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1 Introduction.

Let ω be a ∂ closed (p, q) form in C n with compact support K := Supp ω and such that ω ∈ L r (C n ), the Lebesgue space in C n . Setting K in a ball B := B(0, R) with R big enough, we know, by a theorem of Ovrelid [Ovrelid, 1971], that we have a (p, q -1) form u ∈ L r (B) such that ∂u = ω. On the other hand we also know, at least when q < n, that there is a current v with compact support such that ∂v = ω, by a theorem of Andreotti-Grauert [START_REF] Andreotti | Théorèmes de finitude pour la cohomologie des espaces complexes[END_REF]. So a natural question is: may we have a solution u of ∂u = ω with compact support and in L r (C n ) ?

There is a work by H. Skoda [Skoda, 1976] who proved such a result. Let Ω be a strictly pseudo-convex bounded domain in C n with smooth boundary then in [Skoda, 1976, Corollaire p. 295], H. Skoda proved that if f is a (p, q)form with measure coefficients, q < n, ∂ closed and with compact support in Ω, then there is a solution U to the equation ∂U = f such that U L r (Ω) ≤ C(Ω, r) f 1 , for any r such that 1 < r < 2n+2 2n-1 and U has zero boundary values in the sense of Stokes formula. This means that essentially U has compact support and, because Ω is bounded, f 1 f L r (Ω) . So he got the answer for Ω strictly pseudo-convex and 1 < r < 2n+2 2n-1 .

We answered this question by the affirmative for any r ∈ [1, ∞] in a joint work with S. Mongodi [START_REF] Amar | On L r hypoellipticity of solutions with compact support of the Cauchy-Riemann equation[END_REF]] linearly by the "method of coronas". This method asks for extra L r conditions on derivatives of coefficients of ω, when q < n; we shall denote the set of ω verifying these conditions W r q (Ω), as in [START_REF] Amar | On L r hypoellipticity of solutions with compact support of the Cauchy-Riemann equation[END_REF].
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The aim of this work is to extend this result to Stein manifolds and get rid of the extra L r conditions W r q (Ω). For it we use a completely different approach inspired by the Serre duality [Serre, 1955]. Because Hahn Banach theorem is used, this method is no longer constructive as in [START_REF] Amar | On L r hypoellipticity of solutions with compact support of the Cauchy-Riemann equation[END_REF].

The basic notion we shall use here is the following. Definition 1.1. Let X be a complex manifold equipped with a Borel σ-finite measure dm and Ω a domain in X; let r ∈ [1, ∞], we shall say that Ω is r regular if for any p, q ∈ {0, ..., n}, q ≥ 1, there is a constant C = C p,q (Ω) such that for any (p, q) form ω, ∂ closed in Ω and in L r (Ω, dm) there is a (p, q -1) form u ∈ L r (Ω, dm) such that ∂u = ω and u L r (Ω) ≤ C ω L r (Ω) .

We shall say that Ω is weakly r regular if for any compact set

K ⋐ Ω there are 3 open sets Ω 1 , Ω 2 , Ω 3 such that K ⋐ Ω 3 ⊂ Ω 2 ⊂ Ω 1 ⊂ Ω 0 := Ω and 3 constants C 1 , C 2 , C 3 such that: ∀j = 0, 1, 2, ∀p, q ∈ {0, ..., n}, q ≥ 1, ∀ω ∈ L r p,q (Ω j , dm), ∂ω = 0, ∃u ∈ L r p,q-1 (Ω j+1 , dm), ∂u = ω and u L r (Ωj+1) ≤ C j+1 ω L r (Ωj ) .
I.e. we have a 3 steps chain of resolution.

Of course the r regularity implies the weak r regularity, just taking

Ω 1 = Ω 2 = Ω 3 = Ω.
Examples of 2 regular domains are the bounded pseudo-convex domains by Hörmander [Hörmander, 1994].

Examples of r regular domains in C n are the bounded strictly pseudo-convex (s.p.c.) domains with smooth boundary by Ovrelid [Ovrelid, 1971]; the polydiscs in C n by Charpentier [Charpentier, 1980], finite transverse intersections of strictly pseudo-convex bounded domains in C n by Menini [Menini, 1997]. A generalisation of the results by Menini was done in the nice work of [START_REF] Ma | L p estimates for Cauchy-Riemann operator on qconvex intersections in C n[END_REF]: they treated also the case of intersection of q-convex sets.

Examples of r regular domains in a Stein manifold are the strictly pseudo-convex domains with smooth boundary [Amar, 2016]. (See the previous work for (0, 1) forms by N. Kerzman [Kerzman, 1971] and for all (p, q) forms by J-P. Demailly and C. Laurent [Demailly and Laurent-Thiébaut, 1987, Remarque 4, page 596], but here the manifold has to be equipped with a metric with null curvature. See also [Amar, 2017] for the case of intersection of q-convex sets in a Stein manifold).

