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AN ANDREOTTI-GRAUERT THEOREM WITH L" ESTIMATES.

ERIC AMAR

ABSTRACT. By a theorem of Andreotti and Grauert if w is a (p, ¢) current, ¢ < n, in a Stein manifold,
0 closed and with compact support, then there is a solution u to du = w still with compact support.
The aim of this work is to show that if moreover w € L"(dm), where m is a suitable Lebesgue
measure on the Stein manifold, then we have a solution u with compact support and in L"(dm).

As a consequence of the previous result and again by a duality argument we have L™!"°¢(dm) —
L™!¢(dm) solutions for the d equation on suitable domains.

1. INTRODUCTION.

Let w be a 0 closed (p,q) form in C" with compact support K := Suppw and such that
w € L"(C"). Setting K in a ball B := B(0, R) with R big enough, we know, by a theorem of
Ovrelid [9], that we have a (p,q — 1) form u € L"(B) such that Ou = w. On the other hand we also
know, at least when ¢ < n, that there is a current v with compact support such that 0v = w, by a
theorem of Andreotti-Grauert [3].

So a natural question is : may we have a solution u of Ju = w with compact support and in
L(cr)?

We already answered this question by the affirmative in a join work with S. Mongodi [2]
explicitly by the "method of coronas”.

The aim of this work is to extend this result to Stein manifolds and for it we use a completely
different approach inspired by the Serre duality [11]. Because Hahn Banach theorem is used, these
results are no longer so explicit and constructive as in [2]. On the other hand the control of the
support is better : the support of the solution u is contained in any 7’ regular domain containing
the support of the data w. The definition of r’ regular domain will be given later on, but strictly
pseudo convex domains are such domains.

Let (€2, 1) be a measured domain with a positive measure p, L™¢(£2, ut) the space of L"(, i)
functions 0 p a.e. outside a compact set of Q and L™"°(€2, 1) the space of x measurable functions
on € which are in L"(K, p) for K any compact set of Q. We prove, for 1 < r < oo, that the dual
of L™¢(Q, ) is L™ 1°(Q, 1), with 7/ the conjugate exponent of 7, and that the dual of L™°(, 1) is
L7(Q, 1). Using this and the main result of this work, we show that if w € ng{;(Q’ dm), Ow =0,

. !
there is a form u € LZ}’)(;C

1)(9, dm) such that Ou = w, provided that € is a 7’ regular domain. This
last result was suggested to me by a referee who thought it was already known, after the first version

of this paper was already posted on HAL and ArXiv.

[ am indebted to G. Tomassini who started my interest in this subject by e-mails on precisely
this kind of questions and also to S. Mongodi for a lot of discussions by mails on the subject during
the preparation of our join paper [2].
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2. DuALITY.

We shall study a duality between currents inspired by the Serre duality [11].
Let  C C" be an open set in C" and t a (p,q) current with compact support in €, noted t €
De, ) SV)-
Let also ¢ € C;_, .~ q)(Q) a (n —p,n —q) form in C>*(2). We have that ¢t A ¢ is a (n,n) current
with compact support in €.

As usual we use the following notation for the pairing

(t, @) = te),
where t(y) is the action, as a current, of ¢ on the smooth form ¢ of complementary bi-degree.
Lemma 2.1. Let § be an open set in C", t € D, (
Qandu e D, ,, /(). Then we have ot =u iff

(*) Y € C3_pngy (), (L) = (=17 (u, 0p).

Proof.
If Ou = t, let x € C>°(Q) such that y = 1 on the support of u, hence on the support of ¢. Then
Vo € Cl_pn (), (t0) = (t, x) = (Ou, xw} 1P (u, d(xe))
by definition of the action of derivatives on currents. Hence
(t. ) = (—1)”+q‘1<u,5><mp> + (=DM u, xdp) = (1P (u, x0p)
because Ox = 0 on the support of u ;
(t,p) = (=177 (u, x8w> P u, dp)
because x = 1 on the support of u.
Conversely if we have (%) we take xy € C>°(€2) such that y = 1 on union of the support of u and
the support of ¢ then
because y = 1 on the support of t, and by ( )
{tx) = (—1)7 1w, 8(x)) = (Fu, xp) = (Ou, )

because y = 1 on the support of u hence on the support of Ju.

