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Optimization Material Distribution 
methodology: Some electromagnetic examples 

P. Boissoles, H. Ben Ahmed, M. Pierre, B. Multon 

 
Abstract—In this paper, a new approach towards Optimization 

Material Distribution (OMD) is proposed. The principle behind 
this approach is to use a surface genetic algorithm to determine 
material distribution within a fixed Finite Element Computation 
mesh. The method proves to be highly adaptive to various kinds 
of electromagnetic actuator optimization approaches. Several 
optimal electromagnetic examples are presented. 
 

Index Terms—Optimization, Design, OMD, Electromagnetic 
actuators 

I. OPERATING PRINCIPLE 
Generally speaking, the design process adopted for 

technical objects such as actuators entails "human"-scale 
iterations. The inherent architecture of the object (i.e. how 
materials are laid out) does not result from any mathematical 
optimization due to the difficulty involved in establishing a 
formulation as part of a more classical approach. The 
optimization strategy quite often therefore gets detached from 
design. In reality, optimization only enters the design process 
later on as a means of quantifying, a posteriori, and then 
validating or not the pertinence of this structural choice. 
Within this classical approach (so-called "shape optimization", 
see Fig. 1), optimization variables consist of the geometrical 
parameters of the selected structure (e.g. airgap radius, yoke 
thickness) once its overall shape has been defined. This 
approach is thus intrinsically tied to the various prerequisites 
incorporated by the designer, which naturally introduces a 
certain number of deficiencies, namely: 

 
- optimality of the selected structure is not guaranteed; 
- the range of potential architectural solutions is narrow 

since the approach is being dictated by human-
motivated activity; 

- for new applications (especially in MEMS, wherein the 
designer does not necessarily have to meet 
prerequisites, it is difficult to derive well-adapted 
solutions. 
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Fig. 1. Shape optimization flowchart, according to the classical approach 
 
These few disadvantages may, in part, be overcome through 

use of an entirely quantitative design procedure, called 
"Optimization Material Distribution" (OMD). According to 
this approach, design/optimization processes overlap; 
topological constraints are scaled back to the bare minimum. 
Moreover, discontinuous material distribution becomes 
feasible, which is capable of leading to an optimal solution; 
such a methodological step would have been difficult to 
imagine when considering a strictly continuous distribution. 
The steps employed can indeed give rise to a bona fide 
generic Design Aid tool, providing the designer with a high-
performance resource for extending the field of investigation 
and expanding the array of inventive capabilities. 

 
Figure 2 presents a flowchart illustrating the OMD method. 

As opposed to classical strategy, the optimization variables 
here consist of the physical characteristics of each mesh link 
(e.g. resistivity, permeability, current density). The mesh thus 
corresponds to the discretization of both the finite element 
geometry and the material distribution. This mesh remains 
unchanged regardless of topology; the electrical and magnetic 
properties of each element undergo modification within the 
OMD optimization process. The number of variables is hence 
proportional to the product of the number of elements times 
the number of physical variables. The discretization of each 
physical magnitude may also be taken into consideration, in 
which case the focus lies in optimizing the distribution 
functions and not the actual distribution itself. 
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Fig. 2. OMD flowchart 
 
Optimization constraints tend to be of the three following 

types: 
- volume constraints; 
- physical constraints correlated with the limit 

characteristics of the materials employed (e.g. 
saturation, temperature rise, demagnetization); 

- so-called functional constraints, corresponding to 
spaces whose characteristics have been specifically set 
to perform a given function, e.g. rotation of the mobile 
part. 

 
With respect to the optimization methodology, we 

employed a genetic algorithm approach [1], which seemed 
especially well-suited to this type of problem. 

 
Since the mid-1990's, several laboratories throughout the 

world have been developing this methodology. The efforts 
undertaken by N. Dyck [2], in designing an elementary 
magnetic bearing with induced current by means of OMD, 
merit special mention. The objective behind the OMD method 
applied was to optimize material distribution (both iron and 
copper) in order to generate a supporting force of a given 
minimum value and to minimize the bearing mass and Joule 
losses. In [3], S. Wang applied the OMD method in the case 
of an electro-thermomechanical microactuator. In this 
instance, the objective concerned optimizing the distribution 
of a thermoelastic material, featuring given characteristics and 
contained within a fixed volume, to allow maximizing 
horizontal displacement for an imposed spring stiffness. Next, 
in [4], S. Dufour optimized distribution of the ferromagnetic 
material from a rotor on a variable reluctance synchronous 
machine so as to maximize average torque. 

 
In the present article, we applied this method to various 

simple electromagnetic problems for the purpose of testing 
OMD relevance. In the following sections, we will describe 
several of the examples studied. 

 

II. FIRST EXAMPLE: FERROMAGNETIC ELECTROMAGNET 
One procedure for producing Bose-Einstein condensates 

consists of using a magnetic trap to collect and cool atoms [5]. 
To carry out this step, a ferromagnetic electromagnet must 
first be introduced, thereby creating very strong magnetic field 
gradients at the center of the structure (over the segment 0-α, 
see Fig. 3). 

