AN ANDREOTTI-GRAUERT THEOREM WITH L^{r} ESTIMATES.

Eric Amar

To cite this version:

Eric Amar. AN ANDREOTTI-GRAUERT THEOREM WITH L^{r} ESTIMATES.. 2012. hal00676110v1

HAL Id: hal-00676110
 https://hal.science/hal-00676110v1

Preprint submitted on 3 Mar 2012 (v1), last revised 9 Oct 2019 (v9)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

AN ANDREOTTI-GRAUERT THEOREM WITH L^{r} ESTIMATES.

ERIC AMAR

Abstract

By a theorem of Andreotti and Grauert if ω is a (p, q)-current, $q<n$, in a Stein manifold, $\bar{\partial}$ closed and with compact support, then there is a solution u to $\bar{\partial} u=\omega$ still with compact support. The aim of this work is to show that if moreover $\omega \in L^{r}(d m)$, where m is a suitable Lebesgue measure on the Stein manifold, then we have a solution u with compact support and in $L^{r}(d m)$.

1. Introduction.

Let ω be a $\bar{\partial}$ closed (p, q) form in \mathbb{C}^{n} with compact support $K:=\operatorname{Supp} \omega$ and such that $\omega \in L^{r}\left(\mathbb{C}^{n}\right)$. Setting K in a ball $\mathbb{B}:=B(0, R)$ with R big enough, we know, by a theorem of Ovrelid [9], that we have a $(p, q-1)$ form $u \in L^{r}(\mathbb{B})$ such that $\bar{\partial} u=\omega$. On the other hand we also know, at least when $q<n$, that there is a current v with compact support such that $\bar{\partial} v=\omega$, by a theorem of Andreotti-Grauert [3].
So a natural question is : may we have a solution u of $\bar{\partial} u=\omega$ with compact support and in $L^{r}\left(\mathbb{C}^{n}\right)$?

We already answered this question by the affirmative in a join work with S. Mongodi [2] explicitly by the "method of coronas".

The aim of this work is to extend this result to Stein manifolds and for it we use a completely different approach inspired by the Serre duality [10]. Because Hahn Banach theorem is used, these results are no longer so explicit and constructive as in [2]. On the other hand the control of the support is better : the support of the solution u is contained in any r^{\prime}-regular domain containing the support of the data ω. The definition of r^{\prime}-regular domain will be given later on, but strictly pseudo convex domains are such domains.

I am indebted to G. Tomassini who started my interest in this subject by e-mails on precisely this kind of questions and also to S . Mongodi for a lot of discussions by mails on the subject during the preparation of our join paper [2].

2. Duality.

We shall study a duality between currents inspired by the Serre duality [10].
Let $\Omega \subset \mathbb{C}^{n}$ be an open set in \mathbb{C}^{n} and t a (p, q) current with compact support in Ω, noted $t \in$ $\mathcal{D}_{c,(p, q)}^{\prime}(\Omega)$.
Let also $\phi \in \mathcal{C}_{(n-p, n-q)}^{\infty}(\Omega)$ a $(n-p, n-q)$ form in $\mathcal{C}^{\infty}(\Omega)$. We have that $t \wedge \phi$ is a (n, n) current with compact support in Ω.

As usual we use the following notation for the pairing

$$
\langle t, \phi\rangle:=t(\phi),
$$

where $t(\phi)$ is the action, as a current, of t on the smooth form ϕ of complementary bi-degree.
Lemma 2.1. Let Ω be an open set in $\mathbb{C}^{n}, t \in \mathcal{D}_{c,(p, q)}^{\prime}(\Omega)$ a (p, q) current with compact support in Ω and $u \in \mathcal{D}_{c,(p, q-1)}^{\prime}(\Omega)$. Then we have $\bar{\partial} t=u$ iff
$(*) \quad \forall \phi \in \mathcal{C}_{(n-p, n-q)}^{\infty}(\Omega),\langle t, \phi\rangle=(-1)^{p+q-1}\langle u, \bar{\partial} \phi\rangle$.
Proof.
If $\bar{\partial} u=t$, let $\chi \in \mathcal{C}_{c}^{\infty}(\Omega)$ such that $\chi \equiv 1$ on the support of u, hence on the support of t. Then

