
HAL Id: hal-00676110
https://hal.science/hal-00676110v5

Preprint submitted on 13 Dec 2012 (v5), last revised 9 Oct 2019 (v9)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AN ANDREOTTI-GRAUERT THEOREM WITH Lr

ESTIMATES.
Eric Amar

To cite this version:
Eric Amar. AN ANDREOTTI-GRAUERT THEOREM WITH Lr ESTIMATES.. 2012. �hal-
00676110v5�

https://hal.science/hal-00676110v5
https://hal.archives-ouvertes.fr


AN ANDREOTTI-GRAUERT THEOREM WITH Lr ESTIMATES.

ERIC AMAR

Résumé. Par un théorème d’Andréotti-Grauert, si ω est un (p, q) courant, q < n, dans une variété
de Stein, ∂̄ fermé et à support compact, il existe une solution u à ∂̄u = ω également à support
compact. Le résultat principal de ce travail est de montrer que si, de plus, ω ∈ Lr(Ω, dm), où m est
une mesure de Lebesgue convenable sur Ω, alors on a une solution u à ∂̄u = ω à support compact
et dans Lr(Ω, dm). On le montre grâce à des estimées dans des espaces Lr(Ω) à poids.

Dans une deuxième partie on montre directement des estimations globales Lr,loc(Ω) − Lr,loc(Ω)
pour des solutions de l’équation ∂̄ dans les variétés de Stein. Cela redonne, encore par dualité, une
autre preuve du résultat principal.

Abstract. By a theorem of Andreotti and Grauert if ω is a (p, q) current, q < n, in a Stein manifold,
∂̄ closed and with compact support, then there is a solution u to ∂̄u = ω still with compact support.
The main result of this work is to show that if moreover ω ∈ Lr(dm), where m is a suitable Lebesgue
measure on the Stein manifold, then we have a solution u with compact support and in Lr(dm). We
prove it by estimates in Lr spaces with weights.

In a second part, we prove directly that there are global Lr,loc(dm)−Lr,loc(dm) solutions for the
∂̄ equation on Stein manifolds. This gives, again by duality, another proof for the main result.

1. Introduction.

Let ω be a ∂̄ closed (p, q) form in Cn with compact support K := Suppω and such that
ω ∈ Lr(Cn). Setting K in a ball B := B(0, R) with R big enough, we know, by a theorem of
Ovrelid [10], that we have a (p, q− 1) form u ∈ Lr(B) such that ∂̄u = ω. On the other hand we also
know, at least when q < n, that there is a current v with compact support such that ∂̄v = ω, by a
theorem of Andreotti-Grauert [3].
So a natural question is : may we have a solution u of ∂̄u = ω with compact support and in
Lr(Cn) ?

We already answered this question by the affirmative in a join work with S. Mongodi [2]
explicitly and linearly by the ”method of coronas”. This method asks for extra Lr conditions on
derivatives of coefficients of ω, when q < n ; we shall note the set of ω verifying these conditions
Wr

q (Ω) as in [2].
The aim of this work is to extend this result to Stein manifolds and get rid of the extra Lr

conditions Wr
q (Ω). For it we use a completely different approach inspired by the Serre duality [12].

Because Hahn Banach theorem is used, these results are no longer so explicit and constructive as
in [2].

On the other hand the control of the support is better : if the support of the data ω is
contained in Ω\C where Ω is a weakly r′ regular domain and C is a weakly r regular domain, then
the support of the solution u is contained in Ω\C ′, where C ′ is any domain relatively compact in
C, provided that q ≥ 2. One may observe that Ω\C is not Stein in general even if Ω is.
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There is also a result of this kind for q = 1, see section 3.5.
The definition of weakly r regular domain will be given later on, but pseudo convex domains in
Stein manifold or in Cn are such domains.

The idea is to solve ∂̄u = ω in a space Lr(Ω) with a weight η ”big” outside of the support of
ω ; this way we shall have a ”small” solution u outside of the support of ω. Then, using a sequence
of such weights going to infinity outside of the support of ω, we shall have a u zero outside of the
support of ω.

In a second part of this work we prove that if ω ∈ Lr,loc
(p,q)(Ω, dm), ∂̄ω = 0, there is a form

u ∈ Lr,loc
(p,q−1)(Ω, dm) such that ∂̄u = ω, provided that Ω is a weakly r′ regular domain.

Hence we have a global estimated solution. Of course for r = 2 this was already proved by Hörman-
der( [7] theorem 5.2.4, p 125).
This last result was suggested to me by a referee for our paper with S. Mongodi, who gave a sketch
of a nice geometrical proof of the result on forms with compact support, using Lr,loc estimates in
germs, after the version two of this paper was already posted on HAL and ArXiv.

In order to get another proof for forms with compact support, we prove, for µ a positive measure
on Ω and 1 ≤ r <∞, that the dual of Lr,c(Ω, µ) is Lr′,loc(Ω, µ), with r′ the conjugate exponent of r,

and that the dual of Lr,loc(Ω, µ) is Lr′,c(Ω, µ). We prove also a theorem giving global solution to ∂̄
equation for forms with coefficients in a dual space A′, provided that there are solutions for forms
with coefficients in A. This is again a avatar of the Serre duality theorem.

Then, because Lr′,c(Ω) is the dual of Lr,loc(Ω) we get another proof of the main theorem of
this work.

I am indebted to G. Tomassini who started my interest in this subject by e-mails on precisely
this kind of questions and also to S. Mongodi for a lot of discussions by mails on the subject during
the preparation of our join paper [2].

Moreover I want to thank C. Laurent who makes me realise that a weaker condition than
the r regularity was sufficient to get these results, with exactly the same proofs.

2. Duality.

We shall study a duality between currents inspired by the Serre duality [12].
Let Ω ⊂ Cn be an open set in Cn and t a (p, q) current with compact support in Ω, noted t ∈
D′

c, (p,q)(Ω).

Let also ϕ ∈ C∞
(n−p,n−q)(Ω) a (n − p, n − q) form in C∞(Ω). We have that t ∧ ϕ is a (n, n) current

with compact support in Ω.
As usual we use the following notation for the pairing

〈t, ϕ〉 := t(ϕ),
where t(ϕ) is the action, as a current, of t on the smooth form ϕ of complementary bi-degree.

The point in the next lemma is that the test functions need not to be compactly supported.

Lemma 2.1. Let Ω be an open set in C
n, ω ∈ D′

c, (p,q)(Ω) a (p, q) current with compact support

in Ω and u ∈ D′
c, (p,q−1)(Ω). Then we have ∂̄u = ω iff

(∗) ∀ϕ ∈ C∞
(n−p,n−q)(Ω), 〈ω, ϕ〉 = (−1)p+q−1

〈

u, ∂̄ϕ
〉

.