 
Fig. 3. Diagram of the electromagnet (1/4 of the structure shown) 

For reasons of symmetry, we were able to proceed by 
meshing, using triangles, just one-eighth of the total 
electromagnet (Fig. 4). Each mesh element can contain air, 
iron or copper. Accordingly, our procedure calls for adopting 
integer values of 0, 1 and 2. 

0: Air:
µ r = 1

J = 0 A/mm2

1: Iron:
µr = 1,000

J = 0 A/mm2

Fig. 4. Study domain 
 
Determining the magnetic field 

material distribution required comp
using the finite element code th
library [6]: 

1
  with rot rot a j b rot a

µ
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

  

Boundary conditions have been in
 

In the lower part of the mesh, a
Fig. 4, we now impose the presence 
Bose-Einstein condensates. 

The objective function to be max
0, 1 or 2
 

2: Copper:
µ r = 1

J = 10 A/mm2

associated with a given 
uting potential vector a  

at accesses the Melina® 

(1) 

dicated on Figure 4. 

s represented in white on 
of air to enable generating 

imized is the norm L2 of 
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the magnetic field along the blue edge [O,α] of Figure 4, 
given by: 

2
Bx dy
yOα

∂
∆ = ∫

∂
 (2) 

As illustrated in Figure 5, based on an imposed volume, the 
OMD method consists of determining the physical 
characteristic of each mesh element (i.e. a value of either 0, 1 
or 2) in order to maximize ∆. The optimization routine 
proceeds by use of a genetic algorithm (NSGA II, [1]), whose 
primary settings are the constant values of mutation 
probabilities (pM) and crossover probabilities (pX). The 
influence of these parameters will be addressed in Section B 
below. 

Mesh

Evaluation of performances by FE Code
(Melina)

∆=MAX

Optimization
(NSGA II)

NO

YES

0 1 2 0
0 ......

3....

0....
1

pM, pX

 
Fig. 5. Study domain 

A. Reference case 
To assess algorithm sensitivity to crossover 

probabilities pX and mutation probabilities pM, we considered 
a reference case comprising only a few variables: the mesh 
comprises just two lines above the white part, i.e. a total of 
40 variables. 
 

Moreover, the presumed values of pX and pM are both 
equal to 0.1. Each generation or iteration is composed of a 
population of 50 individuals. 

Figure 6 depicts the optimal solution obtained for this 
reference case (the white part corresponds to air, the blue part 
to iron and the red part to copper). The distribution of 
induction Bx over segment 0-α is shown in Figure 7. The 
value of the corresponding objective function is: ∆=0.589; 
total ampere-turns equal , which yields 

a ratio 

. 796.25 AAT J ds= =∫
Ω

47.397 10AT
−∆ = × . 

  
(a) (b) 

Fig. 6. Optimal distribution of material (a) and flux density lines for 
pX=pM=0.1 

 

B
x 

[T
] 

 

 
Fig. 7. Magnetic induction along [O,α] for pX=pM=0.1 

B. Influence of mutation probability (pM) 
Using the reference case as a starting point, we then 

modified the mutation probability (pM). The results derived 
for various pM values are displayed in Figures 8 and 9. 
According to expectations, as pM rises, convergence becomes 
increasingly difficult. After 200 generations, the optimal 
solution has still not been attained. 

Choosing a very low mutation probability (pM < 0.1) 
would thus appear to be preferable. 

Physical 
characteristics 
 mesh matrix 

  
(a) (b) 

  
(c) (d) 

Fig. 8. Optimal material distributions after 200 generations for pX=0.1 and 
(a) pM=0.3, (b) pM=0.5, (c) pM=0.7 and (d) pM=0.9 
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Fig. 9. Influence of mutation probability (pM) on the objective function  
for 100 generations and pX=0.1 

C. Influence of crossover probabilities 
This same study was also conducted to assess the sensitivity 

to crossover probability pX. The results, given in Figures 11 
and 12, show that the genetic algorithm is relatively 
insensitive to pX. In the various cases observed on Figure 11 
 Y position [m]
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(pX=0.3, 0.5, 0.7 and 0.9), the optimal solution obtained as of 
the 100th generation lies very close to that of the reference 
case (pX=0.1). 

  
(a) (b) 

  
(c) (d) 

Fig. 10. Optimal material solution after 100 generations for pM=0.1 and 
(a) pX=0.3, (b) pX=0.5, (c) pX=0.7 and (d) pX=0.9 

 

 
 
Fig. 11. Influence of crossover probability (pX) on the objective function  
for 100 generations and pM=0.1 

D. Number of variables 

The number of variables, correlated with the level of mesh 
refinement and hence with how finely the material has been 
distributed, exerts tremendous influence on the number of 
generations (or iterations) necessary and consequently on 
computation time. This consideration constitutes one of the 
chief problems inherent in the OMD method. For 
pX=pM=0.1, we performed a number of different 
optimizations by means of OMD, including an increasing 
number of variables (see Fig. 13). 25 generations were thus 
required to obtain an optimal solution with 18 variables, 100 
generations with 40 variables, 400 with 66 variables and just 
over 1,000 with 96 variables (Fig. 14). In order to compress 
this computation time, particularly within an OMD strategy, it 
proved necessary to proceed step by step. During each 
incremental step, which contains a limited number of 
variables, an optimization sequence gets performed. The result 
obtained is then input as the initial solution into the 
subsequent step, which features a greater number of variables, 
and so forth. 