So
V(p S Cn —p,n—q) (Q)v <t7 90> - <8uv 90>7

which means that u = ¢ as a current. |

pq)(Q) a (p,q) current with compact support in

3. SOLUTION OF THE O EQUATION WITH COMPACT SUPPORT.

3.1. Domain r regular.
We shall use the definition.

Definition 3.1. Let X be a complex manifold and Q a domain in X ; let r € [1, oo], we shall say
that Q2 is r regular, if for p,q € {0,....,n}, ¢ > 1, there is a constant C = C,, such that for any
(p,q) form w, O closed in Q and in L"(Q) there is a (p,q — 1) form u € L™()) such that Ou = w
and HuHLT(Q) < CHw”LT(Q)'

The L" norms for forms will be defined later on.
Examples of 2 regular domains are the bounded pseudo-convex domains by Hérmander [6].
Examples of r regular domains in C" are the bounded strictly pseudo-convex (s.p.c.) domains
with smooth boundary by Ovrelid [9] ; the polydiscs in C™ by Charpentier [4], finite intersections
of strictly pseudo-convex bounded domains with transverse intersections by Menini [8].
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On a Stein manifold X we define first the ”Lebesgue measure” as in Hérmander’s book [6]
section 5.2, with a hermitian metric locally equivalent to the usual one on any analytic coordinates
system. Associated to this metric there is a volume form dV and we take it for the Lebesgue
measure on X.

We can solve the 0 equation in strictly pseudo-convex domains with smooth boundary in X
with L" estimates for (0, 1) forms by use of N. Kerzman kernels [7] and the metric above.

We can solve the 0 equation in strictly pseudo-convex domains with smooth boundary in X
with L" estimates for all (p,q) forms by J-P. Demailly and C. Laurent ones( [5], Remarque 4, page
596) but here the manifold has to be equiped with a metric with null curvature, in order to avoid
parasitic terms.

So examples of r regular domains in Stein manifold are the relatively compact s.p.c. domains
with smooth boundary.

3.2. Weighted L" spaces.

Let B := B(0, R), the ball of C™ centered at 0 and of radius R. We shall need the following
notations.
We note dm the Lebesgue measure on C" and we shall define L™ (B, w) to be the set of functions f
defined on B such that

1Az s, w) = S5 1 ()] w(z)dm(z) < oo,
with a weight w(z) > 0. As usual we set L"(B) for L"(B, 1).
Let Z, be the set of multi-indices of length p in (1, ...,n). We shall use the following measure

defined on I' := BxZ,xZ, the following way :

A2, 0) = a2, b ) = w(dm(z) © S 61(k) @ 8,(0),
1=, 171=q
where d;(k) = 1 if the multi-index k is equal to I and d;(k) = 0 if not.
This means, if f(z,I,J) is a function defined on I', that

/ Fa b, D pg(z k1) = Y / f(z, I, Dw(z)dm(z).
[1l=p. |7|=q" "
If I is a multi-index of length p, let I¢ be the unique multi-index, ordered increasingly, such
that TUI¢= (1, 2,..., n) ; then I¢is of length n — p.
Tot= 31— /=g tr.7(2)dz" ANdz7 a (p,q) form, we associate the function on I :
T(z,1,J) = (=1)*"Dt; 5(2),
where
s(I,J)=0if dzf Ndz? Nd2I" NdZ'" = dzy N+ ANdz, NdZ A+ NdZ, as a (n,n) form
and
s(1,J) =1 if not.
If p= Zm:n \Jl=q ore.ge(2)dz! A dz’ is of complementary bi-degree, associate in the same
manner :
O*(2, I, J) := @re je(z). This is still a function on I
Now we have, for 1 < r < oo, if T'(z, 1, J) is a function in B with L"(B) coefficients and with
= Hw,p,q;
||T||2T(du) = /|T(Za ]7 ‘])|r d,le7p7q(ZL‘, ]7 J) = Z ||T(a]7 ‘])HZT(B,w)’
[|=p, |J]=q -
For 1 < r < oo the dual of L"(u) is L™ (i) where 7’ is the conjugate of r, - + — =1, and the