Let X be a Stein manifold and Ω a domain in X, i.e. an open connected set in X. Let H p (Ω) be the set of all (p, 0) ∂ closed forms in Ω. If p = 0, H 0 (Ω) = H(Ω) is the set of holomorphic functions in Ω. If p > 0, we have, in a chart (ϕ, U ), h ∈ H p (Ω) ⇒ h(z) = |J|=p a J (z)dz J , where dz J := dz j1 ∧ • • • ∧ dz jp and the functions a J (z) are holomorphic in ϕ(U ) ⊂ C n .

We shall denote L r,c p,q (Ω) the set of (p, q)-forms in L r (Ω) with compact support in Ω. We also use the notation r ′ for the conjugate exponent of r, i.e. 1 r

+ 1 r ′ = 1.
Our main theorem is:

Theorem 1.2.
Let Ω be a weakly r ′ regular domain in a Stein manifold X. Then there is a C > 0 such that for any (p, q) form ω in L r,c (Ω), r > 1 with:

• if 1 ≤ q < n, ∂ω = 0; • if q = n, ∀V ⊂ Ω, Supp ω ⊂ V, ω ⊥ H n-p (V ); there is a (p, q -1) form u in L r,c (Ω) such that ∂u = ω as distributions and u L r (Ω) ≤ C ω L r (Ω) .
The notion of r regularity gives a good control of the support: if the support of the data ω is contained in Ω\C where Ω is a weakly r ′ regular domain and C is a weakly r regular domain, then the support of the solution u is contained in Ω\C ′ , where C ′ is any relatively compact domain in C, provided that q ≥ 2. One may observe that Ω\C is not Stein in general even if Ω is.

There is also a result of this kind for q = 1, see section 3.3.

In particular the support of the solution u is contained in the intersection of all the weakly r ′ regular domains containing the support of ω.

The idea is to solve ∂u = ω in a space L r (Ω) with a "big weight η outside" of the support of ω; this way we shall have a "small solution u outside" of the support of ω. Then, using a sequence of such weights going to infinity "outside" of the support of ω, we shall have a u zero "outside of the support" of ω.

Comparing to my previous work [Amar, 2012] the results here are improved and the proofs are much simpler by a systematic use of the Hodge * operator.

I am indebted to G. Tomassini who started my interest in this subject on precisely this kind of questions and also to S. Mongodi for a lot of discussions during the preparation of our joint paper [START_REF] Amar | On L r hypoellipticity of solutions with compact support of the Cauchy-Riemann equation[END_REF].

I want to thank C. Laurent for many instructive discussions on this subject. Finally I also thank the referee for his/her careful reading of the manuscript and the incisive questions he/she asked.

Duality.

We shall study a duality between currents inspired by the Serre duality [Serre, 1955]. Let X be a complex manifold of dimension n. We proceed now exactly as in Hörmander [Hörmander, 1994, p. 119], by introducing a hermitian metric on differential forms locally equivalent to the usual one on any analytic coordinates system. We define the "Lebesgue measure" still as in Hörmander's book [Hörmander, 1994, Section 5.2]: associated to this metric there is a volume measure dm and we take it for the Lebesgue measure on X. Moreover, because X is a complex manifold, it is canonically oriented.

Weighted L r spaces.

Let Ω be a domain in X. We denote also dm the volume form on X. We shall take the following notation from the book by C. Voisin [Voisin, 2002].

To a (p, q)-form α on Ω we associate its Hodge * (np, nq)-form * α. This gives us a pointwise scalar product and a pointwise modulus:

(α, β)dm := α ∧ * β; |α| 2 dm := α ∧ * α, (2.1) 
because α ∧ * β is a (n, n)-form hence is a function time the volume form dm.

We are also given a scalar product α, β on (p, q)-forms such that Ω |α| 2 dm < ∞ and the link between these notions is given by [Voisin, 2002, Lemme 5.8, p. 119]:

α, β = Ω α ∧ * β. (2.2)
We shall define now L r p,q (Ω) to be the set of (p, q)-forms α defined on Ω such that

α r L r p,q (Ω) := Ω |α(z)| r dm(z) < ∞,
where |α| is defined by (2.1).

