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RATIONAL SELF-AFFINE TILES

WOLFGANG STEINER AND JÖRG M. THUSWALDNER

Dedicated to Professor Shigeki Akiyama on the occasion of his 50th birthday

Abstract. An integral self-affine tile is the solution of a set equationAT =
⋃

d∈D
(T +d),

where A is an n× n integer matrix and D is a finite subset of Zn. In the recent decades,
these objects and the induced tilings have been studied systematically. We extend this
theory to matrices A ∈ Qn×n. We define rational self-affine tiles as compact subsets
of the open subring Rn × ∏

p
Kp of the adèle ring AK , where the factors of the (finite)

product are certain p-adic completions of a number field K that is defined in terms of
the characteristic polynomial of A. Employing methods from classical algebraic number
theory, Fourier analysis in number fields, and results on zero sets of transfer operators,
we establish a general tiling theorem for these tiles.

We also associate a second kind of tiles with a rational matrix. These tiles are defined
as the intersection of a (translation of a) rational self-affine tile with Rn ×∏

p
{0} ≃ Rn.

Although these intersection tiles have a complicated structure and are no longer self-affine,
we are able to prove a tiling theorem for these tiles as well. For particular choices of the
digit set D, intersection tiles are instances of tiles defined in terms of shift radix systems
and canonical number systems. This enables us to gain new results for tilings associated
with numeration systems.

1. Introduction

Let A ∈ Rn×n be a real matrix which is expanding, i.e., all its eigenvalues are outside the
unit circle, and let D ⊂ Rn be a finite “digit set”. Then, according to the theory of iterated
function systems (see e.g. Hutchinson [Hut81]), there is a unique non-empty compact set
T = T (A,D) ⊂ Rn satisfying the set equation

A T =
⋃

d∈D
(T + d) .

If T has positive Lebesgue measure, it is called a self-affine tile. The investigation of these
objects began with the work of Thurston [Thu89] and Kenyon [Ken92]. The foundations
of a systematic theory of self-affine tiles were provided by Gröchenig and Haas [GH94] as
well as Lagarias and Wang [LW96a, LW96b, LW96c, LW97] in the middle of the 1990s. Up
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to now, various properties of self-affine tiles have been investigated. For instance, there are
results on geometric [KLSW99, SW99, DKV00] and topological [KL00, BW01, AT04, LL07]
aspects as well as characterizations of “digit sets” D that provide a self-affine tile for a
given matrix A; see for instance [Odl78, LW96a, LR03, LLR13].

An important feature of self-affine tiles are their remarkable tiling properties. Particu-
larly nice tiling properties come up if A is an integer matrix and D is a subset of Zn. In
this case, the tile T (A,D) is called integral self-affine tile. The starting point for our paper
is the following result of Lagarias and Wang [LW97] on tiling properties of such tiles.

Let A be an expanding integer matrix with irreducible characteristic polynomial and
D be a complete set of coset representatives of the group Zn/AZn. Denote by Z〈A,D〉
the smallest A-invariant sublattice of Zn containing the difference set D − D. Then T =
T (A,D) induces a lattice tiling of the space Rn with respect to Z〈A,D〉; see [LW97,
Corollary 6.2 and Lemma 2.1]. In particular, this means that

⋃

z∈Z〈A,D〉
(T + z) = Rn with µ

(
(T + z) ∩ (T + z′)

)
= 0 for all z, z′ ∈ Z〈A,D〉, z 6= z′,

where µ denotes the (n-dimensional) Lebesgue measure.
We mention that tiling questions are of interest also in more general contexts. For

instance, the tiling problem is of great interest for self-affine tiles that are defined as
solutions of graph-directed systems (see for instance [KV98, GHR99, LW03, IR06, KS10]).
However, the results are less complete here than in the above setting. Indeed, the quest for
tiling theorems in the graph-directed case includes the Pisot conjecture which states that
each Rauzy fractal associated with an irreducible unit Pisot substitution induces a tiling;
see e.g. [BK06, IR06].

The first aim of the present paper is to extend the tiling theorem of Lagarias and Wang in
another direction. We shall define self-affine tiles (and tilings) associated with an expanding
matrix A ∈ Qn×n with irreducible characteristic polynomial, and develop a tiling theory
for these tiles.

The first kind of tiles we are dealing with are self-affine tiles defined in spaces of the
shape Rn ×∏

p Kp where the factors of the (finite) product are certain p-adic completions
of a number field K that is defined in terms of the characteristic polynomial of A. We call
these tiles rational self-affine tiles and establish fundamental properties of these objects in
Theorem 1. Using characters of the adèle ring AK of K and Fourier analysis on the locally
compact Abelian group Rn ×∏

p Kp, we establish a Fourier analytic tiling criterion in the

spirit of [GH94, Proposition 5.3] for these tiles; see Proposition 4.8. This criterion is then
used to establish a tiling theorem (stated as Theorem 2) for rational self-affine tiles in the
flavor of the one by Lagarias and Wang mentioned above. To this matter, as in [LW97],
we have to derive properties of the zero set of eigenfunctions of a certain transfer operator
related to the tile under consideration. To achieve this, we use methods from classical
algebraic number theory. One of the difficulties in the proof comes from the fact that
Lagarias and Wang use a result on zero sets of transfer operators due to Cerveau, Conze,
and Raugi [CCR96]. As this result seems to have no analogue in spaces containing p-adic
factors, we have to adapt our setting to make it applicable in its original form.
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It turns out that it is more natural to define a rational self-affine tile in terms of an
expanding algebraic number α rather than an expanding matrix A ∈ Qn×n. It will become
apparent in Section 2 that both formulations lead to the same objects. We mention here
that in the context of Rauzy fractals, tilings with p-adic factors have been investigated in
[Sie03, ABBS08]. However, in this setting up to now no general tiling theorems are known.

Interestingly, it is possible to associate a second kind of tiles with a rational matrix.
These tiles, which turn out to be “slices” of a single rational self-affine tile (see Proposi-
tion 6.1) are defined as the intersection of a rational self-affine tile (as well as its translates)
with Rn ×∏

p{0}. As this space is obviously isomorphic to Rn, these intersections can be
regarded as subsets of the Euclidean space. In general, intersections of fractals with sub-
spaces are hard to handle. In our context, the self-affine structure is lost and the tiles
even cannot be described by a graph-directed system. Nevertheless, we are able to show
that these tiles give rise to tilings of Rn (Theorem 3). In proving this, we also show that
the boundary of these tiles has zero n-dimensional Lebesgue measure. Note that the tiles
forming such a tiling may have infinitely many different shapes and not each of them has
to be equal to the closure of its interior (see Example 2.1). Nevertheless, we exhibit certain
“almost periodicity” properties of these tilings for a large class of digit sets (Theorem 4).

These “intersective” tilings are of special interest as they are related to so-called shift
radix systems (SRS for short), which form common generalizations of several kinds of
numeration systems like canonical number systems and beta numeration; see [ABB+05].
Shift radix systems are dynamical systems depending on a parameter r ∈ Rn, defined by
τr : Zn → Zn, z = (z1, . . . , zn) 7→ (z2, . . . , zn,−⌊rz⌋), where rz is the scalar product. We
can write τr(z) = Mr z + (0, . . . , 0, rz− ⌊rz⌋), where Mr is the companion matrix to the
vector r. SRS exhibit interesting properties when the spectral radius ̺(Mr) of Mr is less
than 1, i.e., if r is contained in the so-called Schur-Cohn region En = {r ∈ Rn : ̺(Mr) < 1};
see [Sch18]. Recently, SRS tiles associated with r ∈ En were defined in [BSS+11] by the
Hausdorff limit

(1.1) Tr(z) = Lim
k→∞

Mk
r τ

−k
r (z) (z ∈ Zn) .

It is conjectured that the collection Cr = {Tr(z) : z ∈ Zn} forms a tiling of Rn for every
parameter r ∈ En. As Cr is known to be the collection of Rauzy fractals associated with
beta numeration for special choices of r, this tiling conjecture includes the Pisot conjecture
for beta numeration asserting that the Rauzy fractals associated with each Pisot unit β
form a tiling, see e.g. [Aki02, BS05].

It turns out that for certain choices of (A,D) the above-mentioned intersections of
rational self-affine tiles are just affine images of SRS tiles. Indeed, using our tiling theorem
we are able to provide a dense subset of parameters r ∈ En such that Cr forms a tiling
of Rn, see Theorem 5. This might be of interest also for the Pisot conjecture, as our tiling
parameters are arbitrarily close to each parameter corresponding to beta numeration. For
the parameters associated to beta numeration so far it is only known that they form a
multiple tiling, see [BS05, KS12]. As our results show that there exists no open subset
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of En consisting only of “non-tiling parameters”, they indicate that such parameters can
only occur due to “algebraic reasons”.

Remark 1.1. In the framework of symmetric beta numeration, parameters giving rise to
double tilings exist (see [KS12]). Similarly to the classical case, symmetric beta numeration
is a special instance of so-called symmetric SRS, a variant of SRS that has been introduced
in [AS07]. The methods developed in Section 6 can be carried over to exhibit a dense set
of symmetric SRS parameters that give rise to tilings. This indicates that the non-tiling
parameters are exceptional in this case as well.

Remark 1.2. Lagarias and Wang also considered integer matrices with reducible character-
istic polynomial. In this case, there exist situations where the tiling property fails. These
situations were characterized in [LW97]. By generalizing our methods, it is also possible
to set up a tiling theory for matrices A ∈ Qn×n with reducible characteristic polynomial.
As one has to keep track of the reducible factors and single out nontrivial Jordan blocks
when defining the representation space Kα, the definitions get more complicated than in
the irreducible setting. Since we wish to concentrate on the main ideas of our new theory
in the present paper, we have decided to postpone the treatment of the reducible case to
a forthcoming paper.

2. Basic definitions and main results

In the present section, we give precise definitions of the classes of tiles to which this paper
is devoted and state our main results. We start with some preparations and notations.

p-adic completions. Let K be a number field. For each given (finite or infinite) prime p
of K, we choose an absolute value |·|p and write Kp for the completion of K with respect
to |·|p. In all what follows, the absolute value |·|p is chosen in the following way. Let
ξ ∈ K be given. If p | ∞, denote by ξ(p) the associated Galois conjugate of ξ. If p is
real, we set |ξ|p = |ξ(p)|, and if p is complex, we set |ξ|p = |ξ(p)|2. Finally, if p is finite,
we put |ξ|p = N(p)−vp(ξ), where N(·) is the norm of a (fractional) ideal and vp(ξ) denotes
the exponent of p in the prime ideal decomposition of the principal ideal (ξ). Note that in
any case |·|p induces a metric on Kp. If p | ∞, then we equip Kp with the real Lebesgue
measure in case Kp = R and with the complex Lebesgue measure otherwise. If p ∤ ∞, then
p lies over the rational prime p satisfying (p) = p ∩ Z. In this case, we equip Kp with the
Haar measure µp(a + pk) = N(p)−k = p−kf(p), where f(p) denotes the inertia degree of p
over p. For details, we refer to [Neu99, Chapter I, §8, and Chapter III, §1].
Representation space Kα. Throughout the paper, let α be an expanding algebraic num-
ber with primitive minimal polynomial

(2.1) A(X) = anX
n + an−1X

n−1 + · · ·+ a1X + a0 ∈ Z[X ] .

Here, expanding means that every root of A is outside the unit circle (which implies that
|a0| ≥ 2), and primitive means that (a0, a1, . . . , an) = 1. A sufficient condition for A to be
expanding is given by |a0| > a1+· · ·+an; moreover, the Schur-Cohn Algorithm can be used
to check whether a given polynomial is expanding or not; see e.g. [Hen88, pp. 491–494].
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The ring of integers of the number field K = Q(α) will be denoted by O. Let

αO =
a

b
, (a, b) = O ,

where a, b are ideals in O, Sα = {p : p | ∞ or p | b}, and define the representation space

Kα =
∏

p∈Sα

Kp = K∞ ×Kb , with K∞ =
∏

p|∞
Kp and Kb =

∏

p|b
Kp .