’
norm is defined analogously with »’ replacing r.
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We also know that, for p, ¢ fixed,

[ T®du
(31) Tl = sup WT2
PeL™ () L ()

For a (p, q) form t =37, gy trxdz? Adz", and a weight w > 0 we define its norm by :
(3.2) 1t 0y 7= Z 1.5y = 1T 1 (-
|J|=p, |K|=q

Now we can state

Lemma 3.2. Let w > 0 be a weight. If u is a (p,q) current defined on (n — p,n — q) forms in
L (B,w) and such that

Vo€ L,y y(Bow), [ )] < Cllalliga,
then JJull g 1-r) < C-

Proof.
Let us take the measure j1 = ji,, ;4 as above. Let ®* be the function on I' associated to o and T'
the one associated to u. We have, by definition of the measure u applied to the function

fz,1,J) :=T(z, I, Hw td*(z,1,J),
/Tw_lcb*d,u: /f(z, k, Ddu(z, k1) := Z /Bf(z, I, J)w(z)dm(z) =

[I|=p, |J]=q

= Y [T e @0 L () = (. a),
11=p, 7]=q" "
by definition of T" and ®*.
Hence we have, by (3.1)
werr oy 11z
But | Tw 0 = s, w) by (3:2), and

Lr(p)

0 = 157 s = A 02 = g
so we get
[(u, o)
ull r r-ry = sUP
L@t weL (1) H\I’HL’"'(H)
which implies the lemma because, still by (3.1), we can take ¥ = ®* and [[W]| v,y = ||| 1 5 w)-
|

Let H,(92) be the set of all (p, 0) 9 closed forms in Q. If p = 0, Ho(Q) = H(Q) is the set
of holomorphic functions in Q. If p > 0, we have ¢ € H,(Q) = ¢(2) = >, ay(z)dz’, where
dz? :=dzj, \--- Adz;, and the functions a;(z) are holomorphic in 2. Hence in C", a (p,0) 0 closed
form is a vector of global holomorphic functions in §2.

Let us consider the weight 1 = n. := lg(2) + €elp\o(2) for a fixed € > 0. We shall use the
lemma :
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Lemma 3.3. Lett be a (p,q) form in LL(C"), r > 1, K := Suppt. Let B be a ball containing K.
Suppose that t is such that Ot = 0 if 1 < g <n and Yh € H,(Q), (¢, h) =0 if ¢ = n.
The form L defined on (n —p,n —q+ 1) form a € L™ (B,n), O closed in Q as follows:
L(a) := (=1)PT=Yt ), where ¢ € L™ (B) is such that Op = a,
1s well defined and linear.

Proof.

Because ¢ > 0 we have a € L" (B,n) = a € L" (B) and such a ¢ exists because B being s.p.c. is 7/
regular so there is ¢ € L' (B) with dp = a.

Let us see that £ is well defined :
suppose first that ¢ < n. In order for £ to be well defined we need

Vo e Ly (B), Dp =00 = {t,0) = {t, ).

This is meaningful because t € L’(C"), r > 1, Suppt C B.

Then we have a(cp 1) = 0 hence, because B is ' regular, we can solve d in L" (B) :

3y € Ly pne - 1( )07 = (p — V).

So (t,po—) = <t 87> 1)pta- 1<8t 7> = (. Hence £ is well defined in that case.

Suppose now that q = n, then of course 0t = 0 and we have that o, v are (p, 0) forms hence
d(¢ — 1) = 0 means that h := ¢ — 1) is a d closed (p, 0) form hence h € H,(B) C H,(2). But by
assumption we have (¢, h) =0 hence L is also well defined in that case.