Lemma 2.1. Let η > 0 be a weight. If u is a (p, q)-current defined on (np, nq)-forms α in L r ′ (Ω, η) and such that

∀α ∈ L r ′ (n-p,n-q) (Ω, η), | u, * α | ≤ C α L r ′ (Ω,η) , then u L r p,q (Ω,η 1-r ) ≤ C.
Proof. We use the classical trick: set α := η 1/r ′ α; ũ := 1 η 1/r ′ u then we have

u, * α = Ω u ∧ α = Ω ũ ∧ α = ũ, * α and α L r ′ (Ω) = α L r ′ (Ω,η) . We notice that α L r ′ (Ω) = * α L r ′ (Ω) because we have ( * α, * α)dm = * α ∧ * * α but * * α = (-1) (p+q)(2n-p-q) α,
by [Voisin, 2002, Lemma 5.5], hence, because ( * α, * α) is positive, ( * α, * α) = |α| 2 . By use of the duality L r p,q (Ω) -L r ′ n-p,n-q (Ω), done in Lemma 4.3, we get

ũ L r p,q (Ω) = sup α∈L r ′ n-p,n-q (Ω), α =0 | ũ, * α | α L r ′ (Ω) . But ũ r L r p,q (Ω) := Ω |u| r η -r r ′ dm = Ω |u| r η 1-r dm = u r L r (Ω,η 1-r ) .
So we get

u L r p,q (Ω,η 1-r ) = sup * α∈L r ′ p,q (Ω,η), α =0 | u, * α | α L r ′ (Ω,η)
.

The proof is complete.

It may seem strange that we have such an estimate when the dual of L r ′ (Ω, η) is L r (Ω, η), but the reason is, of course, that in the duality current-form there is no weights.

The point here is that when η is small, η 1-r is big for r > 1.

3 Solution of the ∂ equation with compact support.

3.1 r regular domains.

As we have seen, examples of r regular domains in Stein manifolds are the relatively compact s.p.c. domains with smooth boundary.

To prove that a Stein manifold Ω is weakly r regular we shall need the following lemma.

Lemma 3.1. Let Ω be a Stein manifold. Then it contains an exhaustive sequence of open relatively compact strictly pseudo-convexs sets {D k } k∈N with C ∞ smooth boundary.

Proof. For the case of Ω pseudo-convex in C n , the proof was already done explicitely in the proof of [Henkin and Leiterer, 1984, Theorem 2.8.1, p. 86].

By Theorem 5.1.6 of Hörmander [Hörmander, 1994] there exists a C ∞ strictly plurisubharmonic (s.p.s.h.) exhausting function ϕ for Ω. Take K ⋐ Ω such that dϕ = 0 on K. Because ϕ is s.p.s.h. then K = ∅. Then we use the [Henkin and Leiterer, 1984, Lemma 2.12.2, p. 93], to get: ∀ǫ > 0, ∃ρ ǫ s.p.s.h. C ∞ -function on Ω such that: (i) ϕρ ǫ together with its first and second derivatives is less than ǫ on Ω. (ii) The set Crit(ρ ǫ ) := {z ∈ Ω :: dρ ǫ (z) = 0} is discrete in Ω. (In a formula, the notation :: means "such that".) (iii) ρ ǫ = ϕ on K. As stated in Lemma 2.12.2 if ϕ ∈ C 2 then ρ ǫ ∈ C 2 , but in fact the proof of this Lemma 2.12.2 gives ρ ǫ = ϕ + χ j , where χ j is C ∞ . (see p. 93 in [START_REF] Henkin | Theory of functions on complex manifolds[END_REF]). Hence ρ ǫ has the same C k regularity than ϕ. Fix ǫ > 0, then the function ρ := ρ ǫ is also a s.p.s.h. exhausting function for Ω, because, from -ǫ ≤ ϕρ ǫ ≤ ǫ, we get that, for any α ∈ R, {z ∈ Ω :: ρ ǫ (z) < α} ⊂ {z ∈ Ω :: ϕ(z) < ǫ + α} and, because ϕ is an exhausting function, this set is relatively compact in Ω.

Because the set of critical points of ρ is discrete in Ω, the same way as in the proof of [Henkin and Leiterer, 1984, Theorem 2.8.1, p. 86 Let ω ∈ L r p,q (Ω), ∂ω = 0, by [Amar, 2016], we can solve ∂u = ω in D k with u ∈ L r p,q-1 (D k ) and

u L r (D k ) ≤ C k ω L r (D k ) ≤ C k ω L r (Ω) .
Hence if Γ is a compact set in Ω, there is a D k such that Γ ⋐ D k and we can take

Ω 1 = Ω 2 = Ω 3 = D k .
This proves the weak r regularity of Ω.

The main result.

Let X be a Stein manifold and Ω a domain in X.

In order to simplify notation, we set the pairing for α a (p, q)-form and β a (n-p, n-q)-form: ≪ α, β ≫:

= Ω α ∧ β.
With this notation we also have α, β =≪ α, * β ≫ .