Moreover, K∞ = Rr×Cs when α has r real and s pairs of complex Galois conjugates. The
elements of Q(α) are naturally represented in Kα by the canonical ring homomorphism

Φα : Q(α) → Kα , ξ 7→
∏

p∈Sα

ξ .

We equip Kα with the product metric of the metrics |·|p and the product measure µα of
the measures µp, p ∈ Sα. Note that Q(α) acts multiplicatively on Kα by

ξ · (zp)p∈Sα
= (ξzp)p∈Sα

(ξ ∈ Q(α)).

We also use the canonical ring homomorphisms

Φ∞ : Q(α) → K∞ , ξ 7→
∏

p|∞
ξ , and Φb : Q(α) → Kb , ξ 7→

∏

p|b
ξ .

The canonical projections from Kα to K∞ and Kb will be denoted by π∞ and πb, respec-
tively, and µ∞ denotes the Lebesgue measure on K∞.

Rational self-affine tiles: definition and tiling theorem. As mentioned in the intro-
duction, we define rational self-affine tiles first in terms of algebraic numbers.

Definition 1. Let α be an expanding algebraic number and D ⊂ Z[α]. The non-empty
compact set F = F(α,D) ⊂ Kα defined by the set equation

(2.2) α · F =
⋃

d∈D

(
F + Φα(d)

)

is called a rational self-affine tile if µα(F) > 0.

It is immediate from this definition that

F =

{ ∞∑

k=1

Φα(dkα
−k) : dk ∈ D

}
.

Moreover, the set F does not depend on the choice of the root α of the polynomial A. In
analogy to digit sets of integral self-affine tiles, we call D a

• standard digit set for α if D is a complete set of coset representatives of the group
Z[α]/αZ[α] (which implies that #D = |a0|),

• primitive digit set for α if Z〈α,D〉 = Z[α], where Z〈α,D〉 is the smallest α-invariant
Z-submodule of Z[α] containing the difference set D −D.
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Note that
Z〈α,D〉 =

〈
D −D, α(D −D), α2(D −D), . . .

〉
Z
.

Rational self-affine tiles can also be defined in terms of rational matrices. Indeed, let
A ∈ Qn×n be an expanding matrix with irreducible characteristic polynomial A, and let
D ⊂ Qn. Let α be a root of A, and choose a basis of the vector space Q(α) : Q in a way
that the multiplication by α can be viewed as multiplication by A in this vector space.
Then the non-empty compact set F ⊂ Kα ≃ Rn ×Kb defined by the set equation

AF =
⋃

d∈D

(
F + Φα(d)

)

is exactly the same as the set defined in (2.2).
Our first main result contains fundamental properties of rational self-affine tiles. Before

stating it, we define the notion of (multiple) tiling in our context.

Definition 2. Let (X,Σ, µ) be a measure space. A collection C of compact subsets of X
is called a multiple tiling of X if there exists a positive integer m such that µ-almost every
point of X is contained in exactly m elements of C. If m = 1, then C is called a tiling of X .

Theorem 1. Let α be an expanding algebraic number and let D be a standard digit set
for α. Then the following properties hold for the rational self-affine tile F = F(α,D).

(i) F is a compact subset of Kα.
(ii) F is the closure of its interior.
(iii) The boundary ∂F of F has measure zero, i.e., µα(∂F) = 0.
(iv) The collection {F + Φα(x) : x ∈ Z[α]} forms a multiple tiling of Kα.

The proof of this result is given in Section 3. There, we also show that {F + Φα(x) :
x ∈ Z〈α,D〉} forms a multiple tiling of Kα. With considerably more effort, we are able to
sharpen this result. Indeed, our second main result is the following general tiling theorem
for rational self-affine tiles, which is proved in Sections 4 and 5.

Theorem 2. Let α be an expanding algebraic number and let D be a standard digit set
for α. Then {F + Φα(x) : x ∈ Z〈α,D〉} forms a tiling of Kα.

For primitive digit sets, we get the following immediate corollary. Note that in particular
{0, 1} ⊂ D implies primitivity of the digit set.

Corollary 1. Let α be an expanding algebraic number and let D be a primitive, standard
digit set for α. Then {F + Φα(x) : x ∈ Z[α]} forms a tiling of Kα.

Tiles in Rn and shift radix systems. A second objective of the present paper is the
investigation of tiles that are subsets of K∞ ≃ Rn.

Definition 3. For a given rational self-affine tile F = F(α,D), we define the sets

G(x) =
{
(zp)p∈Sα

∈ F + Φα(x) : zp = 0 for each p | b
} (

x ∈ Z[α]
)
.

The set G(x) is the intersection of F +Φα(x) with K∞ ×Φb({0}). For this reason, we call
G(x) the intersective tile at x.
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We will show in Proposition 6.1 that F is essentially made up of slices of translated
copies of G(x), x ∈ Z〈α,D〉, more precisely, we will prove that

(2.3) F =
⋃

x∈Z〈α,D〉

(
G(x)− Φα(x)

)
.

We will often identify K∞ ×Φb({0}) with K∞, in particular we will then regard G(x) as
a subset of K∞ ≃ Rn. Our third main result is a tiling theorem for intersective tiles.

Theorem 3. Let α be an expanding algebraic number and let D be a standard digit set
for α. Then the following assertions hold.

(i) µ∞(∂G(x)) = 0 for each x ∈ Z[α].

(ii) The collection {G(x) : x ∈ Z〈α,D〉} forms a tiling of K∞ ≃ Rn.

Recall that the translation set Z〈α,D〉 is equal to Z[α] in the case of a primitive digit
set D.

In our tiling definition, we have not excluded that some tiles are empty. Indeed, many
intersective tiles G(x), x ∈ Z[α], are empty when A is not monic. To be more precise, set

Λα,m = Z[α] ∩ αm−1Z[α−1] (m ∈ Z).

We will see in Lemma 6.2 that G(x) can be represented in terms of this Z-module, with m
chosen in a way that D ⊂ αmZ[α−1]. As an immediate consequence of this representation,
we get that G(x) = ∅ for all x ∈ Z[α] \ Λα,m. If D contains a complete residue system
of αmZ[α−1]/αm−1Z[α−1], then Lemma 6.10 shows that these are the only x ∈ Z[α] with
G(x) = ∅. Moreover, if x− y is in the sublattice Λα,m−k of Λα,m for some large integer k,
then the tiles G(x)−Φ∞(x) and G(y)−Φ∞(y) are close to each other in Hausdorff metric,
i.e., the tiling formed by the collection {G(x) : x ∈ Λα,m ∩ Z〈α,D〉} is almost periodic.
Summing up, we get the following theorem.

Theorem 4. Let α be an expanding algebraic number, let D be a standard digit set for α,
and choose m ∈ Z such that D ⊂ αmZ[α−1]. Then {G(x) : x ∈ Λα,m ∩ Z〈α,D〉} forms a
tiling of K∞ ≃ Rn.

If moreover D contains a complete residue system of αmZ[α−1]/αm−1Z[α−1], the follow-
ing assertions hold.

(i) Let x ∈ Z[α]. Then G(x) 6= ∅ if and only if x ∈ Λα,m.

(ii) There exists a constant c > 0 such that

δH
(
G(x)− Φ∞(x),G(y)− Φ∞(y)

)
≤ cmax

p|∞
|α−k|p

for all x, y ∈ Λα,m with x−y ∈ Λα,m−k, k ≥ 0, where δH(Y, Z) denotes the Hausdorff
distance with respect to some metric on K∞ ≃ Rn.

Again, the intersection with Z〈α,D〉 can clearly be omitted if D is a primitive digit set.
In the special instance where D = {0, 1, . . . , |a0| − 1}, the conditions of Theorem 4

are satisfied with m = 0. Furthermore, we get a relation to shift radix systems. To
make this precise, associate the parameter r = (an

a0
, . . . , a1

a0
) with the minimal polynomial
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anX
n + · · ·+ a1X + a0 of α and let Mr be the companion matrix of r. As α is expanding,

the vector r lies in the Schur-Cohn region En = {r ∈ Rn : ̺(Mr) < 1}. Then the collection
{G(x) : x ∈ Λα,0} of intersective tiles is — up to a linear transformation — equal to the
collection {Tr(z) : z ∈ Zn} of SRS tiles defined in (1.1), see Proposition 6.15. In [BSS+11],
it could not be shown that these collections of tiles always form tilings. With the help of
Theorem 4, we are now able to fill this gap.

Theorem 5. Let anX
n + · · ·+ a1X + a0 ∈ Z[X ] be an expanding, irreducible polynomial.

Then the collection of SRS tiles {Tr(z) : z ∈ Zn} forms a tiling of Rn for r = (an
a0
, . . . , a1

a0
).

Thus we exhibited a dense subset of parameters r ∈ En that give rise to a tiling.

Examples. We now provide two examples in order to illustrate the main results of the
present paper. The first example deals with a rational base number system. The arith-
metics of such number systems was studied in [AFS08], where also interesting relations to
Mahler’s 3

2
-problem [Mah68] (which is already addressed by Vijayaraghavan [Vij40] and

remains still unsolved) were exhibited.

Example 2.1. Let α = 3
2
and D = {0, 1, 2}. In this example, we have K = Q, O = Z,

thus αO = (3)
(2)

, which leads to the representation space K3/2 = R × Q2. According to

Theorem 1, the rational self-affine tile F = F(3
2
, {0, 1, 2}) is a compact subset of K3/2,

which satisfies F = int(F) and µ3/2(∂F) = 0. Moreover, Theorem 2 implies that the
collection {F + Φ3/2(x) : x ∈ Z[3

2
]}, which is depicted in Figure 1, forms a tiling of K3/2.

−5/2

−2

−3/2

−1

−1/2

0

1/2

1

3/2

2

5/2

3

7/2

4

9/2

5

G(−2) G(0) G(2) G(4)

Figure 1. The tiles F + Φα(x) ∈ R × Q2 for α = 3
2
, D = {0, 1, 2}, x ∈

{−5
2
, −4

2
, . . . , 10

2
}. Here, an element

∑∞
j=k bjα

−j of Q2, with bj ∈ {0, 1}, is
represented by

∑∞
j=k bj2

−j . The intersection of F + Φα(x) with R × {0} is

equal to G(x).

The tile labeled by “0” in this figure is equal to F = F + Φ3/2(0), and the set equation

3
2
· F =

(
F + Φ3/2(0)

)
∪
(
F + Φ3/2(1)

)
∪
(
F + Φ3/2(2)

)
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can be seen in the picture. Due to the embedding of Q2 into R, the translated tiles
F+Φ3/2(x) appear with different shapes in the picture, though they are congruent in K3/2.

In this example, the intersective tiles are defined by

G(x) =
{
z ∈ R : (z, 0) ∈ F + (x, x) ⊂ K3/2 = R×Q2

}
(x ∈ Z[3

2
]) ;

in particular, G(0) = F ∩ (R × {0}). Since Z〈3
2
, {0, 1, 2}〉 = Z[3

2
], Theorem 3 yields that

the intersective tile ∂G(x) has measure zero for each x ∈ Z[3
2
] and that the collection

{G(x) : x ∈ Z[3
2
]} forms a tiling of K∞ = R.

Observe that {0, 1} ⊂ D is a complete residue system of Z[2
3
]/2

3
Z[2

3
] = Z[1

3
]/2Z[1

3
].