Proof.
If ∂̄u = ω, let χ ∈ C∞

c (Ω) such that χ ≡ 1 on the support of u, hence on the support of ω. Then
∀ϕ ∈ C∞

(n−p,n−q)(Ω), 〈ω, ϕ〉 = 〈ω, χϕ〉 =
〈

∂̄u, χϕ
〉

= (−1)p+q−1
〈

u, ∂̄(χϕ)
〉
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by definition of the action of derivatives on currents. Hence
〈ω, ϕ〉 = (−1)p+q−1

〈

u, ∂̄χ ∧ ϕ
〉

+ (−1)p+q−1
〈

u, χ∂̄ϕ
〉

= (−1)p+q−1
〈

u, χ∂̄ϕ
〉

because ∂̄χ = 0 on the support of u ; so
〈ω, ϕ〉 = (−1)p+q−1

〈

u, χ∂̄ϕ
〉

= (−1)p+q−1
〈

u, ∂̄ϕ
〉

because χ = 1 on the support of u.
Conversely if we have (∗) we take χ ∈ C∞

c (Ω) such that χ ≡ 1 on union of the support of u and
the support of ω then

∀ϕ ∈ C∞
(n−p,n−q)(Ω), 〈ω, ϕ〉 = 〈ω, χϕ〉

because χ = 1 on the support of ω, and by (∗)
〈ω, χϕ〉 = (−1)p+q−1

〈

u, ∂̄(χϕ)
〉

=
〈

∂̄u, χϕ
〉

=
〈

∂̄u, ϕ
〉

because χ = 1 on the support of u hence on the support of ∂̄u.
So

∀ϕ ∈ C∞
(n−p,n−q)(Ω), 〈ω, ϕ〉 =

〈

∂̄u, ϕ
〉

,

which means that ∂̄u = ω as a current. �

3. Solution of the ∂̄ equation with compact support.

3.1. Weighted Lr spaces.

Let Ω be a domain in Cn. We shall need the following notations.
We note dm the Lebesgue measure on Cn and we shall define Lr(Ω, η) to be the set of functions f
defined on Ω such that

‖f‖rLr(Ω, η) :=
∫

Ω
|f(z)|r η(z)dm(z) <∞,

with a weight η(z) > 0. As usual we set Lr(Ω) for Lr(Ω, 1).
Let Ip be the set of multi-indices of length p in (1, ..., n). We shall use the measure defined

on Γ := Ω×Ip×Iq the following way :

dµ(z, k, l) = dµη,p,q(z, k, l) := η(z)dm(z)⊗
∑

|I|=p, |J |=q

δI(k)⊗ δJ(l),

where δI(k) = 1 if the multi-index k is equal to I and δI(k) = 0 if not.
This means, if f(z, I, J) is a function defined on Γ, that

∫

f(z, k, l)dµηw,p,q(z, k, l) :=
∑

|I|=p, |J |=q

∫

Ω

f(z, I, J)η(z)dm(z).

If I is a multi-index of length p, let Ic be the unique multi-index, ordered increasingly, such
that I ∪ Ic = (1, 2, ..., n) ; then Ic is of length n− p.

To t =
∑

|I|=p, |J |=q tI,J(z)dz
I ∧ dz̄J a (p, q) form, we associate the function on Γ :

T (z, I, J) := (−1)s(I,J)tI,J(z),
where

s(I, J) = 0 if dzI ∧ dz̄J ∧ dzI
c

∧ dz̄J
c

= dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n as a (n, n) form
and

s(I, J) = 1 if not.
If ϕ =

∑

|I|=p, |J |=q ϕIc,Jc(z)dzI ∧ dz̄J is of complementary bi-degree, associate in the same
manner :

Φ∗(z, I, J) := ϕIc,Jc(z). This is still a function on Γ.
Now we have, for 1 < r <∞, if T (z, I, J) is a function in Ω with Lr(Ω) coefficients and with

µ = µη,p,q,
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‖T‖rLr(dµ) :=

∫

|T (z, I, J)|r dµη,p,q(x, I, J) =
∑

|I|=p, |J |=q

‖T (·, I, J)‖rLr(Ω,η).

For 1 ≤ r < ∞ the dual of Lr(µ) is Lr′(µ) where r′ is the conjugate of r,
1

r
+

1

r′
= 1, and the

norm is defined analogously with r′ replacing r.
We also know that, for p, q fixed,

(3.1) ‖T‖Lr(µ) = sup
Φ∈Lr′(µ)

∣

∣

∫

TΦdµ
∣

∣

‖Φ‖Lr′(µ)

.

For a (p, q) form t =
∑

|J |=p, |K|=q tJ,Kdz
J ∧ dz̄K , and a weight η > 0 we define its norm by :

(3.2) ‖t‖rLr(Ω,η) :=
∑

|J |=p, |K|=q

‖tJ,K‖
r
Lr(Ω,η) = ‖T‖rLr(µ).

Now we can state

Lemma 3.1. Let η > 0 be a weight. If u is a (p, q) current defined on (n − p, n − q) forms in
Lr′(Ω, η) and such that

∀α ∈ Lr′

(n−p,n−q)(Ω, η), |〈u, α〉| ≤ C‖α‖Lr′(Ω,η),

then ‖u‖Lr(Ω,η1−r) ≤ C.

Proof.
Let us take the measure µ = µη,p,q as above. Let Φ

∗ be the function on Γ associated to α and T
the one associated to u. We have, by definition of the measure µ applied to the function

f(z, I, J) := T (z, I, J)η−1Φ∗(z, I, J),
∫

Tη−1Φ∗dµ =

∫

f(z, k, l)dµ(z, k, l) :=
∑

|I|=p, |J |=q

∫

Ω

f(z, I, J)η(z)dm(z) =

=
∑

|I|=p, |J |=q

∫

Ω

T (z, I, J)η−1(z)Φ∗(z, I, J)η(z)dm(z) = 〈u, α〉,

by definition of T and Φ∗.
Hence we have, by (3.1)

∥

∥Tη−1
∥

∥

Lr(µ)
= sup

Ψ∈Lr′(µ)

|〈u, α〉|

‖Ψ‖Lr′(µ)

.

But ‖Tη−1‖Lr(µ) = ‖uη−1‖Lr(Ω, η) by (3.2), and
∥

∥fη−1
∥

∥

r

Lr(Ω,η)
=

∫

Ω

∣

∣fη−1
∣

∣

r
ηdm =

∫

Ω

|f |r η1−rdm = ‖f‖Lr(Ω,η1−r),

so we get

‖u‖Lr(Ω,η1−r) = sup
Ψ∈Lr′(µ)

|〈u, α〉|

‖Ψ‖Lr′(µ)

,

which implies the lemma because, still by (3.1), we can take Ψ = Φ∗ and ‖Ψ‖Lr′(µ) = ‖α‖Lr′ (Ω,η).
�

It may seem strange that we have such an estimate when the dual of Lr′(Ω, η) is Lr(Ω, η),
but the reason is of course that in the duality forms-currents there is no weights.



AN ANDREOTTI-GRAUERT THEOREM WITH L
r
ESTIMATES. 5

3.2. Domain r regular.

Definition 3.2. Let X be a complex manifold and Ω a domain in X ; let r ∈ [1, ∞], we shall say
that Ω is r regular if for any p, q ∈ {0, ..., n}, q ≥ 1, there is a constant C = Cp,q(Ω) such that for
any (p, q) form ω, ∂̄ closed in Ω and in Lr(Ω) there is a (p, q−1) form u ∈ Lr(Ω) such that ∂̄u = ω
and ‖u‖Lr(Ω) ≤ C‖ω‖Lr(Ω).