$$
\forall \phi \in \mathcal{C}_{(n-p, n-q)}^{\infty}(\Omega),\langle t, \phi\rangle=\langle t, \chi \phi\rangle=\langle\bar{\partial} u, \chi \phi\rangle=(-1)^{p+q-1}\langle u, \bar{\partial}(\chi \phi)\rangle
$$

by definition of the action of derivatives on currents. Hence
$\langle t, \phi\rangle=(-1)^{p+q-1}\langle u, \bar{\partial} \chi \wedge \phi\rangle+(-1)^{p+q-1}\langle u, \chi \bar{\partial} \phi\rangle=(-1)^{p+q-1}\langle u, \chi \bar{\partial} \phi\rangle$
because $\bar{\partial} \chi=0$ on the support of u; so
$\langle t, \phi\rangle=(-1)^{p+q-1}\langle u, \chi \bar{\partial} \phi\rangle=(-1)^{p+q-1}\langle u, \bar{\partial} \phi\rangle$
because $\chi=1$ on the support of u.
Conversely if we have $(*)$ we take $\chi \in \mathcal{C}_{c}^{\infty}(\Omega)$ such that $\chi \equiv 1$ on union of the support of u and the support of t then

$$
\forall \phi \in \mathcal{C}_{(n-p, n-q)}^{\infty}(\Omega),\langle t, \phi\rangle=\langle t, \chi \phi\rangle
$$

because $\chi=1$ on the support of t, and by $(*)$
$\langle t, \chi \phi\rangle=(-1)^{p+q-1}\langle u, \bar{\partial}(\chi \phi)\rangle=\langle\bar{\partial} u, \chi \phi\rangle=\langle\bar{\partial} u, \phi\rangle$
because $\chi=1$ on the support of u hence on the support of $\bar{\partial} u$.
So

$$
\forall \phi \in \mathcal{C}_{(n-p, n-q)}^{\infty}(\Omega),\langle t, \phi\rangle=\langle\bar{\partial} u, \phi\rangle,
$$

which means that $\bar{\partial} u=t$ as a current.

3. Solution of the $\bar{\partial}$ equation with compact support.

3.1. Domain r regular.

We shall use the definition.
Definition 3.1. Let X be a complex manifold and Ω a domain in X; we shall say that Ω is r -regular, for $r \in[1, \infty]$ if for $p, q \in\{0, \ldots, n\}$ there is a constant $C=C_{p, q}$ such that for any (p, q) form $\omega, \bar{\partial}$ closed in Ω and in $L^{r}(\Omega)$ there is a $(p, q-1)$ form $u \in L^{r}(\Omega)$ such that $\bar{\partial} u=\omega$ and $\|u\|_{L^{r}(\Omega)} \leq C\|\omega\|_{L^{r}(\Omega)}$.
The L^{r} norms for forms will be defined later on.
Examples of 2 -regular domains are the bounded pseudo-convex domains by Hörmander [6].
Examples of r-regular domains in \mathbb{C}^{n} are the strictly pseudo-convex domains with smooth boundary by Ovrelid [9]. The polydiscs in \mathbb{C}^{n} by Charpentier [4], finite intersections of strictly pseudo-convex bounded domains with transverse intersections by Menini [8].

Examples of r regular domains in Stein manifold are the strictly pseudo-convex domains with smooth boundary by Kerzman [7] for $(0,1)$ forms and Demailly-Laurent [5] for the general case.

3.2. Weighted L^{r} spaces.

Let $\mathbb{B}:=B(0, R)$, the ball of \mathbb{C}^{n} centered at 0 and of radius R. We shall need the following notations.
We note $d m$ the Lebesgue measure on \mathbb{C}^{n} and we shall define $L^{r}(\mathbb{B}, w)$ to be the set of functions f defined on \mathbb{B} such that
$\|f\|_{L^{r}(\mathbb{B}, w)}^{r}:=\int_{\mathbb{B}}|f(z)|^{r} w(z) d m(z)<\infty$,
with a weight $w(z)>0$. As usual we set $L^{r}(\mathbb{B})$ for $L^{r}(\mathbb{B}, 1)$.
Let \mathcal{I}_{p} be the set of multi-indices of length p in $(1, \ldots, n)$. We shall use the following measure defined on $\Gamma:=\mathbb{B} \times \mathcal{I}_{p} \times \mathcal{I}_{q}$ the following way :

$$
d \mu(z, k, l)=d \mu_{w, p, q}(z, k, l):=w(z) d m(z) \otimes \sum_{|I|=p,|J|=q} \delta_{I}(k) \otimes \delta_{J}(l),
$$

where $\delta_{I}(k)=1$ if the multi-index k is equal to I and $\delta_{I}(k)=0$ if not.
This means, if $f(z, I, J)$ is a function defined on Γ, that

$$
\int f(z, k, l) d \mu_{w, p, q}(z, k, l):=\sum_{|I|=p,|J|=q} \int_{\mathbb{B}} f(z, I, J) w(z) d m(z) .
$$