Therefore, Theorem 4 implies that G(x) 6= ∅ if and only if x ∈ Λ3/2,0 = 2Z, and {G(x) :
x ∈ 2Z} forms a tiling of R. As shown in [BSS+11, Corollary 5.20], the intersective tiles are
(possibly degenerate) intervals with infinitely many different lengths in this case. Some of
them are depicted in Figure 1. Note that G(−2) is equal to the singleton {0} and therefore
an example of an intersective tile that is not the closure of its interior (see [BSS+11,
Example 3.12] for another example of that kind). Moreover, according to Theorem 4 (ii),
G(x) − x and G(y)− y are close to each other (with respect to the Hausdorff distance) if
x− y is divisible by a large power of 2.

We mention that G(0) = [0, 2K(3)], where K(3) = 1.62227 · · · is related to the solution
of the Josephus problem, cf. [OW91, Corollary 1]. For a discussion of this relation we refer
the reader to [AFS08, Section 4.4 and Theorem 2].

Remark 2.2. For the choice α = 3
2
and D = {0, 2, 4} the collection {F+Φ3/2(x) : x ∈ Z[3

2
]}

forms a multiple tiling of K3/2 since D is not a primitive digit set. More precisely, almost
every point of K3/2 is covered twice by this collection.

Example 2.3. Let α = −1+
√
−5

2
be a root of the expanding polynomial 2X2 + 2X + 3 and

D = {0, 1, 2}. In this example, we have K = Q(
√
−5), O = Z[

√
−5], and αO = (3, 2+

√
−5)

(2, 1+
√
−5)

,

hence, the representation space is Kα = C × K(2, 1+
√
−5). It is easy to see that D is

a primitive, standard digit set for α. Therefore, according to Corollary 1, the collection
{F+Φα(x) : x ∈ Z[α]} forms a tiling, whose fundamental domain F = F(α,D) is depicted
in Figure 2. For the representation of F , we have used its decomposition into “slices” of
the form G(x) − Φα(x), according to (2.3). Each intersective tile G(x), x ∈ Z[α], satisfies
µ∞(∂G(x)) = 0 by Theorem 3 (i). Figure 2 also shows the collection of intersective tiles,
which forms again a tiling according to Theorem 3 (ii). The color of G(x) on the right hand
side of Figure 2 is the same as the color of G(x) − Φα(x) in the “slice representation” on
the left hand side. By Proposition 6.15, the collection {G(x) : x ∈ Λα,0} is a linear image
of the collection {Tr(z) : z ∈ Z2} of SRS tiles, with r = (2

3
, 2
3
).

Observe that {0, 1} ⊂ D is a complete residue system of Z[α−1]/α−1Z[α−1]. Therefore,
Theorem 4 implies that G(x) 6= ∅ if and only if x ∈ Λα,0, and {G(x) : x ∈ Λα,0} forms
a tiling of C. According to Lemma 6.14, we have Λα,0 = 2Z + (2α + 2)Z. Here, by
Theorem 4 (ii), G(x)−x and G(y)−y are close to each other (with respect to the Hausdorff
distance) if x − y ∈ Λα,−k for some large integer k. For instance, since 2k ∈ Λα,−k, the
tiling {G(x) : x ∈ Λα,0} is almost periodic with respect to the lattice 2kΛα,0 for large k.
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Figure 2. The fundamental domain F ∈ C × K(2, 1+
√
−5) for α = 1+

√
−5

2

and D = {0, 1, 2}, represented as a “tower” of its cuts at several fixed (2, 1+√
−5)-adic coordinates (left), and the corresponding intersective tiles G(2x0+

(2α + 2)x1), with x0, x1 ∈ {−3,−2, . . . , 3} (right). An element
∑∞

j=k bjα
−j

of K(2,−1+
√
−5), with bj ∈ {0, 1}, is represented by

∑∞
j=k bj2

−j.

To illustrate this fact, the tiles G(0) and G(2k+1), 0 ≤ k ≤ 8, are drawn in Figure 3. Note
that the shape of G(29) is already very close to that of G(0).

3. Properties of rational self-affine tiles

This section is devoted to fundamental properties of the rational self-affine tile F =
F(α,D), with α and D as in Theorem 1. It is subdivided into two parts. In the first part
we supply auxiliary results that will be needed throughout the paper. The second part is
devoted to the proof of Theorem 1.

Since a translation of D by x ∈ Z[α] results in F(α, x+D) = F(α,D) + Φα(x/(α− 1))
and Z〈α, x+D〉 = Z〈α,D〉, we can assume w.l.o.g. that 0 ∈ D. Note that this implies

Z〈α,D〉 = 〈D, αD, α2D, . . .〉Z .
For convenience, in all what follows we use the abbreviation

z = Z〈α,D〉 .

Preliminaries. We start with a basic result on the sets OSα
, Z[α], and z, where

OSα
= {x ∈ Q(α) : |x|p ≤ 1 for all p 6∈ Sα}
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G(0)
G(2)

G(4) G(8) G(16)

G(32)G(64)G(128)G(256)G(512)

Figure 3. The intersective tiles G(0) and G(2k), 1 ≤ k ≤ 9, for α = 1+
√
−5

2
and D = {0, 1, 2}.

denotes the set of Sα-integers. Recall that a set M ⊂ Kα is called a Delone set if it is
uniformly discrete and relatively dense; i.e., if there are numbers R > r > 0, such that
each ball of radius r contains at most one point of M , and every ball of radius R contains
at least one point of M .

Lemma 3.1. The set Φα(OSα
) is a Delone set in Kα.

Proof. The subring AQ(α),Sα
of Sα-adèles in AQ(α) (i.e., the adèles which are integral out-

side Sα) intersects the uniformly discrete subring Q(α) in OSα
, so Φα(OSα

) is likewise
uniformly discrete in the closed subring Kα. In order to show the relative denseness, note
that AQ(α),Sα

is open in AQ(α), so AQ(α),Sα
/OSα

(with its quotient topology) is an open
subgroup of the compact group AQ(α)/Q(α) and, hence, is compact. As Kα/Φα(OSα

) is a
quotient of AQ(α),Sα

/OSα
, it is also compact. �

Lemma 3.2. The following assertions hold.

(i) OSα
= O[α].

(ii) Z[α] is a subgroup of finite index of OSα
.

(iii) z is a subgroup of finite index of Z[α].

Proof. We clearly have O[α] ⊆ OSα
. For any x ∈ OSα

, there exists k ∈ N such that x ∈ b−k.

Since (a, b) = O, this implies that x ∈ ( a
k

bk
,O) = (αkO,O) ⊆ O[α], which proves (i).

Recall that an is the leading coefficient of the minimal polynomial A defined in (2.1).
As anα ∈ O, the set Z[anα] ⊂ Z[α] is an order of Q(α). Therefore, there exists q ∈ N
such that Z[anα] ⊆ O ⊆ 1

q
Z[anα], thus Z[α] ⊆ O[α] ⊆ 1

q
Z[α]. Suppose that O[α]/Z[α]

is infinite. Then there exist qn + 1 elements x1, x2, . . . , xqn+1 of O[α] lying in pairwise
distinct congruence classes mod Z[α]. Since x1, x2, . . . , xqn+1 ∈ 1

q
Z[α], there exists m such
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that x1, x2, . . . , xqn+1 ∈ 1
q
〈1, α, . . . , αm〉Z. As 〈1, α, . . . , αm〉Z is a Z-module of rank at

most n, the index of 1
q
〈1, α, . . . , αm〉Z/〈1, α, . . . , αm〉Z is at most qn, which implies that xi ≡

xj mod 〈1, α, . . . , αm〉Z for some 1 ≤ i < j ≤ qn + 1, contradicting that xi 6≡ xj mod Z[α].
Therefore, Z[α] is a subgroup of O[α] of index at most qn. Using (i), this gives (ii).

Finally, for each d ∈ D \ {0}, we have z ⊆ Z[α] ⊆ 1
d
z, which implies (iii). �

In particular, Lemmas 3.1 and 3.2 yield that Φα(z) and Φα(Z[α]) are Delone sets in Kα.
Next we show the effect of the action of α on the measure of a measurable subset of Kα.

To this matter we use the Dedekind-Mertens Lemma for the content of polynomials. Recall
that the content c(f) of a polynomial f over the number field K is the ideal generated
by the coefficients of f , and the Dedekind-Mertens Lemma (see e.g. [And00, Section 8] or
[Prü32, §9]) asserts that
(3.1) c(fg) = c(f) c(g) (f, g ∈ K[X ]) .

Lemma 3.3. Let M ⊂ Kα be a measurable set. Then

µα(α ·M) = µα(M)
∏

p∈Sα

|α|p = |a0|µα(M) .

Proof. By the definition of the measure µα and the absolute values |·|p, one immediately
gets the first equality. In order to prove the second one, first note that

∏
p|∞ |α|p =

|NQ(α):Q(α)| = |a0|
|an| . Moreover, from the definition of |·|p, we get that

∏
p|b |α|p = N(b).

Combining these identities, we arrive at
∏

p∈Sα

|α|p = |a0|
N(b)

|an|
.

Now, the lemma follows from

1

|an|
= c

(
A(X)

an

)
= c

(
NQ(α):Q(X − α)

)
= N

(
c(X − α)

)
=

1

N(b)
,

where the third equality is a consequence of the Dedekind-Mertens Lemma in (3.1), and
(O, αO) =

(
O, a

b

)
= 1

b
is used for the last equality. �

Proof of Theorem 1. We start with the proof of the first assertion of Theorem 1.

Proof of Theorem 1 (i). As D is a finite set and |α−1|p < 1 for all p ∈ Sα, the map
(dk)k≥1 7→

∑∞
k=1Φα(dkα

−k) is a continuous map from the compact set of infinite sequences
with elements in D to Kα. Here, the topology on DN is the usual one, i.e., two sequences
are close to each other if the first index where they disagree is large. Therefore, being the
continuous image of a compact set, F is compact. �

To prove the second assertion of Theorem 1, we need the following lemma. Here, a collec-
tion is uniformly locally finite if each open ball meets at most m members of the collection,
where m ∈ N is a fixed number.

Lemma 3.4. The collection {F+Φα(x) : x ∈ z} is a uniformly locally finite covering of Kα.
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Proof. Since D is a standard digit set and D ⊂ z, we have z = α z+D. With (2.2) we get

α ·
(
F + Φα(z)

)
= F + Φα(D) + Φα(α z) = F + Φα(z) ,

and, hence, α−k · (F+Φα(z)) = F+Φα(z) for all k ∈ N. By Lemmas 3.1 and 3.2, F+Φα(z)
is relatively dense in Kα. As the action of α−1 on Kα is a uniform contraction, F + Φα(z)
is even dense in Kα. The lemma follows because F is compact by Theorem 1 (i) and Φα(z)
is uniformly discrete by Lemmas 3.1 and 3.2. �

We continue with the proof of the remaining assertions of Theorem 1.

Proof of Theorem 1 (ii). By a Baire category argument, the uniform local finiteness of the
covering {F + Φα(x) : x ∈ Z[α]} established in Lemma 3.4 implies together with the
compactness of F that F has nonempty interior. Multiplying (2.2) by α−1 and iterating
this equation k times yields that

(3.2) F =
⋃

d∈Dk

α−k ·
(
F + Φα(d)

)
with Dk =

{ k−1∑

j=0

αjdj : d0, . . . , dk−1 ∈ D
}
.

As the operator α−1 acts as a uniform contraction on Kα, the diameter of α−k · F tends to
zero for k → ∞. Since k can be chosen arbitrarily large and α−k ·(F+Φα(d)) contains inner

points of F for each d ∈ Dk, the iterated set equation in (3.2) implies that F = int(F). �

Proof of Theorem 1 (iii). Choose ε > 0 in a way that F contains a ball of radius ε. Since
α−1 is a uniform contraction, we may choose k ∈ N such that diam(α−k · F) < ε

2
holds.