Let Ω be a weakly r ′ regular domain in X. We set K := Supp ω ⋐ Ω and, by the definition of the r ′ weak regularity, we get 3 open sets such that

K ⋐ Ω 3 ⊂ Ω 2 ⊂ Ω 1 ⊂ Ω 0 = Ω with: ∀j = 0, 1, 2, ∀p, q ∈ {0, ..., n}, q ≥ 1, ∀α ∈ L r p,q (Ω j ), ∂α = 0, ∃ϕ ∈ L r p,q-1 (Ω j+1 ), ∂ϕ = α. Set the weight η = η ǫ := 1 Ω1 (z) + ǫ1 Ω\Ω1 (z) for a fixed ǫ > 0. Let ω ∈ L r,c
p,q (Ω). Suppose moreover that ω is such that ∂ω = 0 if 1 ≤ q < n and for any open

V ⋐ Ω, Supp ω ⋐ V we have ω ⊥ H n-p (V ) ⇐⇒ ∀h ∈ H n-p (V ), ≪ ω, h ≫= 0 if q = n.
We shall use the following lemma, with the previous notation: Lemma 3.3. Let E be the set of (np, nq + 1) forms α ∈ L r ′ (Ω, η), ∂ closed in Ω. Let us define L ω on E as follows:

L ω (α) := (-1) p+q-1 ≪ ϕ, ω ≫, where ϕ ∈ L r ′ (Ω 1 ) is such that ∂ϕ = α in Ω 1 . Then the form L ω is well defined and linear.

Proof. Because ǫ > 0 we have α ∈ L r ′ (Ω, η) ⇒ α ∈ L r ′ (Ω) and the weak r ′ regularity of Ω gives a ϕ ∈ L r ′ (Ω 1 ) with ∂ϕ = α in Ω 1 .
Let us see that L ω is well defined.

• Suppose first that q < n. In order for L ω to be well defined we need

∀ϕ, ψ ∈ L r ′ (n-p,n-q) (Ω 1 ), ∂ϕ = ∂ψ = α ⇒≪ ϕ, ω ≫=≪ ψ, ω ≫ . This is meaningful because ω ∈ L r,c (Ω), r > 1, Supp ω ⋐ Ω 1 . Then we have ∂(ϕ -ψ) = 0 in Ω 1 , hence, because Ω is weakly r ′ regular, we can solve ∂ in L r ′ (Ω 2 ): ∃γ ∈ L r ′ (n-p,n-q-1) (Ω 2 ) :: ∂γ = (ϕ -ψ). So ≪ ϕ -ψ, ω ≫=≪ ∂γ, ω ≫= (-1) p+q-1 ≪ γ, ∂ω ≫= 0 because ω is compactly supported in Ω 2 and ∂ closed.
Hence L ω is well defined in that case.

• Suppose now that q = n. For ϕ, ψ (np, 0) forms in Ω 1 , such that ∂ϕ = ∂ψ = α, we need to have ≪ ϕ, ω ≫=≪ ψ, ω ≫ . But then ∂(ϕψ) = 0, which means that h := ϕψ is a ∂ closed (np, 0) form, hence h ∈ H n-p (Ω 1 ). Taking V = Ω 1 in the hypothesis ω ⊥ H n-p (V ), we get ≪ h, ω ≫= 0, and L ω is also well defined in that case.

It remains to see that L ω is linear.

• Suppose first that q < n. Let α = α 1 + α 2 , with α j ∈ L r ′ (Ω, η), ∂α j = 0, j = 1, 2; we have α = ∂ϕ, α 1 = ∂ϕ 1 and α 2 = ∂ϕ 2 , with ϕ, ϕ 1 , ϕ 2 in L r ′ (Ω 1 ) so, because ∂(ϕϕ 1ϕ 2 ) = 0, we have

ϕ = ϕ 1 + ϕ 2 + ∂ψ, with ψ in L r ′ (Ω 2 ), so L ω (α) = (-1) p+q-1 ≪ ϕ, ω ≫= (-1) p+q-1 ≪ ϕ 1 + ϕ 2 + ∂ψ, ω ≫= = L ω (α 1 ) + L ω (α 2 ) + (-1) p+q-1 ≪ ∂ψ, ω ≫, but again ≪ ∂ψ, ω ≫= 0, hence L ω (α) = L ω (α 1 ) + L ω (α 2 ).
The same for α = λα 1 .

