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AN ANDREOTTI-GRAUERT THEOREM WITH Lr ESTIMATES.

ERIC AMAR

Abstract. By a theorem of Andreotti and Grauert if ω is a (p, q) -current, q < n, in a Stein
manifold, ∂̄ closed and with compact support, then there is a solution u to ∂̄u = ω still with
compact support. The aim of this work is to show that if moreover ω ∈ Lr(dm), where m is a
suitable Lebesgue measure on the Stein manifold, then we have a solution u with compact support
and in Lr(dm).

1. Introduction.

Let ω be a ∂̄ closed (p, q) form in Cn with compact support K := Suppω and such that
ω ∈ Lr(Cn). Setting K in a ball B := B(0, R) with R big enough, we know, by a theorem of
Ovrelid [9], that we have a (p, q − 1) form u ∈ Lr(B) such that ∂̄u = ω. On the other hand we also
know, at least when q < n, that there is a current v with compact support such that ∂̄v = ω, by a
theorem of Andreotti-Grauert [3].
So a natural question is : may we have a solution u of ∂̄u = ω with compact support and in
Lr(Cn) ?

We already answered this question by the affirmative in a join work with S. Mongodi [2]
explicitly by the ”method of coronas”.

The aim of this work is to extend this result to Stein manifolds and for it we use a completely
different approach inspired by the Serre duality [10]. Because Hahn Banach theorem is used, these
results are no longer so explicit and constructive as in [2]. On the other hand the control of the
support is better : the support of the solution u is contained in any r′ -regular domain containing
the support of the data ω. The definition of r′ -regular domain will be given later on, but strictly
pseudo convex domains are such domains.

I am indebted to G. Tomassini who started my interest in this subject by e-mails on precisely
this kind of questions and also to S. Mongodi for a lot of discussions by mails on the subject during
the preparation of our join paper [2].

2. Duality.

We shall study a duality between currents inspired by the Serre duality [10].
Let Ω ⊂ C

n be an open set in C
n and t a (p, q) current with compact support in Ω, noted t ∈

D′
c, (p,q)(Ω).

Let also φ ∈ C∞
(n−p,n−q)(Ω) a (n − p, n − q) form in C∞(Ω). We have that t ∧ φ is a (n, n) current

with compact support in Ω.
As usual we use the following notation for the pairing
〈t, φ〉 := t(φ),

where t(φ) is the action, as a current, of t on the smooth form φ of complementary bi-degree.
Lemma 2.1. Let Ω be an open set in C

n, t ∈ D′
c, (p,q)(Ω) a (p, q) current with compact support in

Ω and u ∈ D′
c, (p,q−1)(Ω). Then we have ∂̄t = u iff
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(∗) ∀φ ∈ C∞
(n−p,n−q)(Ω), 〈t, φ〉 = (−1)p+q−1

〈

u, ∂̄φ
〉

.

Proof.
If ∂̄u = t, let χ ∈ C∞

c (Ω) such that χ ≡ 1 on the support of u, hence on the support of t. Then
∀φ ∈ C∞

(n−p,n−q)(Ω), 〈t, φ〉 = 〈t, χφ〉 =
〈

∂̄u, χφ
〉

= (−1)p+q−1
〈

u, ∂̄(χφ)
〉

by definition of the action of derivatives on currents. Hence
〈t, φ〉 = (−1)p+q−1

〈

u, ∂̄χ ∧ φ
〉

+ (−1)p+q−1
〈

u, χ∂̄φ
〉

= (−1)p+q−1
〈

u, χ∂̄φ
〉

because ∂̄χ = 0 on the support of u ; so
〈t, φ〉 = (−1)p+q−1

〈

u, χ∂̄φ
〉

= (−1)p+q−1
〈

u, ∂̄φ
〉

because χ = 1 on the support of u.
Conversely if we have (∗) we take χ ∈ C∞

c (Ω) such that χ ≡ 1 on union of the support of u and
the support of t then

∀φ ∈ C∞
(n−p,n−q)(Ω), 〈t, φ〉 = 〈t, χφ〉

because χ = 1 on the support of t, and by (∗)
〈t, χφ〉 = (−1)p+q−1

〈

u, ∂̄(χφ)
〉

=
〈

∂̄u, χφ
〉

=
〈

∂̄u, φ
〉

because χ = 1 on the support of u hence on the support of ∂̄u.
So

∀φ ∈ C∞
(n−p,n−q)(Ω), 〈t, φ〉 =

〈

∂̄u, φ
〉

,

which means that ∂̄u = t as a current. �

3. Solution of the ∂̄ equation with compact support.

3.1. Domain r regular.

We shall use the definition.