Thus, for this choice of k, there is at least one d′ ∈ Dk satisfying α−k ·(F+Φα(d
′)) ⊂ int(F).

Taking measures in the iterated set equation (3.2) now yields

(3.3) µα(F) = µα

( ⋃

d∈Dk

α−k ·
(
F + Φα(d)

))
.

As α−k · (F+Φα(d
′)) ⊂ int(F), the boundary of α−k · (F +Φα(d

′)) is covered at least twice
by the union in (3.3). Thus, using Lemma 3.3, we get from (3.3) that

µα(F) ≤
( ∑

d∈Dk

µα(α
−k · F)

)
− µα(α

−k · ∂F) = µα(F)− |a0|−kµα(∂F) ,

which implies that µα(∂F) = 0. �

Proof of Theorem 1 (iv). We show that {F + Φα(x) : x ∈ z} is a multiple tiling, which
implies in view of Lemma 3.2 (iii) that the same is true for {F + Φα(x) : x ∈ Z[α]}.

Let m1 < m2 be positive integers. Let M1 be the set of points covered by exactly m1

sets of the collection {F + Φα(x) : x ∈ z}, and let M2 be the set of all points covered by
m2 or more sets of {F +Φα(x) : x ∈ z}. Obviously, we have M1 ∩M2 = ∅. If the assertion
is false, then we may choose m1 and m2 with m1 < m2 in a way that M1 and M2 have
positive measure. Since Φα(z) is a relatively dense additive group, M1 is a relatively dense
subset of Kα.
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Thus it suffices to prove that M2 contains an arbitrarily large ball. As µα(∂F) = 0,
we can choose z ∈ M2 with z 6∈ ⋃

x∈z ∂
(
F + Φα(x)

)
. Therefore, there exists a ball Bε(z)

centered in z of radius ε > 0 with Bε(z) ⊂ M2. As the action of α on Kα is expanding, it
suffices to show that

(3.4) αk · Bε(z) ⊂ M2

holds for each positive integer k. We do this by induction. The assertion is true for k = 0.
Assume that we already proved it for a certain k and let z′ ∈ αk ·Bε(z). Then there exist
x1, . . . , xm2

∈ z such that z′ ∈ F+Φα(xℓ) for ℓ ∈ {1, . . . , m2}, thus α ·z′ ∈ α · (F+Φα(xℓ)).
By the set equation (2.2), this implies that there exist d1, . . . , dm2

∈ D such that α · z′ ∈
F +Φα(αxℓ + dℓ). Since D is a standard digit set, we conclude that αxℓ + dℓ are pairwise
disjoint elements of z, thus α ·z′ ∈ M2. Since z

′ was an arbitrary element of αk ·Bε(z), this
implies that (3.4) is true also for k + 1 instead of k, and the assertion is established. �

4. Tiling criteria

In this section, we establish tiling criteria in the spirit of Gröchenig and Haas [GH94,
Theorem 4.8 and Proposition 5.3] for the collection {F + Φα(x) : x ∈ z}.

Contact matrix. The contact matrix governs the neighboring structure of tilings induced
by approximations of F . In order to define this matrix, note that Φα(z) is a lattice in Kα in
the sense that it is a Delone set and an additive group. Therefore, there exists a compact
set D ⊂ Kα such that the collection {D + Φα(x) : x ∈ z} forms a tiling of Kα. Set

V0 = {x ∈ z \ {0} : D ∩ (D + Φα(x)) 6= ∅} ,
define recursively

Vk =
{
x ∈ z \ {0} : (αx+D) ∩

(
y +D) 6= ∅ for some y ∈ Vk−1

}
,

and let V =
⋃

k∈N Vk. Note that the compactness of D and the fact that multiplication
by α is an expanding operator on Kα imply that V is a finite set. The #V ×#V-matrix
C = (cxy)x,y∈V defined by

cxy = #
(
(αx+D) ∩ (y +D)

)
(x, y ∈ V)

is called the contact matrix of F = F(α,D). (We mention that C depends on the defining
data α and D of F as well as on the choice of the compact set D.)

Consider the approximations Fk =
⋃

d∈Dk
(D+Φα(d)) of α

k ·F . As the sets in the union
are measure disjoint, Lemma 3.3 yields that

(4.1) µα(α
−k · Fk) = µα(D) (k ∈ N).

The collection {Fk+Φα(α
kx) : x ∈ z} forms a tiling of Kα. By induction on k, we see that

(4.2) ∂Fk =
⋃

x∈Vk

Fk ∩ (Fk + Φα(α
kx)) ,

thus αk Vk contains all the “neighbors” of Fk in this tiling.
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Our aim in this subsection is to establish a tiling criterion in terms of the spectral
radius ̺(C) of the contact matrix. The following lemma states that the tiling property
of {F + Φα(x) : x ∈ z} can be decided by looking at the measure of F .

Lemma 4.1. The quantity µα(F)
µα(D)

is an integer. If µα(F)
µα(D)

= 1, then {F + Φα(x) : x ∈ z}
forms a tiling of Kα.

Proof. We have seen in Section 3 that {F + Φα(x) : x ∈ z} forms a multiple tiling of Kα.

As {D + Φα(x) : x ∈ z} forms a tiling of Kα, the multiplicity is equal to µα(F)
µα(D)

. �

Let

Uk =
{
(d, d′) ∈ z2 : d ∈ Dk, d

′ 6∈ Dk and
(
D + Φα(d)

)
∩
(
D + Φα(d

′)
)
6= ∅

}
.

The cardinality of Uk is used in the following criterion.

Proposition 4.2. If limk→∞ |a0|−k #Uk = 0, then the collection {F + Φα(x) : x ∈ z}
forms a tiling of Kα.

Proof. Note that (d, d′) ∈ Uk implies that d− d′ ∈ V0. Moreover, we have

(4.3) ∂Fk =
⋃

(d,d′)∈Uk

(
D + Φα(d)

)
∩
(
D + Φα(d

′)
)
.

For a subset M ⊂ Kα, let N(M, ε) be the ε-neighborhood of M with respect to some
fixed metric in Kα and set R(M, ε) = N(M, ε) \M . Using this notation, we easily derive
by induction on k that (see also [GH94, Lemma 4.4]) there exists some ε > 0 such that

(4.4) αk · F ⊂ N(Fk, ε) for all k ∈ N .

Observe that (4.3) implies µα(R(Fk, ε)) ≪ #Uk for k → ∞. Thus, multiplying this by
|a0|−k and using the hypothesis of the proposition yields that

(4.5) lim
k→∞

µα

(
α−k · R(Fk, ε)

)
= 0 .

In view of (4.4), we may write F =
(
F ∩ α−k · R(Fk, ε)

)
∪ (F ∩ α−k · Fk). Using (4.5)

and (4.1), this implies that

µα(F) = lim
k→∞

µα(F ∩ α−k · Fk) ≤ µα(α
−k · Fk) = µα(D) ,

and the result follows from Lemma 4.1. �

The cardinality of Uk is related to the k-th power of the contact matrix C.

Lemma 4.3. Let Ck = (c
(k)
xy )x,y∈V , then #Uk =

∑
x∈V , y∈V0

c
(k)
xy .

Proof. Using (4.2), this lemma is proved in the same way as Lemma 4.7 in [GH94]. �

We obtain a tiling criterion in terms of the spectral radius ̺(C).

Proposition 4.4. If ̺(C) < |a0|, then {F + Φα(x) : x ∈ z} forms a tiling of Kα.
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Proof. As |a0|−1C is a contraction, we have limk→∞ |a0|−k c
(k)
xy = 0 for all x, y ∈ V. Thus,

Lemma 4.3 yields that |a0|−k #Uk → 0 for k → ∞, and Proposition 4.2 gives the result. �

Remark 4.5. With some more effort, one can prove that ̺(C) < |a0| if and only if {F +
Φα(x) : x ∈ z} forms a tiling. However, we will not need this result in the sequel.

Fourier analytic tiling criterion. We now establish a Fourier analytic (non-)tiling cri-
terion. To this matter, we define the characters (see e.g. Section 4 of Tate’s thesis [Tat67])

χp : Kp → C , zp 7→
{

exp(−2πiTrKp:R(zp)) if p | ∞ ,

exp(2πi λp(TrKp:Qp
(zp))) if p | b and p | p ,

χα : Kα → C , (zp)p∈Sα
7→

∏

p∈Sα

χp(zp) ,

where λp(x) denotes the fractional part of x ∈ Qp, i.e., λp(
∑∞

j=k bjp
j) =

∑−1
j=k bjp

j for all

sequences (bj)j≥k with bj ∈ {0, 1, . . . , p− 1}, k < 0. In order to set up a suitable Fourier
transformation, we need two lemmas on these characters.

Lemma 4.6. For each ξ ∈ OSα
we have χα

(
Φα(ξ)

)
= 1.

Proof. Let p be a prime satisfying p ∤ b and p | p. Then |ξ|p ≤ 1 for every ξ ∈ OSα
, thus

we obtain TrKp:Qp
(ξ) ∈ Zp, i.e., λp(TrKp:Qp

(ξ)) = 0. This implies that
∑

p|b
λp(TrKp:Qp

(ξ))− TrK:Q(ξ) =
∑

p∤∞
λp(TrKp:Qp

(ξ))− TrK:Q(ξ) ≡ 0 (mod 1),

by an argument used in [Tat67, proof of Lemma 4.1.5], and, hence, χα

(
Φα(ξ)

)
= 1. �

Let

(4.6) z∗ =
{
ξ ∈ Q(α) : χα

(
Φα(ξ x)

)
= 1 for all x ∈ z

}
,

and observe that OSα
⊆ z∗ by Lemma 4.6. Moreover, denote by χα,ξ, ξ ∈ Q(α), the

character defined by χα,ξ(z) = χα(ξ · z).

Lemma 4.7. The set {χα,ξ : ξ ∈ z∗} is the annihilator of Φα(z) in the Pontryagin dual K̂α.

Proof. Set Y = {z ∈ Kα : χα(x · z) = 1 for all x ∈ z}. In view of the definition of z∗, we
only have to show that Y ⊆ Φα(Q(α)). Since Kα/Φα(z) is compact, Y is discrete. Because
Y contains Φα(OSα

), the factor group Y/Φα(OSα
) is a discrete subgroup of the compact

group Kα/Φα(OSα
). This implies that Y/Φα(OSα

) is finite, thus Y ⊆ Φα(Q(α)). �

We now do Fourier analysis in D∗ = Kα/Φα(z
∗). As OSα

⊆ z∗, the factor group D∗ is

compact, which implies that its Pontryagin dual D̂∗ is discrete. By Lemma 4.7, we may

write D̂∗ = {χα,x : x ∈ z}, cf. e.g. [HR63, Theorem 23.25]. Equip D∗ with a Haar measure
µD∗ and define the Fourier transform

f̂(χ) = F (f)(χ) =

∫

D∗

f(z)χ(−z) dµD∗(z) (χ ∈ D̂∗),
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see [HR70, Section 31.46] for details on how to define the Fourier transform on quotient

groups. Since D̂∗ is discrete, the Fourier inversion formula implies that

f(z) = F−1(f̂ )(z) =
∑

χ∈D̂∗

f̂(χ)χ(z) (z ∈ D∗).

Let Ω denote the set of vectors (tx)x∈V with tx ∈ R, and denote by Ω̂ the set of all

functions f : Kα → C of the form f =
∑

x∈V tx χα,x. We can regard the elements of Ω̂ as

functions from D∗ to C. Thus we may apply F to the elements of Ω̂. Indeed, F and its
inverse induce the mappings (called F and F−1 again without risk of confusion)

F : Ω̂ → Ω,
∑

x∈V
tx χα,x 7→ (tx)x∈V ,

F−1 : Ω → Ω̂, (tx)x∈V 7→
∑

x∈V
tx χα,x .