We shall say that Ω is weakly r regular if for any compact set K ⋐ Ω there are 3 open sets
Ω1,Ω2,Ω3 such that K ⋐ Ω3 ⊂ Ω2 ⊂ Ω1 ⊂ Ω0 := Ω and 3 constants C1, C2, C3 such that :

∀j = 0, 1, 2, ∀p, q ∈ {0, ..., n}, q ≥ 1, ∀ω ∈ Lr
p,q(Ωj), ∂̄ω = 0, ∃u ∈ Lr

p,q−1(Ωj+1), ∂̄u = ω
and ‖u‖Lr(Ωj+1)

≤ Cj+1‖ω‖Lr(Ωj)
.

I.e. we have a 3 steps chain of resolution.

Of course r regularity implies weak r regularity, just taking Ω1 = Ω2 = Ω3 = Ω.
Examples of 2 regular domains are the bounded pseudo-convex domains by Hörmander [7].
Examples of r regular domains in Cn are the bounded strictly pseudo-convex (s.p.c.) domains

with smooth boundary by Ovrelid [10] ; the polydiscs in C
n by Charpentier [4], finite transverse

intersections of strictly pseudo-convex bounded domains in Cn by Menini [9].
On a Stein manifold X we define first the ”Lebesgue measure” as in Hörmander’s book [7]

section 5.2, with a hermitian metric locally equivalent to the usual one on any analytic coordinates
system. Associated to this metric there is a volume form dV and we take it for the Lebesgue
measure on X.

We can solve the ∂̄ equation in strictly pseudo-convex domains with smooth boundary in X
with Lr estimates for (0, 1) forms by use of N. Kerzman kernels [8] and the metric above.

We can solve the ∂̄ equation in strictly pseudo-convex domains with smooth boundary in X
with Lr estimates for all (p, q) forms by J-P. Demailly and C. Laurent ones( [5], Remarque 4, page
596) but here the manifold has to be equiped with a metric with null curvature, in order to avoid
parasitic terms.

So examples of r regular domains in Stein manifold are the relatively compact s.p.c. domains
with smooth boundary.

Lemma 3.3. A pseudo-convex domain Ω ⊂ Cn is weakly r regular.

Proof.
By theorem 2.6.11 of Hörmander [7] there exists a C∞ strictly plurisubharmonic exhausting function
ϕ for Ω. Call E ⊂ Ω the set of critical points of ϕ, then by the Morse-Sard lemma we have that the
Lebesgue measure of ϕ(E) ⊂ R is zero. Hence we can find a sequence ck ∈ R\ϕ(E), ck → ∞, such
that

Dk := {z ∈ Ω :: ϕ(z) < ck}
make an exhaustive sequence of open relatively compact sets in Ω, ∂ϕ 6= 0 on ∂Dk, hence Dk is
strictly pseudo-convex with C∞ smooth boundary, and finally Dk ր Ω.

Let ω ∈ Lr
p,q(Ω), ∂̄ω = 0 then by Ovrelid [10], we can solve ∂̄u = ω in Dk with u ∈ Lr

p,q−1(Dk)
and

‖u‖Lr(Dk)
≤ Ck‖ω‖Lr(Dk)

≤ Ck‖ω‖Lr(Ω).
Hence if K is a compact set in Ω, there is a Dk such that K ⋐ Dk and we can take Ω1 = Ω2 =
Ω3 = Dk.

Hence the weak r regularity of Ω. �

Lemma 3.4. A Stein manifold Ω is weakly r regular.

Proof.
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It is exactly the same proof as above with theorem 5.1.6 of Hörmander [7] instead of theorem 2.6.11
to get a sequence {Dk}k∈N of strictly pseudo-convex sets with C∞ smooth boundary and exhausting
Ω.

Then we use Kerzman estimates for (p, 1) forms [8] and Demailly-Laurent estimates for (p, q)
forms [5] instead of Ovrelid estimates [10], to conclude the same way. �

3.3. The main result.

Let Hp(Ω) be the set of all (p, 0) ∂̄ closed forms in Ω. If p = 0, H0(Ω) = H(Ω) is the set
of holomorphic functions in Ω. If p > 0, we have ϕ ∈ Hp(Ω) ⇒ ϕ(z) =

∑

|J |=p aJ(z)dz
J , where

dzJ := dzj1 ∧ · · · ∧ dzjp and the functions aJ(z) are holomorphic in Ω. Hence in Cn, a (p, 0) ∂̄ closed
form is a vector of global holomorphic functions in Ω.

Let Ω be a weakly r′ regular domain in Cn and ω be a (p, q) form in Lr,c(Ω), r > 1, Suppω ⋐

Ω. Let Ω1 ⊂ Ω be a sub domain in Ω with Suppω ⋐ Ω1 ⊂ Ω given by the weak r′ regularity of Ω.
Set the weight η = ηǫ :=1Ω1

(z) + ǫ1Ω\Ω1
(z) for a fixed ǫ > 0.

Suppose that ω is such that ∂̄ω = 0 if 1 ≤ q < n and for any open V ⋐ Ω, Suppω ⋐ V we have
∀h ∈ Hp(V ), 〈ω, h〉 = 0 if q = n.
We shall use the lemma :

Lemma 3.5. The form L, defined on (n − p, n − q + 1) form α ∈ Lr′(Ω, η), ∂̄ closed in Ω, as
follows:

L(α) := (−1)p+q−1〈ω, ϕ〉, where ϕ ∈ Lr′(Ω1) is such that ∂̄ϕ = α in Ω1

is well defined and linear.

Proof.
Because ǫ > 0 we have α ∈ Lr′(Ω, η) ⇒ α ∈ Lr′(Ω) and such a ϕ exists by the weak r′ regularity of
Ω, so there is a Ω1 :: Suppω ⋐ Ω1 ⊂ Ω such that ϕ ∈ Lr′(Ω1) with ∂̄ϕ = α in Ω1.
Let us see that L is well defined.

Suppose first that q < n.
In order for L to be well defined we need

∀ϕ, ψ ∈ Lr′

(n−p,n−q)(Ω1), ∂̄ϕ = ∂̄ψ ⇒ 〈ω, ϕ〉 = 〈ω, ψ〉.

This is meaningful because ω ∈ Lr,c(Ω), r > 1, Suppω ⋐ Ω1.
Then we have ∂̄(ϕ−ψ) = 0 hence, because Ω is weakly r′ regular, there is a Ω2 such that Suppω ⋐

Ω2 ⊂ Ω1 and we can solve ∂̄ in Lr′(Ω2) :
∃γ ∈ Lr′

(n−p,n−q−1)(Ω2) :: ∂̄γ = (ϕ− ψ).

So 〈ω, ϕ− ψ〉 =
〈

ω, ∂̄γ
〉

= (−1)p+q−1
〈

∂̄ω, γ
〉

= 0 because ω is compactly supported in Ω2.
Hence L is well defined in that case.

Suppose now that q = n.
Of course ∂̄ω = 0 and we have that ϕ, ψ are (p, 0) forms hence ∂̄(ϕ−ψ) = 0 means that h := ϕ−ψ
is a ∂̄ closed (p, 0) form hence h ∈ Hp(Ω1). Taking V = Ω1 in the hypothesis, ω ⊥ Hp(V ) gives
〈ω, h〉 = 0, and L is also well defined in that case.