It remains to see that L is linear, so let o = aq + g, with a; € L" (B, n), da; =0, j=1,2;
we have a = 9y, oy = gy and as = Jps, with @, 1, @s in L (B) so, because A(¢ — 1 — @2) = 0,
we have ¢ = ¢ + @y + 01, so

L(a) = (=1)PH Nt 0) = (1Tt o1+ o + 0P) = L(en)+L(az)+(=1)PH7(t, 09),

but (t,0v) =0, hence L£(a) = L) + L(az). The same for @ = Aa; and the linearity. B

Theorem 3.4. Lett be a (p,q) form in LL(C"), r > 1, K := Suppt. Let B be a ball containing K
and let Q C B be a v’ regular domain containing K. Suppose that t is such that 0t =0 if 1 < g <n
and Vh € H,(2), (t, h)y =0 if ¢ =n.

Then there is a (p,q—1) form u in L7(B), 0 a.e. on B\Q and such that Ou =t as distributions and
lull ey < CllEll L )-

Proof.
Let us consider the weight n = 1. := 1g(2) + élp\(2) for a fixed € > 0 and the form £ defined in
lemma 3.3. By lemma 3.3 we have that £ is a linear form on (n —p,n—¢q+1) form o € L" (B, 7), 0
closed in (2.

Ifaisa (n—pn—q+1) formin L (B,n), O closed in B, then, o € L™ (Q) and is still 0
closed in €, hence there is a 1) € L™ (Q) :: 01 =  because € is ’ regular.
For ¢ < n, we have (¢ — ) = a —a = 0 on  and, because Suppt C Q C B, 0t = 0 we get
(t, ¢ — 1) =0 hence

L) = 1 @) =t )

If ¢ = n, we still have (¢ —1¢) = a—a =0o0n Q, and ¢ —1) € H,(2) hence again by the hypothesis
we still get

L) = (L, ) = (&, V).

In any cases, by Holder inequalities

[L()] < [t o 191l L -
But by the ' regularity of €2 there is a constant C' such that
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1Yl 0y < Cllallr g
Of course we have
||a||LT'(Q) < ||a||LT'(]B, n)
because n = 1 on {2, hence
[L(a)] < Clitl proylledll g, - )

So we have that the norm of £ is bounded on the subspace of 0 closed forms in L™ (B,7) by
Cl[#[l - (qy Which is independent of e.

We apply the Hahn-Banach theorem to extend £ with the same norm to all (n—p,n—q+1)
forms in L' (B, 7). As in Serre duality theorem ( [11], p. 20) this is one of the main ingredient in
the proof.

This means, by the definition of current, that there is a (p,q — 1) current u which represents
the extended form £ and such that

SUP e B, flaf=1 (W Q)| < Clltl| e
and by lemma 3.2 with the weight 7, this implies
[ll -y < CliEl L)
In particular |[ul|,. @ < C|t]|,q) because with e < 1 and r > 1, we have ntr > 1.
So applied to a d closed (n — p,n — g + 1) smooth form o we get B B
(u,a) = (— 1)p+q*1(t, ¢), with ¢ a smooth form such that dp = «a, i.e. Vo :: Op €
L™ (B, 1), we have (u,0p) = (—=1)PT71(t, o) and this means precisely, by lemma 2.1, that Ju = t.

Now for € > 0 with 7.(z ) =1a(2) + dpa(z), let uc € L"(B,n.™") be the previous solution,

then
loclrey < [ ful o~ dm < Cll

Replacing n by its value we get
Jheram [l dm < e = [ Jud @ dn < Ol
Q B\Q B\Q

hence
/ " dm < CTe o
B\Q

Because C' and the norm of ¢ are independent of €, we have |[|uc||,, is uniformly bounded and
r > 1= L"(B) is a dual, hence there is a sub-sequence {u,, }yen of {u.} which converges weakly,
when €, = 0, to a (p,q — 1) form w in L"(B), still with [ju|[;.g) < C|lt[| ;@

To see that this form u is 0 a.e. on B\ let us take a component u; ; of it ; 1t is the weak limit of
the sequence of functions {u., s} which means, with the notations v := UI,J, Vg 1= Ue, 1,7

Vf e U'(IB), /vfdm: lim /kadm.