Following [GH94, Section 5], we define the Fourier transform Ĉ of the contact matrix C by

Ĉ = F−1CF.

We are now in the position to give a version of the Fourier analytic criterion of Gröchenig
and Haas [GH94, Proposition 5.3] that will be used in order to check the tiling property.

Proposition 4.8. If the collection {F +Φα(x) : x ∈ z} does not form a tiling, then there

exists a non-constant real-valued function f ∈ Ω̂ satisfying Ĉf = |a0| f .
Proof. Suppose that {F + Φα(x) : x ∈ z} does not form a tiling. By Proposition 4.4, we
have ̺(C) ≥ |a0|. Since

∑

x∈V
cxy =

∑

x∈V
#
(
(αx+D) ∩ (y +D)

)
= #

( ⋃

x∈V
(αx+D) ∩ (y +D)

)
≤ |a0|

for all y ∈ V, we also have ̺(C) ≤ |a0|. Therefore, there exists an eigenvector t = (tx)x∈V
such that Ct = |a0| t. Since V = −V, we can choose t in a way that tx = t−x. Then

F−1t =
∑

x∈V tx χα,x is a real-valued eigenfunction of Ĉ to the eigenvalue |a0|. Furthermore,
0 6∈ V implies that F−1t is not constant. �

Remark 4.9. Note that Ĉf = |a0| f implies that C(Ff) = |a0| (Ff), i.e., ̺(C) ≥ |a0|.
Thus, in view of Remark 4.5, one could in addition show the converse of Proposition 4.8.

However, we will show in Section 5 that non-constant real-valued functions f ∈ Ω̂ satisfying

Ĉf = |a0| f do not exist in our setting.

Writing Ĉ as a transfer operator. We conclude this section by deriving a representation

of Ĉ as “transfer operator”. To this matter, let D∗ be a complete residue system of z∗/α z∗.
The set D∗ can be seen as a “dual” set of digits. With help of this set, the character χα

can be used to filter the elements of z. This is made precise in the following lemma.



18 W. STEINER AND J. M. THUSWALDNER

Lemma 4.10. Let x ∈ z. We have

1

|a0|
∑

d∗∈D∗

χα

(
Φα(α

−1x d∗)
)
=

{
1 if x ∈ α z,
0 if x 6∈ α z.

Proof. The first alternative in the statement follows from the definition of z∗ and since
#D∗ = |a0|. To prove the second one, let x ∈ z and G(x) = {χα

(
Φα(α

−1x ξ)
)
: ξ ∈ z∗}.

Then G(x) is a cyclic group of order dividing |a0|. This group is non-trivial for x ∈ z \ α z

(see e.g. [HR63, Corollary 23.26]), which implies the second alternative. �

Let

u(z) =

∣∣∣∣
1

|a0|
∑

d∈D
χα(d · z)

∣∣∣∣
2

(z ∈ Kα)

be the auto-correlation function of the digits d ∈ D and set

τα,d∗(z) = α−1 ·
(
z+ Φα(d

∗)
)

(d∗ ∈ D∗, z ∈ Kα).

We need the following auxiliary result on the function u.

Lemma 4.11. For each z ∈ Kα, we have
∑

d∗∈D∗

u
(
τα,d∗(z)

)
= 1 .

Proof. Similarly to [GH94, Lemma 5.1], the proof is done by direct calculation. Indeed,
using Lemma 4.10,

∑

d∗∈D∗

u
(
α−1 ·

(
z+ Φα(d

∗)
))

=
∑

d∗∈D∗

1

|a0|2
∑

d,d′∈D
χα

((
(d− d′)α−1 ·

(
z+ Φα(d

∗)
))

=
1

|a0|
∑

d,d′∈D
χα

(
(d− d′)α−1 · z

) 1

|a0|
∑

d∗∈D∗

χα

(
(d− d′)α−1 · Φα(d

∗)
)

=
1

|a0|
∑

d,d′∈D
χα

(
(d− d′)α−1 · z

)
δd,d′ = 1 ,

where δd,d′ denotes the Kronecker δ-function. �

We conclude this section by establishing the following representation of Ĉ.

Proposition 4.12. The operator Ĉ can be written as a transfer operator:

(4.7) Ĉf(z) = |a0|
∑

d∗∈D∗

u
(
τα,d∗(z)

)
f
(
τα,d∗(z)

)
(f ∈ Ω̂, z ∈ Kα).

Proof. Let f =
∑

y∈V ty χα,y. By definition, we have F Ĉf = CFf . Thus it suffices to show

that (F Ĉf)(x) = (CFf)(x) for all x ∈ Ĥ, with Ĉ as in (4.7).
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We have (CFf)(x) =
∑

y∈V cxy ty if x ∈ V, (CFf)(x) = 0 otherwise. On the other hand,

if Ĉ is as in the statement of the lemma, then

Ĉf(z) =
1

|a0|
∑

d∗∈D∗, d,d′∈D
χα

(
(d− d′)α−1 ·

(
z+ Φα(d

∗)
)) ∑

y∈V
ty χα

(
y α−1 ·

(
z+ Φα(d

∗)
))

=
∑

y∈V
ty

∑

d,d′∈D
χα

(
(d− d′ + y)α−1 · z

) 1

|a0|
∑

d∗∈D∗

χα

(
(d− d′ + y)α−1 · Φα(d

∗)
)
.

By Lemma 4.10, the last sum is nonzero if and only if d − d′ + y = αx for some x ∈ z.
Since y ∈ V, we also have x ∈ V in this case. Therefore, we obtain

Ĉf =
∑

x,y∈V
ty #

(
(αx+D) ∩ (y +D)

)
χα,x =

∑

x,y∈V
cxy ty χα,x .

This gives (F Ĉf)(x) =
∑

y∈V cxy ty if x ∈ V, (F Ĉf)(x) = 0 otherwise. �

5. The tiling theorem

In the present section, we finish the proof of Theorem 2 by studying the eigenfunctions

of Ĉ. Already in [GH94], the extremal values of eigenfunctions of certain transfer operators
are studied in order to obtain a tiling theorem. This approach was considerably generalized
in [LW97], where a general theorem on the zero sets of eigenfunctions of transfer operators
(established in [CCR96]) was applied to prove the tiling result for integral self-affine tiles
mentioned in the introduction. Here, we further develop this theory.

Similarly to [LW97], we call f ∈ Ω̂ a special eigenfunction if

Ĉf = |a0| f , f(0) > 0 , min
z∈Kα

f(z) = 0 .

We get the following lemma.

Lemma 5.1. If the collection {F +Φα(x) : x ∈ z} does not form a tiling, then there exists

a special eigenfunction f ∈ Ω̂.

Proof. By Proposition 4.8, there exists a non-constant real-valued eigenfunction f̃ ∈ Ω̂

with Ĉf̃ = |a0| f̃ . Then the function f defined by

f(z) =

{
f̃(z)−miny∈Kα

f̃(y) if f̃(0) > miny∈Kα
f̃(y),

maxy∈Kα
f̃(y)− f̃(z) otherwise,

is a special eigenfunction. �

Assuming that a special eigenfunction f ∈ Ω̂ exists, we study its (non-empty) zero set

Zf =
{
z ∈ Kα : f(z) = 0

}
.

Note first that Zf is Φα(z
∗)-periodic by the definition of Ω̂. Starting from the assumption

that Zf is non-empty and using self-affinity properties of Zf , we will obtain the contra-
dictory result Zf = Kα, which implies that no special eigenfunction exists. In view of
Lemma 5.1, this will prove Theorem 2.
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Lemma 5.2 (cf. [LW97, Lemma 3.2]). Let f be a special eigenfunction and let D∗ be a
complete residue system of z∗/α z∗. Then the following assertions hold.

(i) For each z ∈ Zf and d∗ ∈ D∗, u
(
τα,d∗(z)

)
> 0 implies that τα,d∗(z) ∈ Zf .

(ii) For each z ∈ Zf , there exists some d∗ ∈ D∗ such that u(τα,d∗(z)) > 0.

Proof. Let z ∈ Zf , then Ĉf(z) = |a0| f(z) = 0, thus
∑

d∗∈D∗

u
(
τα,d∗(z)

)
f
(
τα,d∗(z)

)
= 0

by Proposition 4.12. Since f(z) ≥ 0 everywhere, every term on the left-hand side must
be zero, which shows that τα,d∗(z) ∈ Zf if u

(
τα,d∗(z)

)
> 0. By Lemma 4.11, we have

u
(
τα,d∗(z)

)
> 0 for some d∗ ∈ D∗. �

Lemma 5.2 motivates the following definitions. A set Y ⊂ Kα is τα-invariant (w.r.t. a
complete residue system D∗ of z∗/α z∗) if, for each z ∈ Y , d∗ ∈ D∗, u(τα,d∗(z)) > 0 implies
τα,d∗(z) ∈ Y . It is minimal τα-invariant if it does not contain a proper subset which is also
τα-invariant. First we observe that such sets exist (when a special eigenfunction exists).

Lemma 5.3. Let f be a special eigenfunction. Then there exists a non-empty compact
minimal τα-invariant set Y ⊂ Zf .

Proof. This is proved arguing in the same way as in the proof of Theorem 4.1 of [LW97].
In particular, note that multiplication by α−1 is contracting and u is continuous. �

Suppose that the special eigenfunction f is given by f =
∑

x∈V tx χα,x. To further explore
the zero set Zf , we apply a result of [CCR96]. As this result deals only with functions
defined on Rn, we relate f with the function f∞ defined on K∞ ≃ Rn by

f∞ : K∞ → R, (zp)p|∞ 7→
∑

x∈V
tx

∏

p|∞
χp(xzp) .

By the following lemma, such a relation between f and f∞ holds for the set

(5.1) E =
{
(zp)p∈Sα

∈ Kα : |zp|p ≤ |α−m|p for all p | b} ,
where m ∈ Z is chosen in a way that

(5.2) D ⊂ αmZ[α−1] .

Lemma 5.4. For each z ∈ E, we have

f(z) = f∞(π∞(z)) .

Proof. For each x ∈ V, we have x =
∑k

j=1(dj−d′j)α
−j+α−kx0 with dj, d

′
j ∈ D ⊂ αmZ[α−1],

x0 ∈ V0, and arbitrarily large k. This implies |x|p ≤ |αm|p for p | b and, hence, χp(xzp) = 1
for all zp ∈ Kp with |zp|p ≤ |α−m|p. This shows that f(z) = f∞(π∞(z)) for each z ∈ E. �

We can restrict our attention to E because of the following lemma.
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Lemma 5.5. Let Y be a compact minimal τα-invariant set and suppose that D∗ is a
complete residue system of z∗/α z∗ satisfying

(5.3) |d∗|p ≤ |α−m+1|p for all d∗ ∈ D∗ and all p | b .
Then Y is contained in E.

Proof. By the minimality of Y , for each z ∈ Y there exists d∗ ∈ D∗ such that τ−1
α,d∗(z) ∈ Y .

Iterating this argument, we obtain z =
∑k

j=1Φα(α
−jd∗j) + α−k · z0 with d∗j ∈ D∗, z0 ∈ Y ,

and arbitrarily large k. The result follows now from (5.3) and the compactness of Y . �

We now prove that D∗ can always be chosen to satisfy (5.3), by using the well-known
Strong Approximation Theorem for valuations.