If I is a multi-index of length p, let I^{c} be the unique multi-index, ordered increasingly, such that $I \cup I^{c}=(1,2, \ldots, n)$; then I^{c} is of length $n-p$.

To $t=\sum_{|I|=p,|J|=q} t_{I, J}(z) d z^{I} \wedge d \bar{z}^{J}$ a (p, q) form, we associate the function on Γ :
$T(z, I, J):=(-1)^{s(I, J)} t_{I, J}(z)$,
where
$s(I, J)=0$ if $d z^{I} \wedge d \bar{z}^{J} \wedge d z^{I^{c}} \wedge d \bar{z}^{J^{c}}=d z_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{1} \wedge \cdots \wedge d \bar{z}_{n}$ as a (n, n) form and
$s(I, J)=1$ if not.
If $\phi=\sum_{|I|=p,|J|=q} \phi_{I^{c}, J c}(z) d z^{I} \wedge d \bar{z}^{J}$ is of complementary bi-degree, associate in the same manner :
$\Phi^{*}(z, I, J):=\phi_{I^{c}, J^{c}}(z)$. This is still a function on Γ.
Now we have, for $1<r<\infty$, if $T(z, I, J)$ is a function in \mathbb{B} with $L^{r}(\mathbb{B})$ coefficients and with $\mu=\mu_{w, p, q}$,

$$
\|T\|_{L^{r}(d \mu)}^{r}:=\int|T(z, I, J)|^{r} d \mu_{w, p, q}(x, I, J)=\sum_{|I|=p,|J|=q}\|T(\cdot, I, J)\|_{L^{r}(\mathbb{B}, w)}^{r}
$$

The dual of $L^{r}(\mu)$ is $L^{r^{\prime}}(\mu)$ where r^{\prime} is the conjugate of $r, \frac{1}{r}+\frac{1}{r^{\prime}}=1$, and the norm is defined analogously with r^{\prime} replacing r.

We also know that, for p, q fixed,

$$
\begin{equation*}
\|T\|_{L^{r}(\mu)}=\sup _{\Phi \in L^{r^{\prime}}(\mu)} \frac{\left|\int T \Phi d \mu\right|}{\|\Phi\|_{L^{r^{\prime}}(\mu)}} \tag{3.1}
\end{equation*}
$$

For a (p, q) form $t=\sum_{|J|=p,|K|=q} t_{J, K} d z^{J} \wedge d \bar{z}^{K}$, and a weight $w>0$ we define its norm by :

$$
\begin{equation*}
\|t\|_{L^{r}(\mathbb{B}, w)}^{r}:=\sum_{|J|=p,|K|=q}\left\|t_{J, K}\right\|_{L^{r}(\mathbb{B}, w)}^{r}=\|T\|_{L^{r}(\mu)}^{r} \tag{3.2}
\end{equation*}
$$

Now we can state
Lemma 3.2. Let $w>0$ be a weight. If u is a (p, q) current defined on $(n-p, n-q)$ forms in $L^{r^{\prime}}(\mathbb{B}, w)$ and such that

$$
\forall \alpha \in L_{(n-p, n-q)}^{r^{\prime}}(\mathbb{B}, w),|\langle u, \alpha\rangle| \leq C\|\alpha\|_{L^{r^{\prime}}(\mathbb{B}, w)}
$$

then $\|u\|_{L^{r}\left(\mathbb{B}, w^{1-r}\right)} \leq C$.
Proof.
Let us take the measure $\mu=\mu_{w, p, q}$ as above. Let Φ^{*} be the function on Γ associated to α and T the one associated to u. We have, by definition of the measure μ applied to the function

$$
\begin{aligned}
& f(z, I, J):=T(z, I, J) w^{-1} \Phi^{*}(z, I, J) \\
& \int T w^{-1} \Phi^{*} d \mu=\int f(z, k, l) d \mu(z, k, l):=\sum_{|I|=p,|J|=q} \int_{\mathbb{B}} f(z, I, J) w(z) d m(z)=
\end{aligned}
$$