Definition 3.1. Let X be a complex manifold and Ω a domain in X ; we shall say that Ω is r

-regular, for r ∈ [1, ∞] if for p, q ∈ {0, ..., n} there is a constant C = Cp,q such that for any (p, q)
form ω, ∂̄ closed in Ω and in Lr(Ω) there is a (p, q − 1) form u ∈ Lr(Ω) such that ∂̄u = ω and

‖u‖Lr(Ω) ≤ C‖ω‖Lr(Ω).

The Lr norms for forms will be defined later on.
Examples of 2 -regular domains are the bounded pseudo-convex domains by Hörmander [6].
Examples of r -regular domains in Cn are the strictly pseudo-convex domains with smooth

boundary by Ovrelid [9]. The polydiscs in Cn by Charpentier [4], finite intersections of strictly
pseudo-convex bounded domains with transverse intersections by Menini [8].

Examples of r regular domains in Stein manifold are the strictly pseudo-convex domains with
smooth boundary by Kerzman [7] for (0, 1) forms and Demailly-Laurent [5] for the general case.

3.2. Weighted Lr spaces.

Let B := B(0, R), the ball of Cn centered at 0 and of radius R. We shall need the following
notations.
We note dm the Lebesgue measure on Cn and we shall define Lr(B, w) to be the set of functions f
defined on B such that

‖f‖rLr(B, w) :=
∫

B
|f(z)|r w(z)dm(z) <∞,

with a weight w(z) > 0. As usual we set Lr(B) for Lr(B, 1).
Let Ip be the set of multi-indices of length p in (1, ..., n). We shall use the following measure

defined on Γ := B× Ip × Iq the following way :

dµ(z, k, l) = dµw,p,q(z, k, l) := w(z)dm(z)⊗
∑

|I|=p, |J |=q

δI(k)⊗ δJ(l),
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where δI(k) = 1 if the multi-index k is equal to I and δI(k) = 0 if not.
This means, if f(z, I, J) is a function defined on Γ, that

∫

f(z, k, l)dµw,p,q(z, k, l) :=
∑

|I|=p, |J |=q

∫

B

f(z, I, J)w(z)dm(z).

If I is a multi-index of length p, let Ic be the unique multi-index, ordered increasingly, such
that I ∪ Ic = (1, 2, ..., n) ; then Ic is of length n− p.

To t =
∑

|I|=p, |J |=q tI,J(z)dz
I ∧ dz̄J a (p, q) form, we associate the function on Γ :

T (z, I, J) := (−1)s(I,J)tI,J(z),
where

s(I, J) = 0 if dzI ∧ dz̄J ∧ dzI
c

∧ dz̄J
c

= dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n as a (n, n) form
and

s(I, J) = 1 if not.
If φ =

∑

|I|=p, |J |=q φIc,Jc(z)dzI ∧ dz̄J is of complementary bi-degree, associate in the same
manner :

Φ∗(z, I, J) := φIc,Jc(z). This is still a function on Γ.
Now we have, for 1 < r < ∞, if T (z, I, J) is a function in B with Lr(B) coefficients and with

µ = µw,p,q,

‖T‖rLr(dµ) :=

∫

|T (z, I, J)|r dµw,p,q(x, I, J) =
∑

|I|=p, |J |=q

‖T (·, I, J)‖rLr(B,w).

The dual of Lr(µ) is Lr′(µ) where r′ is the conjugate of r,
1

r
+

1

r′
= 1, and the norm is defined

analogously with r′ replacing r.
We also know that, for p, q fixed,

(3.1) ‖T‖Lr(µ) = sup
Φ∈Lr′(µ)

∣

∣

∫

TΦdµ
∣

∣

‖Φ‖Lr′(µ)

.