Lemma 5.6 (see e.g. [Cas67, Section 15]). Let S be a finite set of primes and let p0 be a
prime of the number field K which does not belong to S. Let zp ∈ K be given numbers, for
p ∈ S. Then, for every ε > 0, there exists x ∈ K such that

|x− zp|p < ε for p ∈ S, and |x|p ≤ 1 for p 6∈ S ∪ {p0}.
Lemma 5.7. For each ε > 0, there exists a complete set of representatives D∗ of the
residue class ring z∗/α z∗ satisfying |d∗|p ≤ ε for all d∗ ∈ D∗, p | b.
Proof. Lemma 5.6 implies that Φb(OSα

) is dense in Kb. Since OSα
⊆ z∗, this yields that

Φb(ξ + α z∗) is also dense in Kb for each ξ ∈ Q(α). Thus each residue class of z∗/α z∗

contains a representative with the required property. �

In analogy to the notion of τα-invariance on Kα, we call a set Y∞ ⊆ K∞ τ∞-invariant if,
for each z ∈ Y∞, d∗ ∈ D∗, u∞(τ∞,d∗(z)) > 0 implies τ∞,d∗(z) ∈ Y∞, where u∞ is defined by

u∞ : K∞ → R , (zp)p|∞ 7→
∣∣∣∣
1

|a0|
∑

d∈D

∏

p|∞
χp(dzp)

∣∣∣∣
2

,

and τ∞,d∗(z) = α−1 · (z+ Φ∞(d∗)). We now restrict our attention to the set Zf∞ .

Lemma 5.8. Let f be a special eigenfunction and suppose that D∗ satisfies (5.3). Then
there exists a non-empty compact minimal τ∞-invariant set Y∞ ⊂ Zf∞.

Proof. By Lemmas 5.3 and 5.5, there exists a non-empty compact minimal τα-invariant set
Y ⊂ Zf ∩ E. Arguing similarly as in the proof of Lemma 5.4, we get

(5.4) u(z) = u∞(π∞(z)) for each z ∈ E .

Therefore, the τα-invariance of Y implies τ∞-invariance of π∞(Y ). As in the proof of
Lemma 5.3, this yields the existence of a non-empty compact minimal τ∞-invariant set
Y∞ ⊆ π∞(Y ). By Lemma 5.4, we have π∞(Y ) ⊆ Zf∞ , and the result is proved. �

Lemma 5.9. Let Y∞ ⊆ Zf∞ be a non-empty compact minimal τ∞-invariant set. Then
there exists a linear subspace V of K∞ ≃ Rn such that

• α · V = V ,
• Y∞ is contained in a finite number of translates of V and
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• Zf∞ contains a translate of V .

Proof. This is a direct consequence of [CCR96, Theorem 2.8], since we can identify K∞
with Rn, where multiplication by α is replaced by multiplication with the (block) diagonal

matrix with entries α(p) if Kp = R, and

(
Re(α(p)) Im(α(p))

−Im(α(p)) Re(α(p))

)
if Kp = C, p | ∞. �

We have to exclude that Y∞ is finite, i.e., that V = {0} in Lemma 5.9.

Lemma 5.10 (cf. [LW97, Lemma 3.3]). There exists no non-empty finite τ∞-invariant set
Y∞ ⊆ Zf∞.

Proof. Suppose that there exists a non-empty finite τ∞-invariant set Y∞ ⊆ Zf∞ , and assume
w.l.o.g. that Y∞ is minimal. The minimality and finiteness imply that each z ∈ Y∞ is
contained in a “τ∞-cycle”, i.e., there exist k ≥ 1 and d∗1, . . . , d

∗
k ∈ D∗ such that

τ∞,d∗
1
◦ · · · ◦ τ∞,d∗j

(z) ∈ Y∞ (1 ≤ j ≤ k)

and τ∞,d∗
1
◦ · · · ◦ τ∞,d∗

k
(z) = z. Hence, we have z = Φ∞(ξ) with ξ = (1−α−k)−1

∑k
j=1 α

−jd∗j .

Since |(1− α−k)−1|p ≤ 1 for each p | b, the choice of D∗ implies that |ξ|p ≤ |α−m|p. Set
Ξ = Φ−1

∞ (Y∞) .

As Φα(Ξ) ⊂ E and Φ∞(Ξ) = Y∞, Lemma 5.4 and (5.4) imply that Φα(Ξ) is a finite minimal
τα-invariant subset of Zf .

By Lemma 5.2 (ii) and the τα-invariance of Φα(Ξ), we have Ξ ⊆ αΞ − D∗. Let Ξ̄ be
a set of representatives of Ξ mod z∗. As D∗ ⊂ z∗, we get that Ξ̄ ⊆ αΞ̄ mod z∗. The
finiteness of Ξ̄ even yields that Ξ̄ ≡ αΞ̄ mod z∗, hence, α induces a permutation on Ξ̄.
The elements α−1(ξ+ d∗) are pairwise incongruent mod z∗ for different d∗ ∈ D∗. Applying
Φα yields that for each ξ ∈ Ξ there is a unique d∗ ∈ D∗ such that τα,d∗(Φα(ξ)) ∈ Φα(Ξ),
hence u(τα,d∗(Φα(ξ))) = 1. Thus u(Φα(ξ)) = 1 holds for all ξ ∈ Ξ. This yields that
χα(Φα(d ξ)) = 1 for all d ∈ D, and we conclude that χα(Φα(x ξ)) = 1 for all x ∈ (D−D)Z.

Since Ξ̄ ≡ αΞ̄ mod z∗, we obtain that χα(Φα(xα ξ)) = 1 for all x ∈ (D − D)Z and,
inductively, χα(Φα(x ξ)) = 1 for all x ∈ Z〈α,D〉 = z, i.e., ξ ∈ z∗. Since Φα(ξ) ∈ Zf and Zf

is Φα(z
∗)-periodic, we get 0 ∈ Zf , which contradicts the assumptions on the zero set Zf of

a special eigenfunction f . This contradiction proves the lemma. �

In view of Lemma 5.10, we can now assume that Lemma 5.9 holds with V 6= {0}. Under
this assumption, we get the following density result.

Lemma 5.11. Let V 6= {0} be a linear subspace of K∞ with α · V = V . Then the set
V + π∞(Φα(z

∗) ∩ E) is dense in K∞.

Proof. Let z = (zp)p|∞ ∈ V \ {0}. Then we have Q(α) · z ⊂ V , and the denseness of
Φ∞(Q(α)) in K∞ implies that V is dense in

∏
p|∞: zp 6=0Kp ×

∏
p|∞: zp=0{0}. Choose p0 | ∞

with zp0 6= 0. The Strong Approximation Theorem (Lemma 5.6) with S = {p : p | ∞}\{p0}
yields that the projection of Φ∞(O) to

∏
p∈S Kp is dense. This implies that V +Φ∞(O) is

dense in K∞. Choose m as in (5.2). Since α−mO∩O has finite index in O, we obtain that
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V + Φ∞(α−mO ∩ O) is also dense in K∞. Observing that Φα(α
−mO ∩ O) ⊆ Φα(z

∗) ∩ E
proves the lemma. �

We are now in a position to finish the proof of Theorem 2, which states that {F+Φα(x) :
x ∈ z} forms a tiling of Kα.

Proof of Theorem 2. Suppose that {F + Φα(x) : x ∈ z} does not form a tiling of Kα. By

Lemmas 5.1, 5.7, 5.8, 5.9, and 5.10, there exists a special eigenfunction f ∈ Ω̂ and an
α-invariant linear subspace V 6= {0} of K∞ such that Zf∞ contains a translate of V . Since
Zf is Φα(z

∗)-periodic, Lemma 5.4 implies that Zf∞ is π∞(Φα(z
∗) ∩ E)-periodic. Thus we

may apply Lemma 5.11 in order to conclude that Zf∞ is dense in K∞. The continuity
of f∞ yields that Zf∞ = K∞.

Now, we have to pull this back toKα. Since E ⊂ Zf by Lemma 5.4, the Φα(z
∗)-periodicity

of Zf yields that

E + Φα(OSα
) ⊆ E + Φα(z

∗) ⊂ Zf .

The set E + Φα(OSα
) is dense in Kα because K∞ × Φb({0}) ⊂ E and Φb(OSα

) is dense
in Kb (by the Strong Approximation Theorem). Thus f vanishes on a dense subset of Kα.
The continuity of f now yields that f ≡ 0 on Kα, contradicting the fact that f is a special
eigenfunction. This proves the theorem. �

6. intersective tiles and SRS tiles

Now we consider the intersective tiles G(x), x ∈ Z[α], and show that for certain choices
of D they are intimately related to SRS tiles.

Tiling induced by intersective tiles. As above, assume that α is an expanding algebraic
number with minimal polynomial A(X) given in (2.1), D is a standard digit set for α, and
set z = Z〈α,D〉. First we prove (2.3), showing that F can be built from intersective tiles.

Proposition 6.1. The intersective tiles G(x), x ∈ z, form “slices” of the rational self-affine
tile F in the sense that

F =
⋃

x∈z

(
G(x)− Φα(x)

)
.

Proof. Note that

G(x)− Φα(x) = F ∩
(
K∞ × Φb(−x)

)

for all x ∈ z. The set Φb(z) is dense in Kb by the Strong Approximation Theorem
(Lemma 5.6) and Lemma 3.2. Since F is the closure of its interior by Theorem 1 (ii),
the result follows. �

The sets G(x) can be characterized in terms of the Z-module

Λα,m = Z[α] ∩ αm−1Z[α−1] .

Here and in the following, m is chosen in a way that D ⊂ αmZ[α−1] holds.
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Lemma 6.2. For every x ∈ Z[α] we have

G(x) = Φα(x) +

{ ∞∑

j=1

Φα(djα
−j) : dj ∈ D, αkx+

k∑

j=1

djα
k−j ∈ Λα,m for all k ≥ 0

}
.

In particular, we have G(x) = ∅ for all x ∈ Z[α] \ Λα,m.

In the proof of Lemma 6.2, we use the following observation.

Lemma 6.3. For every x ∈ Z[α, α−1] \ Z[α−1] we have Φb(x) 6∈ Φb(Z[α−1]).

Proof. We first show that

(6.1) Z[α, α−1] ∩ O[α−1] ⊆ αh Z[α−1]

for some integer h ≥ 0. Indeed, by analogous reasoning as in the proof of Lemma 3.2 (ii),
Z[α−1] is a subgroup of finite index of O[α−1]. Let x1, . . . , xℓ ∈ O[α−1] be a complete
set of representatives of O[α−1]/Z[α−1], and choose integers h1, . . . , hℓ as follows. If xi 6∈
Z[α, α−1], then set hi = 0. If xi ∈ Z[α, α−1], then choose hi ≥ 0 in a way that xi ∈
αhiZ[α−1]. As xi 6∈ Z[α, α−1] implies Z[α, α−1] ∩ (Z[α−1] + xi) = ∅, and xi ∈ αhiZ[α−1]
implies Z[α−1] + xi ⊆ αhiZ[α−1], we obtain that

Z[α, α−1] ∩O[α−1] =
ℓ⋃

i=1

(
Z[α, α−1] ∩ (Z[α−1] + xi)

)
⊆ αmax{h1,...,hℓ}Z[α−1].

Hence, (6.1) holds with h = max{h1, . . . , hℓ}.
To prove the lemma let x ∈ Z[α, α−1]\Z[α−1] and suppose on the contrary that Φb(x) ∈

Φb(Z[α−1]). Then there is y ∈ Z[α−1] such that |y − x|p ≤ |α−h|p for all p | b, with h as
above, i.e., αh(y − x) ∈ O[α−1], cf. Lemma 3.2 (i). By (6.1), this gives y − x ∈ Z[α−1],
contradicting that y ∈ Z[α−1] and x /∈ Z[α−1]. �

Proof of Lemma 6.2. Let z ∈ F + Φα(x), i.e., z = Φα(x) +
∑∞

j=1Φα(djα
−j) with dj ∈ D.