It remains to see that L is linear, so let α = α1+α2, with αj ∈ Lr′(Ω, η), ∂̄αj = 0, j = 1, 2 ;

we have α = ∂̄ϕ, α1 = ∂̄ϕ1 and α2 = ∂̄ϕ2, with ϕ, ϕ1, ϕ2 in L
r′(Ω1) so, because ∂̄(ϕ−ϕ1−ϕ2) = 0,

we have
ϕ = ϕ1 + ϕ2 + ∂̄ψ, with ψ in Lr′(Ω2),

so
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L(α) = (−1)p+q−1〈ω, ϕ〉 = (−1)p+q−1
〈

ω, ϕ1 + ϕ2 + ∂̄ψ
〉

= L(α1)+L(α2)+(−1)p+q−1
〈

ω, ∂̄ψ
〉

,

but
〈

ω, ∂̄ψ
〉

= 0, hence L(α) = L(α1) + L(α2).
The same for α = λα1 and the linearity. �

Remark 3.6. If Ω is Stein, we can take the domains Ω1 to be s.p.c. with C∞ smooth boundary,
hence also Stein. So because K := Suppω ⊂ Ω1 ⊂ Ω, then the A(Ω1) convex hull of K, K̂Ω1

is still

in Ω1 and any holomorphic function in Ω1 can be uniformly approximated on K̂Ω1
by holomorphic

functions in Ω.
Then for q = n instead of asking ω ⊥ Hp(Ω1) we need just ω ⊥ Hp(Ω).

Theorem 3.7. Let Ω be a weakly r′ regular domain and ω be a (p, q) form in Lr,c(Ω), r > 1.
Suppose that ω is such that ∂̄ω = 0 if 1 ≤ q < n and

∀V ⊂ Ω, Suppω ⊂ V, ∀h ∈ Hp(V ), 〈ω, h〉 = 0 if q = n.
Then there is a (p, q − 1) form u in Lr,c(Ω) such that ∂̄u = ω as distributions and

‖u‖Lr(Ω) ≤ C‖ω‖Lr(Ω).

Proof.
Because Ω is weakly r′ regular there is a Ω1 ⊂ Ω, Ω1 ⊃ Suppω such that

∀α ∈ Lr(Ω), ∂̄α = 0, ∃ϕ ∈ Lr(Ω1) :: ∂̄ϕ = α, ‖ϕ‖Lr(Ω1)
≤ C1‖α‖Lr(Ω)

and there is Ω2 such that Suppω ⋐ Ω2 ⊂ Ω1 ⊂ Ω with the same properties as Ω1.

Let us consider the weight η = ηǫ :=1Ω1
(z) + ǫ1Ω\Ω1

(z) for a fixed ǫ > 0 and the form L defined in

lemma 3.5. By lemma 3.5 we have that L is a linear form on (n−p, n−q+1) form α ∈ Lr′(Ω, η), ∂̄
closed in Ω.

If α is a (n− p, n− q + 1) form in Lr′(Ω, η), then α is in Lr(Ω) because ǫ > 0.
The weak r′ regularity of Ω gives that there is a ϕ ∈ Lr′(Ω1) :: ∂̄ϕ = α which can be used to define
L(α).

We have also that α ∈ Lr(Ω1), ∂̄α = 0 in Ω1, hence still with the weakly r′ regularity of Ω,
we have

∃ψ ∈ Lr(Ω2) :: ∂̄ψ = α, ‖ψ‖Lr(Ω2)
≤ C2‖α‖Lr(Ω1)

.

For q < n, we have ∂̄(ϕ− ψ) = α− α = 0 on Ω2 and, by the weak r′ regularity of Ω, then there is
a Ω3 ⊂ Ω2, such that Suppω ⊂ Ω3 ⊂ Ω2, and a γ ∈ Lr′(Ω3), ∂̄γ = ϕ− ψ in Ω3. So we get

〈ω, ϕ− ψ〉 =
〈

ω, ∂̄γ
〉

= (−1)p+q−1
〈

∂̄ω, γ
〉

= 0,
this is meaningful because Suppω ⊂ Ω3.
Hence

L(α) = 〈ω, ϕ〉 = 〈ω, ψ〉.
If q = n, we still have ∂̄(ϕ − ψ) = α − α = 0 on Ω2, hence ϕ − ψ ∈ Hp(Ω2) ; this time we

choose V = Ω2 and the assumption gives 〈ω, ϕ− ψ〉 = 0 hence again L(α) = 〈ω, ϕ〉 = 〈ω, ψ〉.
In any cases, by Hölder inequalities

|L(α)| ≤ ‖ω‖Lr(Ω1)
‖ψ‖Lr′(Ω2)

≤ ‖ω‖Lr(Ω)‖ψ‖Lr′(Ω2)
.

But by the weak r′ regularity of Ω there is a constant C2 such that
‖ψ‖Lr′(Ω2)

≤ C2‖α‖Lr′(Ω1)
.

Of course we have
‖α‖Lr′(Ω1)

≤ ‖α‖Lr′(Ω, η)

because η = 1 on Ω1, hence
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|L(α)| ≤ C2‖ω‖Lr(Ω)‖α‖Lr′(Ω, η).

So we have that the norm of L is bounded on the subspace of ∂̄ closed forms in Lr′(Ω, η) by
C‖ω‖Lr(Ω) which is independent of ǫ.

We apply the Hahn-Banach theorem to extend L with the same norm to all (n−p, n−q+1)
forms in Lr′(Ω, η). As in Serre duality theorem ( [12], p. 20) this is one of the main ingredient in
the proof.

This means, by the definition of currents, that there is a (p, q−1) current u which represents
the extended form L and such that

supα∈Lr′ (Ω,η), ‖α‖=1 |〈u, α〉| ≤ C‖ω‖Lr(Ω)

and by lemma 3.1 with the weight η, this implies
‖u‖Lr(Ω,η1−r) ≤ C‖ω‖Lr(Ω).

In particular ‖u‖Lr(Ω) ≤ C‖ω‖Lr(Ω) because with ǫ < 1 and r > 1, we have η1−r ≥ 1.

So applied to a ∂̄ closed (n− p, n− q + 1) smooth form α we get
〈u, α〉 = L(α) = (−1)p+q−1〈ω, ϕ〉,

with ϕ a smooth form such that ∂̄ϕ = α, i.e. ∀ϕ :: ∂̄ϕ ∈ Lr′(Ω, η), we have
〈

u, ∂̄ϕ
〉

=

(−1)p+q−1〈ω, ϕ〉 and this means precisely, by lemma 2.1, that ∂̄u = ω.
Now for ǫ > 0 with ηǫ(z) :=1Ω1

(z) + ǫ1Ω\Ω1
(z), let uǫ ∈ Lr(Ω, η1−r

ǫ ) be the previous solution,
then

‖uǫ‖
r
Lr(Ω) ≤

∫

Ω

|uǫ|
r η1−rdm ≤ Cr‖ω‖rLr(Ω).