$$
=\sum_{|I|=p,|J|=q} \int_{\mathbb{B}} T(z, I, J) w^{-1}(z) \Phi^{*}(z, I, J) w(z) d m(z)=\langle u, \alpha\rangle,
$$

by definition of T and Φ^{*}.
Hence we have, by (3.1)

$$
\left\|T w^{-1}\right\|_{L^{r}(\mu)}=\sup _{\Psi \in L^{r^{\prime}}(\mu)} \frac{|\langle u, \alpha\rangle|}{\|\Psi\|_{L^{r^{\prime}}(\mu)}}
$$

But $\left\|T w^{-1}\right\|_{L^{r}(\mu)}=\left\|u w^{-1}\right\|_{L^{r}(\mathbb{B}, w)}$ by (3.2), and

$$
\left\|f w^{-1}\right\|_{L^{r}(\mathbb{B}, w)}^{r}=\int_{\mathbb{B}}\left|f \eta^{-1}\right|^{r} w d m=\int_{\mathbb{B}}|f|^{r} w^{1-r} d m=\|f\|_{L^{r}\left(\mathbb{B}, w^{1-r}\right)},
$$

so we get

$$
\|u\|_{L^{r}\left(\mathbb{B}, w^{1-r}\right)}=\sup _{\Psi \in L^{r^{\prime}}(\mu)} \frac{|\langle u, \alpha\rangle|}{\|\Psi\|_{L^{r^{\prime}}(\mu)}}
$$

which implies the lemma because, still by (3.1), we can take $\Psi=\Phi^{*}$ and $\|\Psi\|_{L^{r^{\prime}}(\mu)}=\|\alpha\|_{L^{r^{\prime}}(\mathbb{B}, w)}$.
Let us denote $\mathcal{H}_{p}(\Omega)$ the set of all $(p, 0) \bar{\partial}$ closed forms in Ω. If $p=0, \mathcal{H}_{0}(\Omega)=\mathcal{H}(\Omega)$ is the set of holomorphic functions in Ω. If $p>0$, we have $\phi \in \mathcal{H}_{p}(\Omega) \Longrightarrow \phi(z)=\sum_{|J|=p} a_{J}(z) d z^{J}$, where $d z^{J}:=d z_{j_{1}} \wedge \cdots \wedge d z_{j_{p}}$ and the functions $a_{J}(z)$ are holomorphic in Ω. Hence in \mathbb{C}^{n}, a $(p, 0) \bar{\partial}$ closed form is a vector of global holomorphic functions in Ω.
Theorem 3.3. Let t be a (p, q) form in $L_{c}^{r}\left(\mathbb{C}^{n}\right), r>1, K:=\operatorname{Supp} t$. Let \mathbb{B} be a ball containing K and let $\Omega \subset \mathbb{B}$ be a r^{\prime}-regular domain containing K. Suppose that t is such that $\bar{\partial} t=0$ if $1 \leq q<n$ and $\forall h \in \mathcal{H}_{p}(\Omega),\langle t, h\rangle=0$ if $q=n$.
Then there is a $(p, q-1)$ form u in $L_{c}^{r}(\mathbb{B}), 0$ a.e. on $\mathbb{B} \backslash \Omega$ and such that $\bar{\partial} u=t$ as distributions.

Proof.

Let us consider the weight $\eta=\eta_{\epsilon}:=\mathbb{1}_{\Omega}(z)+\epsilon_{\mathbb{B} \backslash \Omega}(z)$ for a fixed $\epsilon>0$.
We shall consider the linear form \mathcal{L} defined on $(n-p, n-q+1)$ form $\alpha \in L^{r^{\prime}}(\mathbb{B}, \eta), \bar{\partial}$ closed in Ω as follows :
$\mathcal{L}(\alpha):=(-1)^{p+q-1}\langle t, \phi\rangle$, where $\phi \in L^{r^{\prime}}(\mathbb{B})$ is such that $\bar{\partial} \phi=\alpha$.
Because $\epsilon>0$ we have $\alpha \in L^{r^{\prime}}(\mathbb{B}, \eta) \Longrightarrow \alpha \in L^{r^{\prime}}(\mathbb{B})$ and such a ϕ exists because \mathbb{B} being r^{\prime}-regular there is $\phi \in L^{r^{\prime}}(\mathbb{B})$ with $\bar{\partial} \phi=\alpha$.