• Suppose now that q = n. We have

L ω (α) := (-1) p+n-1 ≪ ϕ, ω ≫, where ϕ ∈ L r ′ (Ω 1 ) is such that ∂ϕ = α in Ω 1 . Let α = α 1 + α 2 , with α j ∈ L r ′ (Ω, η), ∂α j = 0, j = 1, 2; we have α = ∂ϕ, α 1 = ∂ϕ 1 and α 2 = ∂ϕ 2 , with ϕ, ϕ 1 , ϕ 2 in L r ′ (Ω 1 ) so, because ∂(ϕ -ϕ 1 -ϕ 2 ) = 0, we have ϕ -ϕ 1 -ϕ 2 is a (n -p, 0) ∂-closed form, hence: ϕ = ϕ 1 + ϕ 2 + h, with h ∈ H n-p (Ω 1 ). So L ω (α) = (-1) p+q-1 ≪ ϕ, ω ≫= (-1) p+q-1 ≪ ϕ 1 + ϕ 2 + h, ω ≫= = L ω (α 1 ) + L ω (α 2 ) + (-1) p+q-1 ≪ h, ω ≫ . Taking V = Ω 1 in the hypothesis ω ⊥ H n-p (V ), we get ≪ h, ω ≫= 0, hence L ω (α) = L ω (α 1 ) + L ω (α 2 ).
The same for α = λα 1 . The proof is complete.

Remark 3.4. If Ω is Stein, we can take the domain Ω 1 to be s.p.c. with C ∞ smooth boundary, hence also Stein. So because K := Supp ω ⊂ Ω 1 ⊂ Ω, the A(Ω 1 ) convex hull of K, KΩ1 is still in Ω 1 , and any holomorphic function in Ω 1 can be uniformly approximated on KΩ1 by holomorphic functions in Ω. Then for q = n instead of asking ω ⊥ H n-p (Ω 1 ) we need just ω ⊥ H n-p (Ω).

Theorem 3.5. Let Ω be a weakly r ′ regular domain and ω be a (p, q) form in L r,c (Ω), r > 1. Suppose that ω is such that:

• if 1 ≤ q < n, ∂ω = 0; • if q = n, ∀V ⊂ Ω, Supp ω ⊂ V, ω ⊥ H n-p (V )
. Then there is a C > 0 and a (p, q -1) form u in L r,c (Ω) such that ∂u = ω as distributions and u L r (Ω) ≤ C ω L r (Ω) .

Proof.

Because Ω is weakly r ′ regular there is a

Ω 1 ⊂ Ω, Ω 1 ⊃ Supp ω such that ∀α ∈ L r ′ (Ω), ∂α = 0, ∃ϕ ∈ L r ′ (Ω 1 ) :: ∂ϕ = α, ϕ L r ′ (Ω1) ≤ C 1 α L r ′ (Ω) .
There is a Ω 2 such that Supp ω ⋐ Ω 2 ⊂ Ω 1 ⊂ Ω with the same properties as Ω 1 .

Let us consider the weight η = η ǫ := 1 Ω1 (z) + ǫ1 Ω\Ω1 (z) for a fixed ǫ > 0 and the form L ω defined in Lemma 3.3. By Lemma 3.3 we have that L ω is a linear form on (np, nq + 1)-forms α ∈ L r ′ (Ω, η), ∂ closed in Ω.

If α is a (np, nq + 1)-form in L r ′ (Ω, η), then α is in L r ′ (Ω) because ǫ > 0. The weak r ′ regularity of Ω gives that there is a ϕ ∈ L r ′ (Ω 1 ) :: ∂ϕ = α which can be used to define L ω (α).

We have also that α ∈ L r ′ (Ω 1 ), ∂α = 0 in Ω 1 , hence, still with the weak r ′ regularity of Ω, we have

∃ψ ∈ L r ′ (Ω 2 ) :: ∂ψ = α, ψ L r ′ (Ω2) ≤ C 2 α L r ′ (Ω1) .
• For q < n, we have ∂(ϕψ) = αα = 0 on Ω 2 and, by the weak r ′ regularity of Ω, there is a

Ω 3 ⊂ Ω 2 , such that Supp ω ⊂ Ω 3 ⊂ Ω 2 , and a γ ∈ L r ′ (Ω 3 ), ∂γ = ϕ -ψ in Ω 3 . So we get ≪ ϕ -ψ, ω ≫=≪ ∂γ, ω ≫= (-1) p+q-1 ≪ γ, ∂ω ≫= 0, this is meaningful because Supp ω ⊂ Ω 3 . Hence L ω (α) =≪ ϕ, ω ≫=≪ ψ, ω ≫ . • For q = n, we still have ∂(ϕ -ψ) = α -α = 0 on Ω 2 , hence ϕ -ψ ∈ H p (Ω 2 ); this time we choose V = Ω 2 and the assumption gives ≪ ϕ -ψ, ω ≫= 0 hence again L ω (α) =≪ ϕ, ω ≫=≪ ψ, ω ≫ .
In any cases, by Hölder inequalities done in Lemma 4.1,

|L ω (α)| ≤ ω L r (Ω1) ψ L r ′ (Ω2) ≤ ω L r (Ω) ψ L r ′ (Ω2) .
But, by the weak r ′ regularity of Ω, there is a constant C 2 such that

ψ L r ′ (Ω2) ≤ C 2 α L r ′ (Ω1) .
Of course we have

α L r ′ (Ω1) ≤ α L r ′ (Ω, η) because η = 1 on Ω 1 , hence |L ω (α)| ≤ C 2 ω L r (Ω) α L r ′ (Ω, η) .
So we have that the norm of L ω is bounded on the subspace of ∂ closed forms in L r ′ (Ω, η) by C ω L r (Ω) which is independent of ǫ.