Replacing η by its value we get
∫

Ω1

|uǫ|
r dm+

∫

Ω\Ω1

|uǫ|
r ǫ1−rdm ≤ Cr‖ω‖rLr(Ω) ⇒

∫

Ω\Ω1

|uǫ|
r ǫ1−rdm ≤ Cr‖ω‖rLr(Ω)

hence
∫

Ω\Ω1

|uǫ|
r dm ≤ Crǫr−1‖ω‖rLr(Ω).

Because C and the norm of ω are independent of ǫ, we have ‖uǫ‖Lr(Ω) is uniformly bounded and

r > 1 ⇒ Lr(Ω) is a dual, hence there is a sub-sequence {uǫk}k∈N of {uǫ} which converges weakly,
when ǫk → 0, to a (p, q − 1) form u in Lr(Ω), still with ‖u‖Lr(Ω) ≤ C‖ω‖Lr(Ω).

To see that this form u is 0 a.e. on Ω\Ω1 let us take a component uI,J of it ; it is the weak limit of
the sequence of functions {uǫk,I,J} which means, with the notations v := uI,J , vk := uǫk,I,J

∀f ∈ Lr′(Ω),

∫

Ω

vfdm = lim
k→∞

∫

Ω

vkfdm.

As usual take f :=
v̄

|v|
1E where E := {|v| > 0} ∩ (Ω\Ω1) then we get

∫

Ω

vfdm =

∫

E

|v| dm = lim
k→∞

∫

Ω

vkfdm = lim
k→∞

∫

E

vkv̄

|v|
dm.

Now we have by Hölder
∣

∣

∣

∣

∫

E

vkv̄

|v|
dm

∣

∣

∣

∣

≤ ‖vk‖Lr(E)‖1E‖Lr′(E).

But

‖vk‖
r
Lr(E) ≤

∫

Ω\Ω1

|uǫk|
r dm ≤ (ǫk)

r−1‖ω‖Lr(Ω) → 0, k → ∞.

Hence
∣

∣

∣

∣

∫

E

|v| dm

∣

∣

∣

∣

≤ Cr‖1E‖Lr′(E)(ǫk)
r−1‖ω‖rLr(Ω) → 0
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which implies m(E) = 0 because on E, |v| > 0.
This being true for all components of u, we get that the form u is 0 a.e. on Ω\Ω1.

So we get
∀ϕ ∈ Dn−p,n−q(Ω), (−1)p+q−1〈ω, ϕ〉 =

〈

uǫ, ∂̄ϕ
〉

→
〈

u, ∂̄ϕ
〉

⇒
〈

u, ∂̄ϕ
〉

= (−1)p+q−1〈ω, ϕ〉

hence ∂̄u = ω as distributions. �

Remark 3.8. As in remark 3.6 if Ω is Stein for q = n instead of asking ω ⊥ Hp(Ω2) we need just
ω ⊥ Hp(Ω).

Remark 3.9. The condition of orthogonality to Hp(V ) in the case q = n is necessary : suppose
there is a (p, n − 1) current u such that ∂̄u = ω and u with compact support in an open V ⊂ Ω,
then if h ∈ Hp(V ), we have

h ∈ Hp(V ), 〈ω, h〉 =
〈

∂̄u, h
〉

= (−1)n+p
〈

u, ∂̄h
〉

= 0,
because, u being compactly supported, there is no boundary term and

〈

∂̄u, h
〉

= (−1)n+p
〈

u, ∂̄h
〉

.
This kind of condition was already seen for extension of CR functions, see [1] and the references
therein.

3.4. Case of Stein manifold.

Theorem 3.10. Let X be a Stein manifold and Ω a weakly r′ regular domain in X with r′ the
conjugate exponent for r. Let ω be a (p, q) current in Lr,c(Ω), r > 1, such that ∂̄ω = 0 if 1 ≤ q < n
and for any open set V ⊂ Ω, V ⊃ Suppω we have ∀h ∈ Hp(V ), 〈ω, h〉 = 0 if q = n.

Then there is a (p, q − 1) current u in Lr,c(Ω) such that ∂̄u = ω.

The proof is identical to the proof of theorem 3.7.

Remark 3.11. Another proof of this theorem, with different assumptions, was given by a referee.
He sketched a completely different geometrical proof, using nice but heavy theorems.

3.5. Finer control of the support.

Here we shall get a better control on the support of a solution.

Theorem 3.12. Let Ω be a weakly r′ regular domain in a Stein manifold X. Then for any (p, q)
form ω in Lr,c(Ω, dm), ∂̄ω = 0, if q < n, and ω ⊥ Hp(V ) for any V :: Suppω ⊂ V, if q = n, with
support in Ω\C where C is a weakly r regular domain, there is a u ∈ Lr,c(Ω, dm) such that ∂̄u = ω
and with support in Ω\Ū , where U is any open set relatively compact in C, provided that q ≥ 2.

Proof.
Let ω be a (p, q) form with compact support in Ω\C then ω is solvable in Lr by a v ∈

Lr
p,q−1(Ω), ∂̄v = ω, with compact support in Ω, by theorem 3.10 or, if Ω is a polydisc in C

n, and if
ω ∈ Wr

q (Ω) by the theorem in [2] by the coronas method.

Because ω has compact support outside C we have ω = 0 in C ; this means that ∂̄v = 0 in C.
Because C is weakly r regular and q ≥ 2, we have

∃C ′ ⊂ C, C ′ ⊃ Ū , ∃h ∈ Lr
p,q−2(C

′) s.t. ∂̄h = v in C ′.
Let χ be a smooth function such that χ = 1 in U and χ = 0 near ∂C ′ ; then set

u := v − ∂̄(χh).
We have that u = v − χ∂̄h − ∂̄χ ∧ h = v − χv − ∂̄χ ∧ h hence u is in Lr ; moreover u = 0 in Ū
because χ = 1 in U hence ∂̄χ = 0 there. Finally ∂̄u = ∂̄v − ∂̄2(χh) = ω and we are done. �
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If Ω and C are, for instance, pseudo-convex in Cn then Ω\C is no longer pseudo-convex in
general, so this theorem improves actually the control of the support.

Remark 3.13. The correcting function h is given by kernels in the case of Stein domains, hence
it is linear ; if the primitive solution v is also linear in ω, then the solution u is linear too. This is
the case in Cn with the solution given in [2].

This theorem cannot be true for q = 1 as shown by the following example :
Take a holomorphic function ϕ in the open unit ball B(0, 1) in C

n such that it extends to no open

ball of center 0 and radius > 1. For instance ϕ(z) := exp

(

−
z1 + 1

z1 − 1

)

. Take R < 1, then ϕ is

C∞(B̄(0, R)) hence by a theorem of Whitney ϕ extends C∞ to Cn ; call ϕR this extension. Let
χ ∈ C∞

c (B(0, 2)) such that χ = 1 in the ball B(0, 3/2) and consider the (0, 1) form ω := ∂̄(χϕR).
Then Suppω ⊂ B(0, 2)\B(0, R), ω is ∂̄ closed and is C∞ hence in Lr

0,1(B(0, 2)). Moreover B(0, R)

is strictly pseudo-convex hence r′ regular, but there is no function u such that ∂̄u = ω and u zero
near the origin because any solution u will be C.R. on ∂B(0, R) and by Hartog’s phenomenon will
extends holomorphically to B(0, R), hence cannot be identically null near 0.