For a (p, q) form t =
∑

|J |=p, |K|=q tJ,Kdz
J ∧ dz̄K , and a weight w > 0 we define its norm by :

(3.2) ‖t‖rLr(B,w) :=
∑

|J |=p, |K|=q

‖tJ,K‖
r

Lr(B,w) = ‖T‖rLr(µ).

Now we can state
Lemma 3.2. Let w > 0 be a weight. If u is a (p, q) current defined on (n − p, n − q) forms in

Lr′(B, w) and such that

∀α ∈ Lr′

(n−p,n−q)(B, w), |〈u, α〉| ≤ C‖α‖Lr′(B,w),

then ‖u‖Lr(B,w1−r) ≤ C.

Proof.
Let us take the measure µ = µw,p,q as above. Let Φ∗ be the function on Γ associated to α and T
the one associated to u. We have, by definition of the measure µ applied to the function

f(z, I, J) := T (z, I, J)w−1Φ∗(z, I, J),
∫

Tw−1Φ∗dµ =

∫

f(z, k, l)dµ(z, k, l) :=
∑

|I|=p, |J |=q

∫

B

f(z, I, J)w(z)dm(z) =
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=
∑

|I|=p, |J |=q

∫

B

T (z, I, J)w−1(z)Φ∗(z, I, J)w(z)dm(z) = 〈u, α〉,

by definition of T and Φ∗.

Hence we have, by (3.1)
∥

∥Tw−1
∥

∥

Lr(µ)
= sup

Ψ∈Lr′(µ)

|〈u, α〉|

‖Ψ‖Lr′(µ)

.

But ‖Tw−1‖Lr(µ) = ‖uw−1‖Lr(B, w) by (3.2), and
∥

∥fw−1
∥

∥

r

Lr(B,w)
=

∫

B

∣

∣fη−1
∣

∣

r
wdm =

∫

B

|f |r w1−rdm = ‖f‖Lr(B,w1−r),

so we get

‖u‖Lr(B,w1−r) = sup
Ψ∈Lr′(µ)

|〈u, α〉|

‖Ψ‖Lr′(µ)

,

which implies the lemma because, still by (3.1), we can take Ψ = Φ∗ and ‖Ψ‖Lr′(µ) = ‖α‖Lr′(B,w).

�

Let us denote Hp(Ω) the set of all (p, 0) ∂̄ closed forms in Ω. If p = 0, H0(Ω) = H(Ω) is the
set of holomorphic functions in Ω. If p > 0, we have φ ∈ Hp(Ω)=⇒φ(z) =

∑

|J |=p aJ (z)dz
J , where

dzJ := dzj1 ∧ · · · ∧ dzjp and the functions aJ(z) are holomorphic in Ω. Hence in Cn, a (p, 0) ∂̄ closed
form is a vector of global holomorphic functions in Ω.
Theorem 3.3. Let t be a (p, q) form in Lr

c(C
n), r > 1, K := Supp t. Let B be a ball containing K

and let Ω ⊂ B be a r′ -regular domain containing K. Suppose that t is such that ∂̄t = 0 if 1 ≤ q < n

and ∀h ∈ Hp(Ω), 〈t, h〉 = 0 if q = n.

Then there is a (p, q − 1) form u in Lr
c(B), 0 a.e. on B\Ω and such that ∂̄u = t as distributions.

Proof.
Let us consider the weight η = ηǫ :=1Ω(z) + ǫ1B\Ω(z) for a fixed ǫ > 0.

We shall consider the linear form L defined on (n− p, n− q + 1) form α ∈ Lr′(B, η), ∂̄ closed
in Ω as follows :

L(α) := (−1)p+q−1〈t, φ〉, where φ ∈ Lr′(B) is such that ∂̄φ = α.

Because ǫ > 0 we have α ∈ Lr′(B, η)=⇒α ∈ Lr′(B) and such a φ exists because B being r′ -regular
there is φ ∈ Lr′(B) with ∂̄φ = α.