B

As usual take f := IE where E = {|v| > 0} N (B\Q) then we get

[l
/vfdm:/ |v|dm = lim /kadm— lim %dm
B E k—o0

k—o0 |U|
Now we have by Holder

UkU
'/ d4<mmwmm>

But
[0k gy < e, |" dm < (ex)" [t gy = 0, k — o0
B\Q
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Hence
' / \v|dm' < Ol gy (601 iy — 0

which implies m(E) = 0 because on E, |v| > 0.
This being true for all components of u, we get that the form u is 0 a.e. on B\Q.
So we get

Vo € Dn—pm—q(B)a (_1)p+q71<t> @) = <u5, 590> — <u, 5‘P> = <u, 590> = (_1)p+q71<tv ©)

hence Ou = t as distributions. [ |

Remark 3.5. The condition of orthogonality to the holomorphic functions in the case ¢ = n was
already seen for extension of CR functions see [1] and the references therein.

4. CASE OF STEIN MANIFOLD.

Let H,(Q) be the set of all (p, 0) 9 closed forms in . Still we have that Hy(Q) = H(),
the set of holomorphic functions in €2, but if p > 1, ¢ € H,(f2) is a priori no longer a vector of
global holomorphic functions in €.

Theorem 4.1. Let X be a Stein manifold and Q a v’ reqular domain in X (a relatively compact
strictly pseudo-convex domain with smooth boundary for instance) with v’ the conjugate exponent for
r. Lett be a (p,q) current in L7(2), r > 1, such that 0t =0 if 1 < g <n andVh € H,(2), (t,h) =0
if ¢ =n. B
Let B be another r' reqular domain in X such that Q C B. -

Then there is a (p,q — 1) current u in L"(B) such that Ou =t and which is 0 a.e. in B\S).

Proof.
On a Stein manifold X we define first the ”Lebesgue measure” as in Hérmander’s book [6] section
5.2, with a hermitian metric locally equivalent to the usual one on any analytic coordinates system.
Associated to this metric there is a volume form dV and we take it for the Lebesgue measure on
X.

The remainder of the proof is identical to the proof of theorem 3.4. |

5. FUNCTIONNAL ANALYSIS.

We shall show that, for (2, 1) a measured topological space and 1 < r < oo, the dual
of Lrloc(Q, ) is L™ (), ) where ' is the conjugate exponent of r, and L™ °(Q, ) is the space
of L' (Q, 1) functions 0 p a.e. outside of a compact set. And also that the dual of L™°(€, ) is
LW,loc(Q7 M)

Let {€;},en be a exhaustive sequence of relatively compact open sets in €. We shall equip
L™¢(Q, p) with a a family of semi-norms :

Vf e L), 1 fll,; = 11l
This is a Frechet space.

r 1/r
For f € (9, ) we set || fll, == ( fo, |fI" )"

Theorem 5.1. Forr € [1,00[ the dual of L™°¢(2, ) is L™ (82, 1), with v’ the conjugate exponent
for r.

Proof.
With its Fréchet topology, a linear form £ on L"°¢(Q, 11) is continuous if and only if :
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3j €N, 30 > 0:Vf € L™, ), |L(F)] < CIf ;-
First for g € L"¢(Q, i) we associate the linear form

Vf € LM, ), Lo(f) = [, fgdp.
We have |L,(f)| < |lgll,[If]l,,; for any j € N such that Suppg C €; hence L, is continuous so

g € (L7¢(Q, ).
Conversely let £ be a continuous linear form on L™?(€2, 11), this means

(5-3) 3J €N, 3C > 0:Vf € LM(Q ), [L(H < ClIfl, ;-

Because the norms are increasing, we still have

vn > J, YVf e LM, ), 1L(F)] < ClIf,..
This implies that for n > J, we have that, on €2,, £ is associated to a unique (class of) function
gn € L™ (), ||9n||r',n <C(C,ie.

(5.4) Vn > J, Vf € L"°(Q, 1), L(lg, f) = /Q Fandp.

By uniqueness we have that g, = g,—1 on €2,_;.