Never the less in the case q = 1, we have :

Theorem 3.14. Let Ω be a weakly r′ regular domain in a Stein manifold X.
Then for any (p, 1) form ω in Lr,c(Ω, dm), ∂̄ω = 0, with support in Ω1\C where Ω1 is a weak r′

regular domain in Ω and C is a domain such that C ⊂ Ω and C\Ω1 6= ∅ ; there is a u ∈ Lr,c(Ω, dm)
such that ∂̄u = ω and with support in Ω\C.

Proof.
We have that ω is solvable in Lr by a u ∈ Lr

p,0(Ω1) with compact support in Ω1, by theorem 3.10
or, if Ω and Ω1 are polydiscs in C

n, and if ω verifies the extra Lr estimates on some derivatives
of its coefficients, by the theorem in [2] with the coronas method. Then ∂̄u = 0 in C hence u is
locally holomorphic in C. Because C\Ω1 6= ∅, there is an open set in C\Ω1 ⊂ Ω\Ω1 where u is 0
and holomorphic, hence u is identically 0 in C, C being connected. �

Remark 3.15. If there is a u ∈ Lr,c
p,0(Ω1) which is 0 in C then we have

∀h ∈ Lr′

n−p,n−1(C) :: Supp ∂̄h ⊂ C, 0 =
〈

u, ∂̄h
〉

= 〈ω, h〉,
hence the necessary condition :

∀h ∈ Lr′

n−p,n−1(C) :: Supp ∂̄h ⊂ C, 〈ω, h〉 = 0.

Corollary 3.16. Let Ω be a polydic in Cn . Then for any (p, q) form ω in Lr,c(Ω)∩Wr
q (Ω), ∂̄ω = 0,

if q < n, and ω ⊥ Hp( Ω) if q = n, with compact support in Ω\{f = 0} where f is holomorphic in
Ω, there is a (p, q− 1) form u ∈ Lr,c(Ω) such that ∂̄u = ω and u has its support still in Ω\{f = 0}.
Moreover the solution u is linear with respect to ω.

Proof.
Because ω has compact support outside {f = 0} this means that there is a ǫ > 0 such that ω = 0
in {|f | < ǫ}. We have that C := Ω ∩ {|f | < ǫ} is pseudo-convex hence we can find a sequence of
smoothly strictly pseudo-convex domains Dk ⊂ C such that Dk ր C. Choose k big enough to be
sure that Dk ⊃ {|f | < ǫ/2}.

If q > 1, apply theorem 3.12 to C, C ′ = Dk, to get a solution u of ∂̄u = ω in Lr
p,q−1(Ω) with

support in Ω\{f = 0}.
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If q = 1 we can apply theorem 3.14 because {f = 0} goes necessarily up to the boundary
of Ω and we can always take a D strictly pseudo-convex containing the support of ω and relatively
compact in Ω. We can always use the linear solution given by the coronas method for the primitive
solution, hence because we can solve ∂̄ in Lr linearly in s.p.c. domains, each step is done linearly,
so the complete solution is also linear. �

Remark 3.17. If Ω is a pseudo-convex domain in a Stein manifold X, and if f is holomorphic in
Ω, then Ω\{f = 0} is Stein and we have already this result by theorem 3.10 but not linearly with
respect to ω.

4. An approach by Lr,loc estimates for ∂̄.

4.1. Global Lr,loc(Ω) estimates for ∂̄..
We shall use again the Lr estimates to get a direct proof of global Lr,loc estimates for the ∂̄

equation in Stein domains. We shall copy the proof of theorem 2.8.1 in Henkin-Leiterer ( [6] p 86).
Let Ω be a Stein manifold. Let {Dk}k∈N be an increasing sequence of strictly pseudo-convex

C∞ smoothly bounded sub domains of Ω such that D̄k is O(Ω) convex. Let ω ∈ Lr,loc
p,q (Ω), ∂̄ω = 0

and first suppose that q ≥ 2.
We have : by Ovrelid results in Cn and Demailly-Laurent ones in a Stein manifold that

∀k ∈ N, ∃uk ∈ Lr
p,q−1(Dk) :: ∂̄uk = ω, ‖uk‖Lr(Dk)

≤ Ck‖ω‖Lr(Dk)
,

because ω ∈ Lr
p,q(Dk) and we can solve ∂̄ in this class. Set v3 = u3 and suppose v4, ..., vk are already

done with vk ∈ Lr(Dk), ∂̄vk = ω in Dk and vk = vk−1 in Dk−2, ‖vk‖Lr(Dk)
≤ Ek+1‖ω‖Lr(Dk+1)

. Let

us built vk+1.
We have ∃uk+1 ∈ Lr(Dk+1) :: ∂̄uk+1 = ω so ∂̄(vk − uk+1) = 0 in Dk hence

∃ϕ ∈ Lr(Dk) :: ∂̄ϕ = vk − uk+1 in Dk, ‖ϕ‖Lr(Dk)
such that :

‖ϕ‖Lr(Dk)
≤ Ck‖vk − uk+1‖Lr(Dk)

≤ Ck‖vk‖Lr(Dk)
+ Ck‖uk+1‖Lr(Dk)

≤

≤ (CkEk+1 + CkCk+1)‖ω‖Lr(Dk+1)
.

Let χk ∈ C∞
c (Dk), 0 ≤ χk ≤ 1, with χk ≡ 1 in Dk−1 and set

vk+1 = uk+1 + ∂̄(χkϕ) = ∂̄χk ∧ ϕ+ χk(vk − uk+1) ;
and χk(vk−uk+1) ∈ Lr(Dk+1) because it can be extended by 0 outside Dk and the same for ∂̄χk∧ϕ,
hence vk+1 ∈ Lr(Dk+1). Moreover we have

vk+1 = uk+1+ ∂̄χk∧ϕ+χk(vk−uk+1) = vk in Dk−1 because there χk ≡ 1 ⇒ ∂̄χk = 0,
and

∂̄vk+1 = ∂̄uk+1 + ∂̄2(χkϕ) = ∂̄uk+1 = ω.
And again we have ‖vk+1‖Lr(Dk+1)

≤ Ek+2‖ω‖Lr(Dk+2)
, with Ek+2 = Ck+‖χk‖∞(CkEk+1+CkCk+1).

So we are done, the sequence {Dk}k∈N being increasing and exhausting in Ω.
If q = 1 we suppose that v2 = u2 and v3, ..., vk are already built. Then the form hk := vk−uk+1

is in Hp(Dk) hence
∃ϕ ∈ Hp(Ω) :: ∀z ∈ Dk−1, |vk(z)− uk+1(z)− ϕ(z)| < 2−k,

because D̄k−1 is O(Ω) convex, vk − uk+1 is holomorphic in a neighbourhood of D̄k−1.
So let

vk+1 := uk+1 + ϕ,
then |vk − vk+1| < 2−k in Dk−1 hence we have a sequence of forms which converge uniformly on
compact sets in Ω to a form u. Now u−vk+1 is holomorphic in Dk hence ∂̄u = ∂̄vk+1+ ∂̄(u−vk+1) =
∂̄vk+1 = ω in Dk for all k and u ∈ Lr

p,0(Dk) for all k. So we are done and we prove :
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Theorem 4.1. Let Ω be a Stein manifold and ω ∈ Lr,loc
p,q (Ω), ∂̄ω = 0, then there is a u ∈ Lr,loc

p,q−1(Ω)

such that ∂̄u = ω. Moreover we have a Ck > 0 such that ‖u‖Lr(Dk)
≤ Ck‖ω‖Lr(Dk+1)

.