We apply the Hahn-Banach theorem to extend L ω with the same norm to all (n-p, n-q +1) forms in L r ′ (Ω, η). As in the Serre Duality Theorem [Serre, 1955, p. 20], this is one of the major ingredients in the proof.

This means, by the definition of currents, that there is a (p, q -1) current u which represents the extended form L ω : L ω (α) =≪ α, u ≫ . So if α := ∂ϕ with ϕ ∈ C ∞ c (Ω), we get L(α) =≪ α, u ≫=≪ ∂ϕ, u ≫= (-1) p+q-1 ≪ ϕ, ω ≫ hence ∂u = ω as distributions because ϕ is compactly supported. And we have:

sup α∈L r ′ (Ω,η), α =1 |≪ α, u ≫| ≤ C ω L r (Ω) .
By lemma 2.1 with the weight η, this implies

u L r (Ω,η 1-r ) ≤ C ω L r (Ω) because |≪ α, u ≫| = | α, * u | and, as already seen, u L r (Ω,η 1-r ) = * u L r (Ω,η 1-r ) = * u L r (Ω,η 1-r ) .
In particular u L r (Ω) ≤ C ω L r (Ω) because with ǫ < 1 and r > 1, we have η 1-r ≥ 1.

Now for ǫ > 0 with η ǫ (z) := 1 Ω1 (z) + ǫ1 Ω\Ω1 (z), let u ǫ ∈ L r (Ω, η 1-r ǫ
) be the previous solution, then

u ǫ r L r (Ω,η 1-r ǫ ) ≤ Ω |u ǫ | r η 1-r dm ≤ C r ω r L r (Ω) .
Replacing η by its value we get

Ω1 |u ǫ | r dm + Ω\Ω1 |u ǫ | r ǫ 1-r dm ≤ C r ω r L r (Ω) ⇒ ⇒ Ω\Ω1 |u ǫ | r ǫ 1-r dm ≤ C r ω r L r (Ω) hence Ω\Ω1 |u ǫ | r dm ≤ C r ǫ r-1 ω r L r (Ω) .
Because C and the norm of ω are independent of ǫ, we have that u ǫ L r (Ω) is uniformly bounded and r > 1 implies that L r p,q-1 (Ω) is a dual by Lemma 4.3, hence there is a sub-sequence {u ǫ k } k∈N of {u ǫ } which converges weakly, when ǫ k → 0, to a (p, q -1) form u in L r p,q-1 (Ω), still with u L r p,q-1 (Ω) ≤ C ω L r p,q (Ω) . Let us write u k := u ǫ k . To see that this form u is 0 a.e. on Ω\Ω 1 let us write the weak convergence:

∀α ∈ L r ′ p,q-1 (Ω), u k , α = Ω u k ∧ * α → u, α = Ω u ∧ * α.
As usual take α := u |u| 1 E where E := {|u| > 0} ∩ (Ω\Ω 1 ) then we get

Ω u ∧ * α = E |u| dm = lim k→∞ Ω u k ∧ * α = lim k→∞ E u k ∧ * u |u| .
Now we have, by Hölder inequalities:

E u k ∧ * u |u| ≤ u k L r (E) 1 E L r ′ (E) . But u k r L r (E) ≤ Ω\Ω1 |u k | r dm ≤ (ǫ k ) r-1 C ω L r (Ω) → 0, k → ∞ and 1 E L r ′ (E) = (m(E)) 1/r ′ . Hence E |u| dm = lim k→∞ E u k ∧ * u |u| ≤ ≤ lim k→∞ C r (m(E)) 1/r ′ (ǫ k ) r-1 ω r L r (Ω) = 0, so E |u| dm = 0 which implies m(E) = 0 because on E, |u| > 0.
Hence we get that the form u is 0 a.e. on Ω\Ω 1 .

So we proved

∀ϕ ∈ D n-p,n-q (Ω), (-1) p+q-1 ≪ ϕ, ω ≫=≪ ∂ϕ, u ǫ ≫→≪ ∂ϕ, u ≫ ⇒≪ ∂ϕ, u ≫= (-1) p+q-1 ≪ ϕ, ω ≫ hence ∂u = ω in the sense of distributions. The proof is complete.

Remark 3.6. As in remark 3.4 if Ω is Stein for q = n instead of asking ω ⊥ H p (Ω 2 ) we need just ω ⊥ H p (Ω).