Let us see that \mathcal{L} is well defined :
suppose first that $q<n$. In order for \mathcal{L} to be well defined we need
$\forall \phi, \psi \in L_{(n-p, n-q)}^{r^{\prime}}(\mathbb{B}), \bar{\partial} \phi=\bar{\partial} \psi \Longrightarrow\langle t, \phi\rangle=\langle t, \psi\rangle$.
This is meaningful because $t \in L_{c}^{r}\left(\mathbb{C}^{n}\right), r>1$, Supp $t \subset \mathbb{B}$.
Then we have $\bar{\partial}(\phi-\psi)=0$ hence, because \mathbb{B} is r^{\prime}-regular, we can solve $\bar{\partial}$ in $L^{r^{\prime}}(\mathbb{B})$:
$\exists \gamma \in L_{(n-p, n-q-1)}^{r^{\prime}}(\mathbb{B}):: \bar{\partial} \gamma=(\phi-\psi)$.
So $\langle t, \phi-\psi\rangle=\langle t, \bar{\partial} \gamma\rangle=(-1)^{p+q-1}\langle\bar{\partial} t, \gamma\rangle=0$. Hence \mathcal{L} is well defined in that case.
Suppose now that $q=n$, then of course $\bar{\partial} t=0$ and we have that ϕ, ψ are ($p, 0$) forms hence $\bar{\partial}(\phi-\psi)=0$ means that $h:=\phi-\psi$ is a $\bar{\partial}$ closed $(p, 0)$ form hence $h \in \mathcal{H}_{p}(\mathbb{B}) \subset \mathcal{H}_{p}(\Omega)$. But by assumption we have $\langle t, h\rangle=0$ hence \mathcal{L} is also well defined in that case.

If α is a $(n-p, n-q+1)$ form in $L^{r^{\prime}}(\mathbb{B}, \eta), \bar{\partial}$ closed in \mathbb{B}, then, $\alpha \in L^{r^{\prime}}(\Omega)$ and is still $\bar{\partial}$ closed in Ω, hence there is a $\psi \in L^{r^{\prime}}(\Omega):: \bar{\partial} \psi=\alpha$ because Ω is r^{\prime}-regular.
For $q<n$, we have $\bar{\partial}(\phi-\psi)=\alpha-\alpha=0$ on Ω and, because Supp $t \subset \Omega \subset \mathbb{B}, \bar{\partial} t=0$ we get $\langle t, \phi-\psi\rangle=0$ hence

$$
\mathcal{L}(\alpha)=\langle t, \phi\rangle=\langle t, \psi\rangle
$$

If $q=n$, we still have $\bar{\partial}(\phi-\psi)=\alpha-\alpha=0$ on Ω, and $\phi-\psi \in \mathcal{H}_{p}(\Omega)$ hence again by the hypothesis we still get

$$
\mathcal{L}(\alpha)=\langle t, \phi\rangle=\langle t, \psi\rangle .
$$

In any cases, by Hölder inequalities

$$
|\mathcal{L}(\alpha)| \leq\|t\|_{L^{r}(\Omega)}\|\psi\|_{L^{r^{r}}(\Omega)}
$$

But by the r^{\prime}-regularity of Ω there is a constant C such that

$$
\|\psi\|_{L^{r^{\prime}}(\Omega)} \leq C\|\alpha\|_{L^{r^{\prime}}(\Omega)}
$$

Of course we have

$$
\|\alpha\|_{L^{r^{\prime}}(\Omega)} \leq\|\alpha\|_{L^{r^{\prime}}(\mathbb{B}, \eta)}
$$

because $\eta=1$ on Ω, hence

$$
|\mathcal{L}(\alpha)| \leq C\|t\|_{L^{r}(\Omega)}\|\alpha\|_{L^{r^{\prime}}(\mathbb{B}, \eta)}
$$

So we have that the norm of \mathcal{L} is bounded on the subspace of $\bar{\partial}$ closed forms in $L^{r^{\prime}}(\mathbb{B}, \eta)$ by $C\|t\|_{L^{r}(\Omega)}$ which is independent of ϵ.

We apply the Hahn-Banach theorem to extend \mathcal{L} with the same norm to all $(n-p, n-q+1)$ forms in $L^{r^{\prime}}(\mathbb{B}, \eta)$. As in Serre duality theorem ($[10]$, p. 20) this is one of the main ingredient in the proof.