We clearly have αkx+
∑k

j=1 djα
k−j ∈ Z[α] for all k ≥ 0.

If αkx +
∑k

j=1 djα
k−j ∈ Λα,m for all k ≥ 0, then x +

∑k
j=1 djα

−j ∈ αm−k−1Z[α−1], thus

|x+
∑∞

j=1 djα
−j|p = 0 for all p | b, i.e., z ∈ K∞ ×∏

p|b{0}. This gives z ∈ G(x).
If αkx +

∑k
j=1 djα

k−j 6∈ αm−1Z[α−1] for some k ≥ 0, then Lemma 6.3 implies that

Φb(α
kx +

∑k
j=1 djα

k−j) 6∈ Φb(αm−1 Z[α−1]). Since
∑∞

j=k+1Φb(djα
k−j) ∈ Φb(αm−1 Z[α−1])

by the choice of m, we obtain πb(α
k · z) 6∈ Φb(αm−1 Z[α−1]), in particular πb(z) 6= Φb(0),

i.e., z 6∈ G(x). �

Define the map
Tα : Z[α] → Z[α] , x 7→ α−1(x− d) ,

where d is the unique digit in D such that α−1(x− d) ∈ Z[α].

Lemma 6.4. For each x ∈ Λα,m, we have Tα(x) ∈ Λα,m.

Proof. We have Tα(x) ∈ Z[α] by definition, and Tα(x) = α−1(x− d) ∈ αm−1Z[α−1]. �
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After these preparations, we give the following set equations for intersective tiles.

Proposition 6.5. For each x ∈ Z[α], we have

G(x) =
⋃

y∈T−1
α (x)

α−1 · G(y) .

Proof. This is a direct consequence of Lemmas 6.2 and 6.4. �

We now start the preparations for the proof of Theorems 3 and 4. Recall that we identify
K∞ with K∞ × Φb({0}).
Lemma 6.6. The collection {G(x) : x ∈ z} forms a covering of K∞.

Proof. This follows from the fact that {F + Φα(x) : x ∈ z} covers Kα. �

In the next step, we consider properties of the Z-module Λα,m. Recall that a subset of
K∞ is a lattice if it is a Delone set and an additive group.

Lemma 6.7. Let k ∈ Z be given. Then the sets Φ∞(Λα,k) and Φ∞(z ∩ Λα,k) form lattices
in K∞ ≃ Rn. Moreover, the cardinality of Λα,k+1/Λα,k is |an|, where an is the leading
coefficient of the polynomial A(X) in (2.1).

Proof. For each x ∈ Λα,k, we have |x|p ≤ |αk−1|p for all p | b, and |x|p ≤ 1 for all other p ∤ ∞.
Therefore, Φ∞(Λα,k) is a lattice and, hence, Φ∞(z∩Λα,k) is contained in a lattice. To show
that Φ∞(z∩Λα,k) contains a lattice, choose x1, . . . , xn ∈ z such that {Φ∞(x1), . . . ,Φ∞(xn)}
is a basis of K∞ (regarded as a vector space over R). There exists j ∈ N such that, with
an as in (2.1), we have ajnx1, . . . , a

j
nxn ∈ Λα,k. Since Φ∞(z∩Λα,k) is a Z-module containing

the basis {Φ∞(ajnx1), . . . ,Φ∞(ajnxn)} of K∞, it contains a lattice. Being an additive group,
Φ∞(z ∩ Λα,k) is therefore a lattice.

To show that the cardinality Λα,k+1/Λα,k is |an|, first note that

Λα,k+1 = αkZ[α−1] ∩ Z[α] =
⋃

c∈{0,1,...,|an|−1}
(c αk + αk−1Z[α−1]) ∩ Z[α]

is a partition of Λα,k+1. For any x ∈ (c αk + αk−1Z[α−1]) ∩ Z[α], we have

(c αk + αk−1Z[α−1]) ∩ Z[α] = x+ Λα,k .

It remains to show that (c αk + αk−1Z[α−1]) ∩ Z[α] 6= ∅ for all c ∈ {0, 1, . . . , |an| − 1}.
As Φb(Z[α]) is dense in Kb by Lemma 3.2 (ii) and the Strong Approximation Theorem in

Lemma 5.6, there is, for each c ∈ Z, some x ∈ Z[α] such that Φb(x) ∈ Φb(c αk + αk−1Z[α−1]).
By Lemma 6.3, we have x−c αk ∈ αk−1Z[α−1], thus x ∈ (c αk+αk−1Z[α−1])∩Z[α] 6= ∅. �

We are now in a position to show that µ∞(∂G(x)) = 0 holds for each x ∈ Z[α].

Proof of Theorem 3 (i). Let x ∈ Z[α], and X ⊂ K∞ be a rectangle containing G(x). Since
αℓ · G(x) = ⋃

y∈T−ℓ
α (x) G(y) by Proposition 6.5, we have αℓ · ∂G(x) ⊂ ⋃

y∈Z[α] ∂G(y) and thus

(6.2)
µ∞(∂G(x))
µ∞(X)

=
µ∞(αℓ · ∂G(x))
µ∞(αℓ ·X)

≤
µ∞

(⋃
y∈Z[α] ∂G(y) ∩ αℓ ·X

)

µ∞(αℓ ·X)
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for all ℓ ∈ N. To get an upper bound for µ∞
(⋃

y∈Z[α] ∂G(y) ∩ αℓ ·X
)
, let

Rk =
{
z ∈ Dk : ∂(α

k · F) ∩
(
F + Φα(z)

)
6= ∅

}

with Dk as in (3.2). Then, for every y ∈ Z[α],

∂G(y) ⊂ ∂
(
F+Φα(y)

)
∩ (K∞×Φb({0})) ⊂

⋃

z∈Rk

α−k ·
(
F+Φα(α

k y+z)
)
∩ (K∞×Φb({0})).

If Φb(0) ∈ πb(F)+Φb(α
k y+ z) ⊂ Φb(αm−1 Z[α−1])+Φb(α

k y+ z) holds for a given z ∈ Rk,
then Lemma 6.3 yields αk y + z ∈ αm−1 Z[α−1]. Thus

(6.3)
⋃

y∈Z[α]
∂G(y) ⊂

⋃

z∈Rk

⋃

y∈Z[α]∩α−k(αm−1Z[α−1]−z)

Φ∞(y + α−kz) + π∞(α−k · F) .

If we set

Ck,ℓ(z) = {y ∈ Z[α] ∩ α−k(αm−1Z[α−1]− z) : Φ∞(y + α−kz) ∈ αℓ ·X − π∞(α−k · F)
}
,

then (6.3) implies that

(6.4)
⋃

y∈Z[α]
∂G(y) ∩ αℓ ·X ⊂

⋃

z∈Rk

⋃

y∈Ck,ℓ(z)

Φ∞(y + α−kz) + π∞(α−k · F) .

To estimate the measure of the right hand side of (6.4), we first deal with the number of
elements in Rk and Ck,ℓ(z). From the proof of Theorem 1 (iii), we get that

(6.5) #Rk = O(rk)

with r < |a0|. To derive an estimate for #Ck,ℓ(z), observe that, for each z ∈ Dk, the set
Z[α] ∩ α−k(αm−1Z[α−1] − z) forms a residue class of Λα,m/Λα,m−k. By Lemma 6.7, the
cardinality of Λα,m/Λα,m−k is |an|k. For ℓ sufficiently large (in terms of k), we obtain that

(6.6)
maxz∈Rk

#Ck,ℓ(z)

#
{
y ∈ Λα,m : Φ∞(y) ∈ αℓ ·X

} ≤ 2

|an|k
.

(Just note that Φ∞(Ck,ℓ(z)) is essentially the intersection of a shifted version of the sublat-
tice Φ∞(Λα,m−k) of Φ∞(Λα,m) with the large rectangle αℓ ·X ; the subtraction of π∞(α−k ·F)
is minor as ℓ is large.) As Φ∞(Λα,m) is a lattice in K∞, we gain that

(6.7) #{y ∈ Λα,m : Φ∞(y) ∈ αℓ ·X} = O
(
µ∞(αℓ ·X)

)
.

Since
∏

p|∞ |α|p = |a0|
|an| , we have

(6.8) µ∞
(
π∞(α−k · F)

)
= O

( |an|k
|a0|k

)
.

Putting (6.4) together with the estimates (6.5), (6.6), (6.7), and (6.8), we arrive at

µ∞
(⋃

y∈Z[α] ∂G(y) ∩ αℓ ·X
)

µ∞(αℓ ·X)
≤ #Rk maxz∈Rk

#Ck,ℓ(z)µ∞
(
π∞(α−k · F)

)

µ∞(αℓ ·X)
≤ c rk

|a0|k
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for some constant c > 0, which holds for each k ∈ N and for all sufficiently large ℓ. Inserting

this estimate in (6.2) implies that µ∞(∂G(x))
µ∞(X)

≤ c rk

|a0|k for all k ∈ N, i.e., µ∞(∂G(x)) = 0. �

The main problem in the proof of the tiling property of the collection {G(x) : x ∈ z}
consists in finding an exclusive point, i.e., a point z ∈ K∞ which is contained in exactly one
element of this collection. Using the tiling theorem for rational self-affine tiles (Theorem 2)
we exhibit such an exclusive point in the two following lemmas (see [BSS+11, Section 4],
where similar methods were employed).

Lemma 6.8. Let Y = {y ∈ z ∩ Λα,m : Φ∞(y) ∈ π∞(F)}. There exist z ∈ z ∩ Λα,m, k ≥ 0,
such that

T k
α(z + y) = 0 = T k

α (z) for all y ∈ Y.

Proof. By Lemma 6.7 and because π∞(F) is compact, the set Y is finite. Since the interior
of F is non-empty by Theorem 1 (ii), there exists an open ball B ⊂ int(F). By Lemma 6.7,
we can find some k ≥ 0 and some z ∈ z ∩ Λα,m such that z + Y ⊂ αk · B. We have
αk · F = F + Dk by (3.2), and z ∩ αk · int(F) ⊆ Dk by Theorem 2. Hence, we conclude
that z + Y ⊆ Dk, i.e., T

k
α(z + y) = 0 for all y ∈ Y . �

Lemma 6.9. Let z ∈ z∩Λα,m, k ≥ 0 such that T k
α(z+ y) = T k

α (z) for all y ∈ Y , with Y as
in Lemma 6.8. Then Φ∞(α−kz) ∈ G(T k

α (z)) and Φ∞(α−kz) 6∈ G(x) for all x ∈ z \ {T k
α (z)},

i.e., Φ∞(α−kz) is an exclusive point of G(T k
α (z)).

Proof. Consider any x ∈ z such that Φ∞(α−kz) ∈ G(x). Note that such an x exists by
Lemma 6.6. By Proposition 6.5, there exists z′ ∈ T−k

α (x) ∩ Λα,m such that Φ∞(α−kz) ∈
α−k · G(z′). This means that Φ∞(α−kz) = α−k ·

(
Φ∞(z′) +

∑∞
j=1Φ∞(djα

−j)
)
for some

dj ∈ D, thus Φ∞
(
z− z′) ∈ π∞(F). Since T−k

α (z) ⊆ z, we have z− z′ ∈ Y . By the definition
of z′ and the assumption of the lemma, we obtain that

x = T k
α (z

′) = T k
α(z + (z′ − z)) = T k

α(z) .

Therefore, Φ∞(α−kz) is an exclusive point of G(T k
α (z)). �

We can now show that {G(x) : x ∈ z} forms a tiling of K∞.