Remark 3.7. The condition of orthogonality to H p (V ) in the case q = n is necessary: suppose there is a (p, n -1) current u such that ∂u = ω and u with compact support in an open set

V ⊂ Ω, then if h ∈ H p (V ), we have h ∈ H p (V ), ≪ ω, h ≫=≪ ∂u, h ≫= (-1) n+p ≪ u, ∂h ≫= 0,
because, u being compactly supported, there is no boundary term and

≪ ∂u, h ≫= (-1) n+p ≪ u, ∂h ≫ .
This kind of condition was already seen for extension of CR functions, see [Amar, 1991] and the references therein.

Finer control of the support.

Here we shall get a better control on the support of a solution.

which ends the proof of the lemma.

Lemma 4.2. Let α ∈ L r p,q (Ω) then α L r p,q (Ω) = sup β∈L r ′ p,q (Ω), β =0

| α, β | β L r ′ (Ω) .

Proof. We choose β := α |α| r-2 , then: On the other hand we have

β L r ′ (Ω) = α r/r ′ L r (Ω) = α r-1 L r (Ω) , so α L r (Ω) × β L r ′ (Ω) = α r L r (Ω) = α, β . Hence α L r (Ω) = | α, β | β L r ′ (Ω) .
A fortiori for any choice of β:

α L r (Ω) ≤ sup β∈L r ′ (Ω) | α, β | β L r ′ (Ω) .
To prove the other direction, we use the Hölder inequalities, Lemma 4.1:

∀β ∈ L r ′ p,q (Ω), | α, β | β L r ′ (Ω) ≤ α L r (Ω) .
The proof is complete. Now we are in position to state:

Lemma 4.3. The dual space of the Banach space L r p,q (Ω) is L r ′ n-p,n-q (Ω).

Proof. Suppose first that u ∈ L r ′ n-p,n-q (Ω). Then consider:

∀α ∈ L r p,q (Ω), L(α) :=

Ω α ∧ u = α, * u .
This is a linear form on L r p,q (Ω) and its norm, by definition, is

L = sup α∈L r (Ω) | α, * u | α L r (Ω)
.

By use of Lemma 4.2 we get L = * u L r ′ p,q (Ω) = u L r ′ n-p,n-q (Ω) . So we have L r p,q (Ω) * ⊃ L r ′ n-p,n-q (Ω) with the same norm.

Conversely take a continuous linear form L on L r p,q (Ω). We have, again by definition, that:

L = sup α∈L r (Ω)
|L(α)| α L r (Ω) .

Because D p,q (Ω) ⊂ L r p,q (Ω), L is a continuous linear form on D p,q (Ω), hence, by definition, L can be represented by a (np, nq)-current u. So we have: because D p,q (Ω) is dense in L r p,q (Ω). So we proved L r p,q (Ω) * ⊂ L r ′ n-p,n-q (Ω) with the same norm. The proof is complete.

  ], we can find a sequence c k ∈ R, c k → ∞, such that D k := {z ∈ Ω :: ρ(z) < c k } make an exhaustive sequence of open relatively compact sets in Ω, ∂ρ = 0 on ∂D k , hence D k is strictly pseudo-convex with C ∞ smooth boundary, and finally D k ր Ω. The proof is complete. Proposition 3.2. A Stein manifold Ω is weakly r regular. Proof. By Lemma 3.1 there is an exhaustive sequence of open relatively compact s.p.c. sets in Ω, {D k } k∈N with C ∞ smooth boundary.

  ∀α ∈ D p,q (Ω), L(α) := Ω α ∧ u = α, * u .Moreover we have, by Lemma 4.2,L = sup α∈Dp,q(Ω) | α, * ū | α L r (Ω) = * u L r ′ (Ω)

Theorem 3.8. Let Ω be a weakly r ′ regular domain in a Stein manifold X.

Suppose the (p, q) form ω is in L r,c (Ω, dm), ∂ω = 0, if q < n, and ω ⊥ H p (V ) for any V such that Supp ω ⊂ V, if q = n, with Supp ω ⊂ Ω\C, where C is a weakly r regular domain.

For any open relatively compact set U in C, there is a u ∈ L r,c (Ω, dm) such that ∂u = ω and with support in Ω\ Ū , provided that q ≥ 2.

Proof.

Let ω be a (p, q) form with compact support in Ω\C then there is a v ∈ L r p,q-1 (Ω), ∂v = ω, with compact support in Ω, by theorem 3.5 or, if Ω is a polydisc in C n and if ω ∈ W r q (Ω), by the theorem in [START_REF] Amar | On L r hypoellipticity of solutions with compact support of the Cauchy-Riemann equation[END_REF]. Because ω has compact support outside C we have ω = 0 in C; this means that ∂v = 0 in C. Because C is weakly r regular and q ≥ 2, we have

Let χ be a smooth function such that χ = 1 in U and χ = 0 near ∂C ′ ; then set u := v -∂(χh).