  
(a) (b) 

  
(c) (d) 

Fig. 12. Optimal material solution after: (a) 25 generations, (b) 100 
generations, (c) 400 generations and (d) 1,000 generations 

 

 

(d) 

(c) 

(b) 
(a) 

 
Fig. 13. Influence of the number of variables on the number of generations  
for pM=pX=0.1 

E. Comparison with a "classical" solution 

The optimized solution obtained using the OMD method 
has been compared with a "classical" solution derived by 
means of shape optimization. The optimal geometries for the 
two cases are indicated in Figure 14, and the corresponding 
flux density lines in figure 15. 

The OMD method yielded better results, as regards both the 
objective function ∆ and ratio ∆/AT (Fig. 16). The 
improvements realized with the OMD method are 3.5 and 2.3, 
respectively. 

  
(a) (b) 

Fig. 14. Optimal classical configuration (a) and OMD configuration (b)  
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(a) (b) 

Fig. 15. Corresponding flux density lines 
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optimal iron distribution actually corresponds to the vertical 
rods whose thickness is proportional to the mesh link 
dimension. As the number of links increases, the number of 
rods also rises, as illustrated in Figure 18, in which the iron 
has been designated in blue and air in white. 

 
This initial simple example has demonstrated that without 

any additional constraints, particularly on the technical 
feasibility of producing such a structure, OMD does not 
always yield a single optimal solution. 
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(a)             (b) 

Fig. 18. Optimal distribution: (a) coarse mesh, (b) fine mesh OMD approach 

B. Variable Reluctance Repulsive Actuator 
In this second example, the focus lies in optimizing an 

electromagnet whose generated magnetic force, calculated 
from the Maxwell tensor, must be maximized and is known to 
be of the repulsion type (i.e. F < 0). 

0 2 2 .
2 n t

S

H H ds
µ

∆ = − −⎡ ⎤⎣ ⎦∫  (4) 

The initial geometry shown in Figure 19 serves to develop 
an attraction type force (F > 0), as is the case with most static 
electromagnets using solely iron and copper (no induced 
currents). This example then allows testing the OMD 
approach in terms of researching innovative concepts. 

x

y

iron

air

copper

iron

mover

F<0  
 

Fig. 19. Geometry of the VR repulsive actuator 
 

Due to symmetry of the structure, just half of the geometry 
has been studied; results are displayed in Figure 20. Material 
optimization converges towards a solution for which the 
distribution of field lines within the airgap serves to generate a 
repulsive force, resulting from a sizable tangential component 
of the magnetic field (Ht) in comparison with the normal 
component (Hn). This procedure, as indicated in relation (4), 
yields a negative force (hence of the repulsive type) exerted 
on the mover. 
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Fig. 20. Optimal distribution (for the VR repulsive actuator) 

C. Variable Reluctance Linear Actuator 
The third example corresponds to an elementary variable 

reluctance, i.e. a linear actuator. Iron and air compose the 
mobile part. The fixed part is made of iron and copper with a 
fixed current density (see Fig. 21). The objective function 
consists of maximizing the magnetic flux ratio between the 
conjunction and opposition positions (see Equation 5). 

conj oppϕ ϕ∆ = −  (5) 

iron

mover
F

copper

airgap

elemantary domain  
 

Fig. 21. Geometry of the VR linear actuator 
 

  
First optimization Second optimization 

  
Third optimization Fourth optimization 

Fig. 22. Results from the preliminary optimization, in the opposition position 
 

  
Opposition position Conjunction position 

copper

Fig. 23. Results from the final optimization 
 
Several preliminary optimization steps have been 

performed in order to define the initial population of the final 
optimization. Preliminary optimization results, along with the 
final result, are presented in Figures 22 and 23 (the iron is 
denoted in blue, copper in red and air in white). 
 

This final geometry enhances the benefit of splitting the 
copper coil to increase flux variation. 
 

IV. CONCLUSION 
The OMD method is based on overlapping the design and 

optimization processes. It does not entail searching for optimal 
geometric parameters or an optimized shape (along the lines 
of the classical approach), but instead seeks the optimal 
distribution of material by means of optimizing the physical 
characteristics of each mesh element. Applied to 
electromagnetic systems, it offers some outstanding and very 
attractive possibilities, yet carries the major disadvantage 
regarding the computation time required to reach a 
satisfactory solution, due to the very large number of variables 
the method needs to process. Consequently, OMD should be 
confined to solving simple or simplified problems that yield 
an initial optimal shape design that can then be refined using a 
more classical method. 
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