Let us see that L is well defined :
suppose first that q < n. In order for L to be well defined we need

∀φ, ψ ∈ Lr′

(n−p,n−q)(B), ∂̄φ = ∂̄ψ=⇒〈t, φ〉 = 〈t, ψ〉.

This is meaningful because t ∈ Lr
c(C

n), r > 1, Supp t ⊂ B.

Then we have ∂̄(φ− ψ) = 0 hence, because B is r′ -regular, we can solve ∂̄ in Lr′(B) :
∃γ ∈ Lr′

(n−p,n−q−1)(B) :: ∂̄γ = (φ− ψ).

So 〈t, φ− ψ〉 =
〈

t, ∂̄γ
〉

= (−1)p+q−1
〈

∂̄t, γ
〉

= 0. Hence L is well defined in that case.

Suppose now that q = n, then of course ∂̄t = 0 and we have that φ, ψ are (p, 0) forms hence
∂̄(φ − ψ) = 0 means that h := φ − ψ is a ∂̄ closed (p, 0) form hence h ∈ Hp(B) ⊂ Hp(Ω). But by
assumption we have 〈t, h〉 = 0 hence L is also well defined in that case.

If α is a (n−p, n− q+1) form in Lr′(B, η), ∂̄ closed in B, then, α ∈ Lr′(Ω) and is still ∂̄ closed
in Ω, hence there is a ψ ∈ Lr′(Ω) :: ∂̄ψ = α because Ω is r′ -regular.
For q < n, we have ∂̄(φ − ψ) = α − α = 0 on Ω and, because Supp t ⊂ Ω ⊂ B, ∂̄t = 0 we get
〈t, φ− ψ〉 = 0 hence

L(α) = 〈t, φ〉 = 〈t, ψ〉.
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If q = n, we still have ∂̄(φ−ψ) = α−α = 0 on Ω, and φ−ψ ∈ Hp(Ω) hence again by the hypothesis
we still get

L(α) = 〈t, φ〉 = 〈t, ψ〉.
In any cases, by Hölder inequalities

|L(α)| ≤ ‖t‖Lr(Ω)‖ψ‖Lr′(Ω).

But by the r′ -regularity of Ω there is a constant C such that
‖ψ‖Lr′(Ω) ≤ C‖α‖Lr′(Ω).

Of course we have
‖α‖Lr′(Ω) ≤ ‖α‖Lr′(B, η)

because η = 1 on Ω, hence
|L(α)| ≤ C‖t‖Lr(Ω)‖α‖Lr′(B, η).

So we have that the norm of L is bounded on the subspace of ∂̄ closed forms in Lr′(B, η) by
C‖t‖Lr(Ω) which is independent of ǫ.

We apply the Hahn-Banach theorem to extend L with the same norm to all (n− p, n− q + 1)
forms in Lr′(B, η). As in Serre duality theorem ( [10], p. 20) this is one of the main ingredient in
the proof.

This means, by the definition of current, that there is a (p, q − 1) current u which represents
the extended form L and such that

supα∈Lr′(B,η), ‖α‖=1 |〈u, α〉| ≤ C‖t‖Lr(Ω)

and by lemma 3.2 with the weight η, this implies
‖u‖Lr(B,η1−r) ≤ C‖t‖Lr(Ω).

In particular ‖u‖Lr(B) ≤ C‖t‖Lr(Ω) because with ǫ < 1, r > 1, we have η1−r ≥ 1.

So applied to a ∂̄ closed (n− p, n− q + 1) current α we get
〈u, α〉 = (−1)p+q−1〈t, φ〉, with ∂̄φ = α, i.e. ∀φ :: ∂̄φ ∈ Lr′(B, η), we have

〈

u, ∂̄φ
〉

=

(−1)p+q−1〈t, φ〉 and this means precisely, by lemma 2.1, that ∂̄u = t.

Now for ǫ > 0 with ηǫ(z) :=1Ω(z)+ ǫ1B\Ω(z), let uǫ ∈ Lr(B, η1−r
ǫ ) be the previous solution, then

‖uǫ‖
r

Lr(B) ≤

∫

B

|uǫ|
r
η1−rdm ≤ Cr‖t‖rLr(Ω).