Now in order to go back to forms with compact support, we shall use duality.

4.2. Functionnal analysis.

We shall show that, for (Ω, µ) a measured topological space and 1 ≤ r < ∞, the dual

of Lr,loc(Ω, µ) is Lr′,c(Ω, µ) where r′ is the conjugate exponent of r, and Lr′,c(Ω, µ) is the space

of Lr′(Ω, µ) functions 0 µ a.e. outside of a compact set. And also that the dual of Lr,c(Ω, µ) is

Lr′,loc(Ω, µ).
Let {Ωj}j∈N be a exhaustive sequence of relatively compact open sets in Ω. We shall equip

Lr,loc(Ω, µ) with the family of semi-norms :
∀f ∈ Lr,loc(Ω), ‖f‖r,j := ‖f‖Lr(Ωj)

.

This is a Frechet space.

For f ∈ Lr,c(Ω, µ) we set ‖f‖r :=
( ∫

Ω
|f |r dµ

)1/r
.

Theorem 4.2. For r ∈ [1,∞[ the dual of Lr,loc(Ω, µ) is Lr′,c(Ω, µ), with r′ the conjugate exponent
for r.

Proof.
With its Fréchet topology, a linear form L on Lr,loc(Ω, µ) is continuous if and only if :

∃j ∈ N, ∃C > 0 :: ∀f ∈ Lr,loc(Ω, µ), |L(f)| ≤ C‖f‖r,j.

First for g ∈ Lr′,c(Ω, µ) we associate the linear form
∀f ∈ Lr,loc(Ω, µ), Lg(f) :=

∫

Ω
f ḡdµ.

We have |Lg(f)| ≤ ‖g‖r‖f‖r,j for any j ∈ N such that Supp g ⊂ Ωj hence Lg is continuous so

g ∈ (Lr,loc(Ω, µ))′.
Conversely let L be a continuous linear form on Lr,loc(Ω, µ), this means

(4.3) ∃J ∈ N, ∃C > 0 :: ∀f ∈ Lr,loc(Ω, µ), |L(f)| ≤ C‖f‖r,J .

Because the norms are increasing, we still have
∀n ≥ J, ∀f ∈ Lr,loc(Ω, µ), |L(f)| ≤ C‖f‖r,n.

This implies that for n ≥ J, we have that, on Ωn, L is associated to a unique (class of) function
gn ∈ Lr′(Ωn), ‖gn‖r′,n ≤ C, i.e.

(4.4) ∀n ≥ J, ∀f ∈ Lr,loc(Ω, µ), L(1Ωn
f) =

∫

Ωn

f ḡndµ.

By uniqueness we have that gn = gn−1 on Ωn−1.

Consider now the function fn :=1En

ḡn

|gn|
r−2

r−1

with En := Ωn\ΩJ ; then

‖fn‖
r
r =

∫

En

∣

∣

∣

∣

∣

ḡn

|gn|
r−2

r−1

∣

∣

∣

∣

∣

r

dµ =

∫

En

|gn|
r′ dµ ≤

∫

Ωn

|gn|
r′dµ ≤ Cr′.

Hence fn ∈ Lr,loc(Ω, µ), and we have by (4.4) and by (4.3)

|L(1Ωn
fn)| =

∣

∣

∣

∫

Ωn
fnḡndµ

∣

∣

∣
=

∣

∣

∣

∣

∫

En

|gn|
2

|gn|
r−2
r−1

dµ

∣

∣

∣

∣

=
∣

∣

∣

∫

En
|gn|

r′ dµ
∣

∣

∣
≤ C‖fn‖r,J = 0,
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because fn = 0 on ΩJ . Hence gn = 0 µ a.e. on En. We have gn = gJ µ a.e. on ΩJ hence setting
g :=1Ωj

gJ we get that g = gn µ a.e. on Ωn. Because f −1Ωn
f → 0 in Lr,loc(Ω, µ) we have

L(f) = limn→∞L(1Ωn
) =

∫

Ω
f ḡdµ,

by the continuity of L, hence L is associated to g which is in Lr′,c(Ω, µ). �

Theorem 4.3. For r ∈ [1,∞[ the dual of Lr,c(Ω, µ) is Lr′,loc(Ω, µ), with r′ the conjugate exponent
for r.

Proof.
The space E := Lr,c(Ω, µ) is endowed with its topology of inductive limit (Lr(Ωn, µ), Tn)n∈N with
Tn : Lr(Ωn, µ) → Lr,c(Ω, µ) is such that ∀f ∈ Lr(Ωn, µ), Tnf :=1Ωn

f ∈ Lr,c(Ω, µ). A linear form L
on Lr,c(Ω, µ) is then continuous if and only if L is continuous on each Lr(Ωn, µ), i.e.

∀n ∈ N, ∃Cn > 0 :: |L(Tnf)| ≤ Cn‖Tnf‖n.

First to g ∈ Lr′,loc(Ω, µ) we associate the linear form
∀f ∈ Lr,c(Ω, µ), Lg(f) :=

∫

Ω
f ḡdµ.

We have
|Lg(Tnf)| =

∣

∣

∣

∫

Ωn
f ḡdµ

∣

∣

∣
≤ ‖g‖Lr(Ωn)

‖Tnf‖Lr,c(Ω,µ),

hence Lg is continuous on Lr,c(Ω, µ), so g ∈ (Lr,c(Ω, µ))′.
Conversely let L be a continuous linear form on Lr,c(Ω, µ), this means that, if we restrict L

to the subspace Lr(Ωn, µ) we have
∃Cn > 0 :: ∀f ∈ Lr(Ωn, µ), |L(Tnf)| ≤ Cn‖Tnf‖n.

Hence by the usual duality between Lr(Ωn, µ) and L
r′(Ωn, µ) we have

∃!gn ∈ Lr′(Ωn, µ) :: ‖gn‖Lr′(Ωn,µ)
≤ Cn and L(Tnf) = 〈Tnf, gn〉.

But Ωn−1 ⊂ Ωn hence gn = gn−1 µ a.e. on Ωn−1 so we set g ∈ Lr′,loc(Ω) such that
g := gn on Ωn and ∀f ∈ Lr,c(Ω), L(f) = 〈f, g〉Ω

and we have that (Lr,c(Ω, µ), )′ ⊂ Lr′,loc(Ω). �

Remark 4.4. We can use the fact that Lr,loc(Ω) is the projective limit of the projective system
(Lr(Ωj), Tjk) where {Ωj}j∈N is an exhaustive sequence of relatively compact open sets in Ω, and
Tjk : Lr(Ωk) → Lr(Ωj) is defined by :

Tjkf :=1Ωj∩Ωk
f.