Consider now the function f, :=1 En% with E, := Q,\Qy ; then
|G|

T

r gn r! r! !
||fn||r=/ ' r__Q‘ d#z/ |G| dué/ |gnl|" dp < CT.
En ||gn|™T En Qn

Hence f, € L"°¢(Q, 1), and we have by (5.4) and by (5.3)
2 !
L, f)l = [ fo, Jugndit| = ‘fEn l%du‘ = | S, loul” die| < CIfull, s =0,
gn| "™

because f, = 0 on ;. Hence g, = 0 pu a.e. on E,. We have g, = g5 i a.e. on §2; hence setting
g :=1q,g9; we get that g = g, p a.e. on ,. Because f —1g, f — 0 in L™¢(Q, ) we have

L(f) = lim, 0 L(1g,) = fQ fgdu,
by the continuity of £, hence L is associated to g which is in L™¢(, ). B

Theorem 5.2. Forr € [1,00[ the dual of L™¢(, ) is L™1¢(Q, ), with v the conjugate exponent
for .

Proof.
The space E := L™(Q, 1) is endowed with its topology of inductive limit (L"(Q,, 1), Tp)nen with
Ty L7 (Q, ) — L7°(82, ) is such that Vf € L™(Q, 1), Tof :=1q, f € L™(Q, 1). A linear form £
on L™°(2, ) is then continuous if and only if £ is continuous on each L"(2,, i), i.e.

Vn eN, 3C, > 0:: [L(T,f)| < Cul| T fl,,-

First to g € L™"°(Q, 1) we associate the linear form

Vf € Lr(Q ), Ly(f) = Jq fadp.

LT ) = | fo, F9] < 1000 T e
hence £, is continuous on L™(2, i), so g € (L™(Q, p))".

We have
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Conversely let £ be a continuous linear form on L™°(€), 1), this means that, if we restrict £
to the subspace L"(€),, 1) we have
30, > 0:Vf € LT(Qn, ), [L(Tof)] < Call Taf |l
Hence by the usual duality between L"(€2,, u) and L™ (€, 1) we have
gn € L™ (Qn, 1) 2 |90l 1 (0, ) < Cn and L(T f) = (T f. gn)-
But ©,_1 C Q, hence g, = gn,—1 p a.e. on ;_; so we set g € L’"'leC(Q) such that
g :=gpon €, and Vf e L), L(f) = {f.9)q
and we have that (L™(Q, u),) C L™¢(Q). &

Remark 5.3. We can use the fact that L™'°¢(Q) is the projective limit of the projective system
(L7(€Y), Tjx) where {Q;}en is an exhaustive sequence of relatively compact open sets in ), and
Tie  L"(Q) — L7(Q;) is defined by :

Tinf =1g;ne, /-
We also have that L™°(2) is the inductive limit of (L"(€2;), Tjx) and we have that the dual of L™ (£;)
18 Lr'(Qj) and the dual of an inductive limit is the projective limit with the dual inductive system
( [10], Prop. 15, p 85). But we shall need the converse also in our special case, so we give the

detailed proofs.

6. COMPLEX ANALYSIS.

Let €2 be an open set in C" or in a complex manifold, and A a topological space of functions
defined on €. Let, as usual, D(Q2) be the space of C* smooth functions with compact support in 2
and D’'(2) be the space of distributions in 2. Suppose that D(Q) C A C D'(Q2), with D(Q)) dense
in A.

Associate to A the spaces of (p, ¢) currents A, , with coefficients in A. Moreover suppose that B = A’,
the dual of A, is still a space of distributions and that the duality bracket is compatible with the
distribution one. We say that the equation df = w is solvable in A, , with 0 <p <n, 1 < ¢ < n, if
Vw € Apy, 0w =0, 3f € Ay, 1 0f = w.
Now let w € B, 1—q¢, Ow =0 still with 0 < p <n, 1 < ¢q <n, and consider the form
VF € Ay Lu(f) = (fw),
where (-, -) is the duality bracket.