This means, by the definition of current, that there is a ($p, q-1$) current u which represents the extended form \mathcal{L} and such that

$$
\sup _{\alpha \in L^{r^{\prime}}(\mathbb{B}, \eta),\|\alpha\|=1}|\langle u, \alpha\rangle| \leq C\|t\|_{L^{r}(\Omega)}
$$

and by lemma 3.2 with the weight η, this implies

$$
\|u\|_{L^{r}\left(\mathbb{B}, \eta^{1-r}\right)} \leq C\|t\|_{L^{r}(\Omega)}
$$

In particular $\|u\|_{L^{r}(\mathbb{B})} \leq C\|t\|_{L^{r}(\Omega)}$ because with $\epsilon<1, r>1$, we have $\eta^{1-r} \geq 1$.
So applied to a $\bar{\partial}$ closed $(n-p, n-q+1)$ current α we get

$$
\langle u, \alpha\rangle=(-1)^{p+q-1}\langle t, \phi\rangle \text {, with } \bar{\partial} \phi=\alpha \text {, i.e. } \forall \phi:: \bar{\partial} \phi \in L^{r^{\prime}}(\mathbb{B}, \eta) \text {, we have }\langle u, \bar{\partial} \phi\rangle=
$$ $(-1)^{p+q-1}\langle t, \phi\rangle$ and this means precisely, by lemma 2.1, that $\bar{\partial} u=t$.

Now for $\epsilon>0$ with $\eta_{\epsilon}(z):=\mathbb{1}_{\Omega}(z)+\epsilon \mathbb{\|}_{\mathbb{B} \backslash \Omega}(z)$, let $u_{\epsilon} \in L^{r}\left(\mathbb{B}, \eta_{\epsilon}^{1-r}\right)$ be the previous solution, then

$$
\left\|u_{\epsilon}\right\|_{L^{r}(\mathbb{B})}^{r} \leq \int_{\mathbb{B}}\left|u_{\epsilon}\right|^{r} \eta^{1-r} d m \leq C^{r}\|t\|_{L^{r}(\Omega)}^{r}
$$

Replacing η by its value we get

$$
\int_{\Omega}\left|u_{\epsilon}\right|^{r} d m+\int_{\mathbb{B} \backslash \Omega}\left|u_{\epsilon}\right|^{r} \epsilon^{1-r} d m \leq C^{r}\|t\|_{L^{r}(\Omega)}^{r} \Longrightarrow \int_{\mathbb{B} \backslash \Omega}\left|u_{\epsilon}\right|^{r} \epsilon^{1-r} d m \leq C^{r}\|t\|_{L^{r}(\Omega)}^{r}
$$

hence

$$
\int_{\mathbb{B} \backslash \Omega}\left|u_{\epsilon}\right|^{r} d m \leq C^{r} \epsilon^{r-1}\|t\|_{L^{r}(\Omega)}^{r}
$$

Because C and the norm of t are independent of ϵ, we have $\left\|u_{\epsilon}\right\|_{L^{r}(\mathbb{B})}$ is uniformly bounded and $r>1 \Longrightarrow L^{r}(\mathbb{B})$ is a dual, hence there is a sub-sequence $\left\{u_{\epsilon_{k}}\right\}_{k \in \mathbb{N}}$ of $\left\{u_{\epsilon}\right\}$ which converges weakly, when $\epsilon_{k} \longrightarrow 0$, to a $(p, q-1)$ form u in $L^{r}(\mathbb{B})$.
To see that this form u is 0 a.e. on $\mathbb{B} \backslash \Omega$ let us take a component $u_{I, J}$ of it ; it is the weak limit of the sequence of functions $\left\{u_{\epsilon_{k}, I, J}\right\}$ which means, with the notations $v:=u_{I, J}, v_{k}:=u_{\epsilon_{k}, I, J}$

$$
\forall f \in L^{r^{\prime}}(\mathbb{B}), \int_{\mathbb{B}_{\overline{1}}} v f d m=\lim _{k \rightarrow \infty} \int_{\mathbb{B}} v_{k} f d m .
$$