We have that u

hence ∂χ = 0 there. Finally ∂u = ∂v -∂2 (χh) = ω and we are done.

If Ω and C are, for instance, pseudo-convex in C n then Ω\C is no longer pseudo-convex in general, so this theorem improves actually the control of the support.

Remark 3.9. The correcting function h is given by kernels in the case of Stein domains, hence it is linear; if the primitive solution v is also linear in ω, then the solution u is linear too. This is the case in C n with the solution given in [START_REF] Amar | On L r hypoellipticity of solutions with compact support of the Cauchy-Riemann equation[END_REF]. This theorem cannot be true for q = 1 as shown by the following example: take a holomorphic function ϕ in the open unit ball B(0, 1) in C n such that it extends to no open ball of center 0 and radius > 1. For instance ϕ(z

. Moreover B(0, R) is strictly pseudo-convex hence r ′ regular, but there is no function u such that ∂u = ω and u zero near the origin because any solution u will be C.R. on ∂B(0, R) and by Hartog's phenomenon will extends holomorphically to B(0, R), hence cannot be identically null near 0.

Never the less in the case q = 1, we have: Theorem 3.10. Let Ω be a weakly r ′ regular domain in a Stein manifold X. Then for any (p, 1) form ω in L r,c (Ω), ∂ω = 0, with support in Ω 1 \C where Ω 1 is a weak r ′ regular domain in Ω and C is a domain such that C ⊂ Ω and C\Ω 1 = ∅; there is a u ∈ L r,c (Ω) such that ∂u = ω and with support in Ω\C.

Proof.

There is u ∈ L r p,0 (Ω 1 ) such that ∂u = ω with compact support in Ω 1 , by theorem 3.5.

We proved in [START_REF] Amar | On L r hypoellipticity of solutions with compact support of the Cauchy-Riemann equation[END_REF]:

Theorem 3.12. Let f ∈ O( Dn ) be a holomorphic function in a neighborhood of the closed unit polydisc in C n and set Z := f -1 (0). Then for any (0, q) form ω in L r (D n \Z) ∩ W r q (Ω), ∂ω = 0, with compact support in D n \Z, for any k ∈ N, we can find a (0, q -1)-form β ∈ L r,c (D n ) such that ∂(f k β) = ω. Equivalently we can find a (0, q -1)-form η = f k β such that η ∈ L r,c (D n ), η is 0 on Z up to order k and ∂η = ω.

And by Remark 6.3 of this paper, the solutions are given by a bounded linear operator.

The following corollary will generalise strongly this result but at the price that we have not the linearity, nor even the constructivity of the solution.

Corollary 3.13. Let Ω be a Stein manifold. Let f be a holomorphic function in Ω and set Z := f -1 (0). Then for any (p, q) form ω in L r,c (Ω\Z), ∂ω = 0, if 1 ≤ q < n, and ω ⊥ H p ( Ω\Z) if q = n, there is a (p, q -1) form u ∈ L r (Ω\Z) such that ∂u = ω and u has its support still in Ω\Z.

Proof.

We first show that Ω\Z is Stein. Because f = 0 in Ω\Z we have that ϕ

Because Ω is Stein we have, by Theorem 5.1.6 of Hörmander [Hörmander, 1994], a strictly plurisubharmonic exhausting function ρ in C ∞ (Ω). Now the function γ := ϕ + ρ is still strictly plurisubharmonic and C ∞ in Ω\Z. Now we shall prove:

So we can apply [Hörmander, 1994, Theorem 5.2.10, p. 127] to get that Ω\Z is a Stein manifold. Now we are in position to apply Theorem 3.5. Let ω be a (p, q) form in L r,c (Ω\Z), ∂ω = 0, if 1 ≤ q < n, and ω ⊥ H p ( Ω\Z) if q = n, Theorem 3.5 gives a (p, q -1) form u ∈ L r (Ω\Z) such that ∂u = ω and u has its compact support in Ω\Z. The proof is complete.

Remark 3.14. This leaves open the question to have a linear (or a constructive) solution to this problem even in the case of the polydisc.

Appendix

Here we shall prove certainly known results on the duality L r -L r ′ for (p, q)-forms in a complex manifold X. Because I was unable to find precise references for them, I prove them here.

Recall we have a pointwise scalar product and a pointwise modulus for (p, q)-forms in X: This gives Hölder inequalities for (p, q)-forms:

Lemma 4.1. (Hölder inequalities) Let α ∈ L r p,q (Ω) and β ∈ L r ′ p,q (Ω). We have | α, β | ≤ α L r (Ω) β L r ′ (Ω) .