We also have that Lr,c(Ω) is the inductive limit of (Lr(Ωj), Tjk) and we have that the dual of Lr(Ωj)
is Lr′(Ωj) and the dual of an inductive limit is the projective limit with the dual inductive system
( [11], Prop. 15, p 85). But because the converse is also true in this case, we give explicitly the
detailed proofs.

4.3. Complex analysis.

Let Ω be an open set in Cn or in a complex manifold, and A a topological space of functions
defined on Ω. Let, as usual, D(Ω) be the space of C∞ smooth functions with compact support in
Ω and D′(Ω) be the space of distributions in Ω. Suppose that D(Ω) ⊂ A ⊂ D′(Ω), the inclusions
being continuous.
Associate to A the spaces of (p, q) currents Ap,q with coefficients in A. Then B = A′, the dual of
A, is still a space of distributions and we ask that the duality bracket be ∂̄ compatible with the
distribution one, i.e.

∀f ∈ Ap,q−1, ∀g ∈ Bn−p,n−q,
〈

∂̄f, g
〉

=
〈

f, ∂̄g
〉

.
This means that there is no boundary terms, i.e. the f or g must be ”asymptotically holomorphic”.

We say that the equation ∂̄f = ω is solvable in Ap,q with 0 ≤ p ≤ n, 1 ≤ q ≤ n, if
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∀ω ∈ Ap,q, ∂̄ω = 0, ∃f ∈ Ap,q−1 :: ∂̄f = ω.
Now suppose ∂̄ is solvable in Ap,q+1 and in Ap,q and let ω ∈ Bn−p,n−q, ∂̄ω = 0 still with 0 ≤ p ≤
n, 1 ≤ q ≤ n, and consider the form

∀γ ∈ Ap,q+1, ∂̄γ = 0, Lω(γ) := 〈f, ω〉,
with ∂̄f = γ, which exists by hypothesis, where 〈·, ·〉 is the duality bracket.
Let us see if this form is well defined, as in lemma 3.5 :

if ∂̄f = ∂̄g = γ, then ∂̄(f − g) = 0 hence ∃ϕ ∈ Ap,q−1 :: ∂̄ϕ = f − g so
〈f − g, ω〉 =

〈

∂̄ϕ, ω
〉

= (−1)p+q
〈

ϕ, ∂̄ω
〉

= 0,
because we have the compatibility between the two brackets.
Hence Lω is well defined and it is linear as in lemma 3.5.
As before set Hp(Ω) the set of (p, 0) form f such that ∂̄f = 0 in Ω.

For the special case q = 0, we automatically have that ∂̄ω = 0, because ω is a (n−p, n) form,
hence to still get that Lω(γ) is well defined if ∂̄γ = 0, we need 〈f, ω〉 = 0 as soon as f ∈ Hp(Ω).

We say that the equation ∂̄f = ω is continuously solvable in Ap,q+1 if it is solvable in Ap,q and
in Ap,q+1 and if, moreover, Lω(γ) is a continuous linear form on the subspace γ ∈ Ap,q+1, ∂̄γ = 0.

Theorem 4.5. If the equation ∂̄f = ω is continuously solvable in Ap,q+1 then we can solve it in
the dual space Bn−p,n−q. This means that ∀ω ∈ Bn−p,n−q, ∂̄ω = 0 if 1 ≤ q ≤ n− 1 and 〈ω, f〉 = 0 if
q = 0 for f ∈ Hp(Ω), there is a u ∈ Bn−p,n−q−1 such that ∂̄u = ω.

Proof.
Let ω ∈ Bn−p,n−q, ∂̄ω = 0 if 1 ≤ q ≤ n − 1 and 〈ω, f〉 = 0 if q = n and f ∈ Hp(Ω), and consider
the form L = Lω defined above on the subspace γ ∈ Ap,q+1, ∂̄γ = 0, which exists by hypothesis in
Ap,q+1. This linear form L is well defined, linear and continuous by assumption, so by Hahn-Banach,
it extends to the whole Ap,q+1 and is represented by a u ∈ Bn−p,n−q−1 by duality. So we have

L(γ) = 〈γ, u〉 =
〈

∂̄f, u
〉

= Lω(f) = 〈f, ω〉,

but
〈

∂̄f, u
〉

= (−1)p+q
〈

f, ∂̄u
〉

hence 〈f, ω〉 = (−1)p+q
〈

f, ∂̄u
〉

provided that ∂̄f = γ ∈ Ap,q+1.

This is true for γ = ∂̄f, where f is a (p, q) -form with coefficients in D(Ω), because D(Ω) ⊂ A and
if f ∈ D(Ω), ∂̄f ∈ D(Ω) ⇒ ∂̄f ∈ Ap,q+1 ;
hence we have

∀f ∈ D(Ω)p,q, 〈f, ω〉 = (−1)p+q
〈

f, ∂̄u
〉

,

so we find a u ∈ Bn−p,n−q−1 such that (−1)p+q∂̄u = ω. �
This is again a avatar of Serre duality but with explicit global estimates.

Corollary 4.6. Let Ω be a domain in a Stein manifold X such that the equation ∂̄u = f has a
solution u in Lr,loc

p,q (Ω) if f ∈ Lr,loc
p,q+1(Ω) with the control :

∀j ∈ N, ‖u‖j ≤ Cj‖f‖j ;

then we can solve this equation with u ∈ Lr,c
p,q−1(Ω) if f ∈ Lr,c

p,q(Ω) and ∂̄f = 0 if q < n, and f ⊥ Hp

if q = n.
In particular this is true if Ω is Stein in X.

Proof.
We take for µ the Lebesgue measure on Ω and A := Lr′,loc(Ω) ; we have clearly that D(Ω) ⊂ A ⊂
D′(Ω) and by theorem 4.1 we can solve the ∂̄ equation for (p, q+1) forms ∂̄ closed with coefficients
in A.
Let ω ∈ Lr,c

n−p,n−q(Ω) ; we have to show that the form L = Lω is continuous on the subspace

γ ∈ Ap,q+1, ∂̄γ = 0, but we have with ∂̄f = γ,
L(γ) := 〈f, ω〉 ⇒ |L(γ)| = |〈f, ω〉| ≤ ‖f‖Lr(Ωj)

×‖ω‖Lr(Ω).
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The theorem 4.1 gives also that ‖f‖Lr(Ωj)
≤ Cj‖γ‖Lr(Ωj+1)

, where Ωj ⊂ Ω is a s.p.c. domain

containing the support of γ. Hence
|L(γ)| = |〈f, ω〉| ≤ ‖f‖Lr(Ωj)

×‖ω‖Lr(Ω) ≤ Cj‖γ‖Lr(Ωj+1)
×‖ω‖Lr(Ω),

and the continuity of L, Cj and ω being fixed.
The ∂̄ compatibility is clear because B = A′ is made of forms with compact support by theorem 4.3.

So by theorem 4.5 we can solve the ∂̄ equation for forms with coefficients in the dual space
of Lr′,loc(Ω, µ) which is, by theorem 4.3, Lr,c(Ω, dm).

By theorem 4.1 if Ω is Stein, then we can solve ∂̄ in Lr,loc(Ω) hence in Lr,c(Ω), and the
corollary. �
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