Replacing η by its value we get
∫

Ω

|uǫ|
r
dm+

∫

B\Ω

|uǫ|
r
ǫ1−rdm ≤ Cr‖t‖rLr(Ω)=⇒

∫

B\Ω

|uǫ|
r
ǫ1−rdm ≤ Cr‖t‖rLr(Ω)

hence

∫

B\Ω

|uǫ|
r
dm ≤ Crǫr−1‖t‖rLr(Ω).

Because C and the norm of t are independent of ǫ, we have ‖uǫ‖Lr(B) is uniformly bounded and

r > 1=⇒Lr(B) is a dual, hence there is a sub-sequence {uǫk}k∈N of {uǫ} which converges weakly,
when ǫk−→0, to a (p, q − 1) form u in Lr(B).
To see that this form u is 0 a.e. on B\Ω let us take a component uI,J of it ; it is the weak limit of
the sequence of functions {uǫk,I,J} which means, with the notations v := uI,J , vk := uǫk,I,J

∀f ∈ Lr′(B),

∫

B

vfdm = lim
k−→∞

∫

B

vkfdm.

As usual take f :=
v̄

|v|
1E where E := {|v| > 0} ∩ (B\Ω) then we get
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∫

B

vfdm =

∫

E

|v| dm = lim
k−→∞

∫

B

vkfdm = lim
k−→∞

∫

E

vkv̄

|v|
dm.

Now we have by Hölder
∣

∣

∣

∣

∫

E

vkv̄

|v|
dm

∣

∣

∣

∣

≤ ‖vk‖Lr(E)‖1E‖Lr′(E).

But

‖vk‖
r

Lr(E) ≤

∫

B\Ω

|uǫk |
r
dm ≤ (ǫk)

r−1‖t‖Lr(Ω)−→0, k−→∞.

Hence
∣

∣

∣

∣

∫

E

|v| dm

∣

∣

∣

∣

≤ Cr‖1E‖Lr′(E)(ǫk)
r−1‖t‖rLr(Ω)−→0

which implies m(E) = 0 because on E, |v| > 0.
This being true for all components of u, we get that the form u is 0 a.e. on B\Ω.

So we get
∀φ ∈ Dn−p,n−q(B), (−1)p+q−1〈t, φ〉 =

〈

uǫ, ∂̄φ
〉

−→
〈

u, ∂̄φ
〉

=⇒
〈

u, ∂̄φ
〉

= (−1)p+q−1〈t, φ〉

hence ∂̄u = t as distributions. �

Remark 3.4. The condition of orthogonality to the holomorphic functions in case q = n was already

seen for extension of CR functions see [1] and the references therein.

4. Case of Stein manifold.

First we define the ”Lebesgue measure” on a complex manifold X as in Hörmander’s book [6]
section 5.2, with a hermitian metric locally equivalent to the usual one on any analytic coordinates
system. Associate to this metric there is a volume form dV and we take it for the Lebesgue measure
on X.

Let us denote Hp(Ω) the set of all (p, 0) ∂̄ closed forms in Ω. Still we have that H0(Ω) = H(Ω),
the set of holomorphic functions in Ω, but if p > 1, φ ∈ Hp(Ω) is a priori no longer a vector of
global holomorphic functions in Ω.
Theorem 4.1. Let X be a Stein manifold and Ω a bounded strictly pseudo-convex domain with

smooth boundary of X. Let t be a (p, q) current in Lr
c(Ω), r > 1, such that ∂̄t = 0 if 1 ≤ q < n and

∀h ∈ Hp(Ω), 〈t, h〉 = 0 if q = n.

Let B be another bounded strictly pseudo-convex domain with smooth boundary in X such that

Ω̄ ⊂ B.

Then there is a (p, q − 1) current u in Lr(B) such that ∂̄u = t and which is 0 a.e. in B\Ω.

Proof.
We can solve the ∂̄ equation in B and Ω with Lr estimates for (0, 1) forms by use of N. Kerzman
kernels [7] and for all (p, q) forms by J-P. Demailly and C. Laurent ones( [5], Remarque 4, page
596).

The remainder of the proof is identical to the proof of theorem 3.3. �
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