Proof of Theorem 3 (ii). Being the intersection of the compact set F + Φα(x) with K∞ ×
Φb({0}), the set G(x) is compact for each x ∈ z. The collection {G(x) : x ∈ z} is uniformly
locally finite because G(x) = ∅ for all x ∈ z \ Λα,m by Lemma 6.2, Φ∞(z ∩ Λα,m) forms a
lattice of K∞ by Lemma 6.7, and G(x)− Φ∞(x) ⊆ π∞(F) for all x ∈ z.

Let z ∈ z ∩ Λα,m and k ≥ 0 be as in Lemma 6.8. By the definition of Tα, this implies
that T k

α(x + y) = T k
α(x) for all x ∈ z + αkZ[α], y ∈ Y . In particular, this holds true for

x ∈ z + αk(z ∩ Λα,m−k) ⊆ z ∩ Λα,m. By Lemma 6.9, the point Φ∞(α−kx) is exclusive for
each of these x. Since Φ∞(z ∩ Λα,m−k) is a lattice, we have found a relatively dense set
of exclusive points in K∞. Proposition 6.5 shows that, for every exclusive point z, the
point α−1 · z is exclusive as well. Therefore, the set of exclusive points is dense. Since
the boundary of each tile has zero measure (by Theorem 3 (i)) and {G(x) : x ∈ z} is a
uniformly locally finite collection of compact sets, this proves the tiling property. �
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For certain digit sets, the set G(x) is non-empty for each x in the Z-module Λα,m. This
is made precise in the following lemma.

Lemma 6.10. Suppose that D contains a complete residue system of αmZ[α−1]/αm−1Z[α−1].
Then, for every x ∈ Λα,m, we have αx+ d ∈ Λα,m for some d ∈ D, thus G(x) 6= ∅.

Proof. For each x ∈ Λα,m, we have αx + d ∈ Z[α] ∩ αmZ[α−1] for all d ∈ D. Since D
contains a complete residue system of αmZ[α−1]/αm−1Z[α−1], there exists some d ∈ D
such that αx + d ∈ αm−1Z[α−1]. Inductively, we obtain a sequence d1, d2, . . . such that

αkx+
∑k

j=1 djα
k−j ∈ Λα,m for all k ≥ 0, thus Φα(x) +

∑∞
j=1Φα(djα

−j) ∈ G(x). �

To prepare the proof of Theorem 4 (ii), we start with the following representation of G(x).

Lemma 6.11. Suppose that D contains a complete residue system of αmZ[α−1]/αm−1Z[α−1].
Then, for each x ∈ Λα,m, we have

G(x) = Lim
k→∞

Φ∞
(
α−k

(
T−k
α (x) ∩ Λα,m

))
,

where the limit is taken with the respect to the Hausdorff distance δH .

Proof. Let x ∈ Λα,m. By Proposition 6.5 and Lemma 6.2, we have

G(x) =
⋃

y∈T−k
α (x)∩Λα,m

α−k · G(y) .

All the involved sets are non-empty by Lemma 6.10, and

max
y∈Λα,m

diam
(
α−k · G(y)

)
≤ c′ max

p|∞
|α−k|p

for some c′ > 0 because G(y) ⊂ π∞(F). This implies that

(6.9) δH

(
G(x),Φ∞

(
α−k

(
T−k
α (x) ∩ Λα,m

)))
≤ c′ max

p|∞
|α−k|p .

Since α−1 is contracting, this yields the lemma. �

Lemma 6.12. Let x, y ∈ Λα,m, k ≥ 0 such that x− y ∈ Λα,m−k. Then

α−k
(
T−k
α (x) ∩ Λα,m

)
− x = α−k

(
T−k
α (y) ∩ Λα,m

)
− y .

Proof. Let x, y ∈ Λα,m, k ≥ 0 such that x−y ∈ Λα,m−k. This implies that αk(x−y) ∈ Λα,m.
Therefore, for each d ∈ Dk, α

k x+ d ∈ Λα,m is equivalent to αk y + d ∈ Λα,m. We get that

(
T−k
α (x) ∩ Λα,m

)
− αk x = {d ∈ Dk : αk x+ d ∈ Λα,m}

= {d ∈ Dk : αk y + d ∈ Λα,m} =
(
T−k
α (y) ∩ Λα,m

)
− αk y .

Multiplying by α−k, the lemma follows. �
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Proof of Theorem 4. The fact that {G(x) : x ∈ Λα,m∩Z〈α,D〉} forms a tiling ofK∞ follows
directly from Theorem 3 and Lemma 6.2. Assertion (i) is the content of Lemmas 6.2
and 6.10. Finally, assertion (ii) is a consequence of Lemma 6.12 and (6.9). Indeed, we
obtain that

δH
(
G(x)− Φ∞(x),G(y)− Φ∞(y)

)
≤ δH

(
G(x)− Φ∞(x),Φ∞

(
α−k

(
T−k
α (x) ∩ Λα,m

)
− x

))

+ δH

(
Φ∞

(
α−k

(
T−k
α (y) ∩ Λα,m

)
− y

)
,G(y)− Φ∞(y)

)

≤ 2c′ max
p|∞

|α−k|p . �

The following example shows that the set {x ∈ Z[α] : G(x) 6= ∅} need not be a Z-module
when the condition of Lemma 6.10 is not satisfied.

Example 6.13. Let α = 4
3
and D = {0, 1, 2, 1

3
} ⊂ αZ[α−1], which gives the tiling depicted

in Figure 4. For this choice of α and D, (5.2) holds with m = 1, and Lemma 6.2 implies
that G(x) 6= ∅ holds if and only if x ∈ T k

α(Λα,1) for all k ≥ 0. We first observe that
Λα,1 = Z[1

3
] ∩ Z[1

4
] = Z and

Tα(Λα,1) = {x ∈ Z : αx+ d ∈ Z for some d ∈ D} = {x ∈ Z : x 6≡ 1 mod 3} .

Inductively, we obtain that

T k
α (Λα,1) = {x ∈ T k−1

α (Λα,1) : αx+ d ∈ T k−1
α (Λα,1) for some d ∈ D}

= {x ∈ Z : x 6≡ 2 3j − 1 mod 3j+1 for all 0 ≤ j < k} ,

e.g. T 4
α(Λα,1) = {0, 2, 3, 6, 8, 9, 11, 12, 15, 18, 20, 21, 24, 26}+ 27Z. Therefore, the set G(x),

x ∈ Z[α], is non-empty if and only if x ∈ Z and x 6≡ 2 3j − 1 mod 3j+1 for all j ≥ 0.
Since T−1

α (−3) = {−3} and T−1
α (−1) = {−1}, we have G(−3) = {0} = G(−1).

−3

−2

−1

0

1

2

3

4

5

6

G(0) G(2) G(3) G(6)G(−3) = G(−1)

Figure 4. The tiles F + Φα(x) ∈ R × Q3 for α = 4
3
, D = {0, 1, 2, 1

3
},

x ∈ {−6,−5, . . . , 3}, and the corresponding intersective tiles G(x) ∈ R. An
element

∑∞
j=k bjα

−j of Q3, with bj ∈ {0, 1, 2}, is represented by
∑∞

j=k bj3
−j.
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SRS tiles. We will now relate SRS tiles with intersective tiles given by digit sets of the
shape D = {0, 1, . . . , |a0|−1}. This will enable us to infer that Theorem 5 is a consequence
of Theorem 4.

Recall that the minimal polynomial A(X) = anX
n + · · ·+ a1X + a0 of α is a primitive

expanding polynomial. Therefore, we have |a0| > |an|, and the set D = {0, 1, . . . , |a0| − 1}
contains a complete residue system of Z[α−1]/α−1Z[α−1]. By Lemmas 6.2 and 6.10, this
implies that G(x) is non-empty if and only if x ∈ Λα,0. We first determine a basis of Λα,0.

Lemma 6.14. The Z-module Λα,0 is generated by w0 = an, wi = αwi−1+ an−i, 1 ≤ i < n.

Proof. For 0 ≤ i < n, we have wi =
∑i

j=0 an−i+jα
j = −∑−1

j=i−n an−i+jα
j , thus wi ∈ Λα,0

for 0 ≤ i < n. Clearly, the Z-module generated by these elements is in Λα,m as well.
Let x ∈ Λα,0, i.e., x = P (α) and x = Q(α) with polynomials P ∈ Z[X ], Q ∈ X−1Z[X−1].

Therefore, P (X)−Q(X) is a multiple of A(X) in Z[X,X−1] and, hence, the leading coeffi-
cent p of P (X) is divisible by an. If deg(P ) ≥ n, then R(X) = P (X)− p

an
Xdeg(P )−nA(X) ∈

Z[X ] gives the alternative representation x = R(α), where deg(R) < deg(P ). Therefore,

we can assume that deg(P ) < n., i.e., x =
∑n−1

j=0 pjα
j with pj ∈ Z.

Set P1(X) =
∑n−1

j=0 pjX
j and

bn−1 =
pn−1

an
, bn−2 =

pn−2 − bn−1an−1

an
, . . . , b0 =

p0 − bn−1a1 − · · · − b1an−1

an
.

Define, recursively for 1 ≤ i < n, the Laurent polynomials

Pi+1(X) = Pi(X)− bn−iX
i−nA(X) .

Inductively we obtain that anbn−i is the coefficient of Xn−i in Pi(X), and it is either 0 or
the leading coefficient of Pi(X). Now, Pi(α) − Q(α) = 0 implies that anbn−i is divisible

by an, hence bn−i is an integer. By the definition of wi, we have
∑n−1

j=0 pjα
j =

∑n−1
i=0 biwi.

Therefore, x is in the Z-module generated by w0, . . . , wn−1. �

In view of Lemma 6.14, we define the mapping

ια : Qn → Q(α) , (z0, . . . , zn−1) 7→ sgn(a0)
n−1∑

i=0

ziwi .

The following proposition is the transcription of [BSS+11, Theorem 5.12] into our setting.
Since establishing all the necessary notational correspondences is more complicated than
giving a proof, we include its proof.

Proposition 6.15. Let D = {0, 1, . . . , |a0| − 1}, r = (an
a0
, . . . , a1

a0
). Then we have

G
(
ια(z)

)
= Υ

(
Tr(z)

)
for all z ∈ Zn,

where Υ : Rn → K∞ is the linear transformation that is equal to Φ∞ ◦ ια on Qn.
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Proof. The matrix

Mr =




0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1

−an
a0

−an−1

a0
· · · −a2

a0
−a1
a0




represents the multiplication by α−1 with respect to the basis {w0, w1, . . . , wn−1} of Q(α),
which is defined in Lemma 6.14. This means that α−1ια(z) = ια(Mr z) for all z ∈ Qn. For
z ∈ Zn, we have, using the definition of τr and the fact that wn−1 = −a0α

−1,

ια
(
τr(z)

)
= ια

(
Mr z+

(
0, . . . , 0, rz− ⌊rz⌋

))

= α−1ια(z) +
d

|a0| sgn(a0)wn−1 = α−1
(
ια(z)− d

)
= Tα

(
ια(z)

)
,

where d = |a0| (rz − ⌊rz⌋) is the unique element in D such that α−1(ια(z) − d) ∈ Z[α].
Iterating this and observing that z ∈ Zn is equivalent to ια(z) ∈ Λα,0, we obtain that

ια
(
Mk

r τ
−k
r (z)

)
= α−k

(
T−k
α

(
ια(z)

)
∩ Λα,0

)
for all k ≥ 0,

and

Υ
(
Tr(z)

)
= Υ

(
Lim
k→∞

Mk
r τ

−k
r (z)

)
= Lim

k→∞
Φ∞

(
α−k

(
T−k
α

(
ια(z)

)
∩ Λα,0

))
= G(ια(z)) . �

Now, we can conclude the proof of our last theorem.

Proof of Theorem 5. This follows immediately from Theorem 4 and Proposition 6.15. �
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