This form is well defined and by hypothesis we have L,(f) = 0 if f = 0, because, if so,
there is a p € A, 41 :: 0p = f, hence L,(f) = (0p,w) = (—1)P*9(p,dw) = 0, because we have the
compatibility between the two brackets.

For the special case ¢ = 0, we automatically have that dw = 0, because w is a (n — p,n)
form, hence to still get that £,(f) = 0 if 9f = 0, we need (f,w) = 0 as soon as the (p,0) form f
verifies df = 0.

So L, (f) depends only on df. Now suppose that 0 is solvable in A, 1 and consider the
form F defined on the subspace v € A, 11,07 = 0 by F(v) := L,(f), with df = v, which exists
by hypothesis in A, ,+1. As in lemma 3.3, F is well defined and linear. We say that the equation
Of = w is continuously solvable in A, . if it is solvable in A, ,,; and if, moreover, F(v) is a
continuous linear form on the subspace v € A, 41,07 = 0.

Theorem 6.1. If the equation Of = w is continuously solvable in A, i1 then we can solve it in
its dual By, pn—q-

Proof.
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Consider the form F defined above on the subspace v € A, 41,07 = 0, which exists by hypothesis
in A, 4+1. This linear form F is continuous by assumption so by Hahn-Banach, it extends to the
whole A, ;41 and is represented by a g € B,,_,,,—¢—1 by duality. So we have

F() = (v,9) =(0f.9) = Lu(f) = {f,w),
but <§f,g> = (—1)p+q<f, 5g> hence (f,w) = (—1)p+q<f, §g> provided that 0f =~ € A, 11
This is true for f a (p,q) -form with coefficients in D(€2), hence, by the density of D(2) in A, we
have

Vi€ Ay (fiw)= (_1)p+q<fa 8g>,7
hence we find a g € B,,_,n—g—1 such that (—1)?"%0g = w. B

Corollary 6.2. Let Q be a r reqular domain in a Stein manifold X which possesses an ex-
haustive sequence of relatively compact r regular open subsets. Then for any (p,q) form w in
Lrlee(Q,dm), ow =0, if g <n, andw L H, if g =n, there is au € L™¢(Q, dm) such that Ou = w.
This is the case when €2 is a relatively compact pseudo-convexr domain with smooth boundary in X.

Proof.
We take for 4 the Lebesgue measure on  and A := L"¢(€2, 1) ; we have clearly that D(Q) C A C
D'(Q) and by theorem 4.1 we can solve the 0 equation for (p, ¢+ 1) forms O closed with coefficients
in A. We have to show that the form F is continuous on the subspace v € A, .1, 0v = 0, but we
have with 9f = 7,

F) = Lu(f) = (o) = 1FO)] = ()] < 11 o]l
The theorem 4.1 gives also that || f[|;-q) < Clvllpr ), Where Q; C Qs a r regular domain
containing the support of 7. Hence
[FI = K@) < [ fIIxlwll < Cllylix|wll,

and the continuity of F, C' and w being fixed.

So by theorem 6.1 we can solve the 0 equation for forms with coefficients in the dual space
of L™¢(€, y1) which is, by theorem 5.2, L™°(Q, dm) and the corollary. B

Remark 6.3. If Q is a pseudo-convex domain in a Stein manifold X, then we can solve the O
equation with L*>'¢(Q, dm) estimates in this case ( [6], theorem 5.2.4, p 118). So the case r = 2 of
the corollary 6.4 is known for a long time.

In C™, then it works also for €2 a polydisc, ) a bounded strictly pseudo-convex and for §2 finite
transverse intersection of bounded strictly pseudo-convexr domains.

Corollary 6.4. Let Q be a domain in a Stein manifold X such that the equation Ou = f has a
solution u in L;i’lq"c(Q) if f € L;”lqojl(Q) with the control :

Vi eN, |lull; < Gl i
then we can solve this equation with v € L. () if f € LI%¢(Q) and 0f =0 if ¢ <n, and f L H,
if g =n.

Proof.
Exactly as above. B

Remark 6.5. A proof of this last corollary was sketched by a referee : he used a geometrical proof,
with nice but heavy theorems.
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