ripple, noise and vibration [10..16]. The SRM is receiving significant attention from the industry especially in the high speed range.

Conclusion

In this paper, an optimal control of parameters at high speed using a parametric method is presented. This method, based on preliminary parametric studies, has the advantage to be exhaustive, to yield monotonous robust maps that can be easily implemented in digital control. In addition, the application of continuous mode at high speed has shown a very significant increase in torque and power at high speed without compromising the efficiency of the system or the rating of the inverter. This makes SRM more competitive in variable speed application compared to other technologies. A comparison of SRM and an induction motor is proposed to prove the competitiveness of the SRM.
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 56 Figure 5. Phase current and voltage phase versus rotor position at high speed In this mode of operation, called single-pulse mode, the operating point is adjusted by the
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 7 Figure 7. : Maximum power and torque versus speed in discontinuous mode
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 8 Figure 8.: Equipotential of torque according to θ p and ψ at 9000 rpm To illustrate an example, Fig.9 shows the operating point which has the highest efficiency at 9000 rpm and 8 N.m.

Figure 9 .Figure 10
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 11 Figure 11. : Optimized values of θ on versus torque for different speeds
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 13 Figure 13.: Maximum power (a) and torque (b) versus speed for different number of turns in conventional discontinues mode
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 14 Figure 14. Example of torque control closed loop This leads to a progressive growth of energy conversion cycle as shown on Fig.15.
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 16 Figure 16. : Torque-speed (a) and Power-speed (b) envelope using discontinuous and continuous modes
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 18 Figure 18.: Comparison of torque (a) and power (b) performance between induction motor and SRM
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 19 Figure 19.: Comparison of efficiency for induction motor and SRM
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	Specifications	SRM	Induction Motor
	Outer diameter	180 mm	180 mm
	Active length	180 mm	180 mm
	Air-gap width	0.5 mm	0.5 mm
	DC bus Voltage	222V	222V
	Max RMS current	100A	100A
	Turns per pole	68	11