As usual take $f:=\frac{\bar{v}}{|v|} \mathbb{1}_{E}$ where $E:=\{|v|>0\} \cap(\mathbb{B} \backslash \Omega)$ then we get

$$
\int_{\mathbb{B}} v f d m=\int_{E}|v| d m=\lim _{k \longrightarrow \infty} \int_{\mathbb{B}} v_{k} f d m=\lim _{k \longrightarrow \infty} \int_{E} \frac{v_{k} \bar{v}}{|v|} d m .
$$

Now we have by Hölder

$$
\left|\int_{E} \frac{v_{k} \bar{v}}{|v|} d m\right| \leq\left\|v_{k}\right\|_{L^{r}(E)}\left\|\mathbb{1}_{E}\right\|_{L^{r^{\prime}}(E)}
$$

But

$$
\left\|v_{k}\right\|_{L^{r}(E)}^{r} \leq \int_{\mathbb{B} \backslash \Omega}\left|u_{\epsilon_{k}}\right|^{r} d m \leq\left(\epsilon_{k}\right)^{r-1}\|t\|_{L^{r}(\Omega)} \longrightarrow 0, k \longrightarrow \infty .
$$

Hence

$$
\left|\int_{E}\right| v|d m| \leq C^{r}\left\|1_{E}\right\|_{L^{r^{\prime}}(E)}\left(\epsilon_{k}\right)^{r-1}\|t\|_{L^{r}(\Omega)}^{r} \longrightarrow 0
$$

which implies $m(E)=0$ because on $E,|v|>0$.
This being true for all components of u, we get that the form u is 0 a.e. on $\mathbb{B} \backslash \Omega$.
So we get

$$
\forall \phi \in \mathcal{D}_{n-p, n-q}(\mathbb{B}),(-1)^{p+q-1}\langle t, \phi\rangle=\left\langle u_{\epsilon}, \bar{\partial} \phi\right\rangle \longrightarrow\langle u, \bar{\partial} \phi\rangle \Longrightarrow\langle u, \bar{\partial} \phi\rangle=(-1)^{p+q-1}\langle t, \phi\rangle
$$

hence $\bar{\partial} u=t$ as distributions.
Remark 3.4. The condition of orthogonality to the holomorphic functions in case $q=n$ was already seen for extension of $C R$ functions see [1] and the references therein.

4. Case of Stein manifold.

First we define the "Lebesgue measure" on a complex manifold X as in Hörmander's book [6] section 5.2 , with a hermitian metric locally equivalent to the usual one on any analytic coordinates system. Associate to this metric there is a volume form $d V$ and we take it for the Lebesgue measure on X.

Let us denote $\mathcal{H}_{p}(\Omega)$ the set of all $(p, 0) \bar{\partial}$ closed forms in Ω. Still we have that $\mathcal{H}_{0}(\Omega)=\mathcal{H}(\Omega)$, the set of holomorphic functions in Ω, but if $p>1, \phi \in \mathcal{H}_{p}(\Omega)$ is a priori no longer a vector of global holomorphic functions in Ω.
Theorem 4.1. Let X be a Stein manifold and Ω a bounded strictly pseudo-convex domain with smooth boundary of X. Let t be a (p, q) current in $L_{c}^{r}(\Omega), r>1$, such that $\bar{\partial} t=0$ if $1 \leq q<n$ and $\forall h \in \mathcal{H}_{p}(\Omega),\langle t, h\rangle=0$ if $q=n$.
Let B be another bounded strictly pseudo-convex domain with smooth boundary in X such that $\bar{\Omega} \subset B$.

Then there is a $(p, q-1)$ current u in $L^{r}(B)$ such that $\bar{\partial} u=t$ and which is 0 a.e. in $B \backslash \Omega$.
Proof.
We can solve the $\bar{\partial}$ equation in B and Ω with L^{r} estimates for $(0,1)$ forms by use of N . Kerzman kernels [7] and for all (p, q) forms by J-P. Demailly and C. Laurent ones([5], Remarque 4, page 596).

The remainder of the proof is identical to the proof of theorem 3.3.

References

[1] E. Amar. On the extension of c.r. functions. Math. Z., 206:89-102, 1991.
[2] E. Amar and S. Mongodi. On L^{r} hypoellipticity of solutions with compact support of the Cauchy-Riemann equation. arXiv:1111.3458v1 [math.CV], 2011.
[3] A. Andreotti and G. Grauert. Théorèmes de finitude pour la cohomologie des espaces complexes. Bulletin de la Société Mathématique de France, 90:193-259, 1962.
[4] P. Charpentier. Formules explicites pour les solutions minimales de l'équation $\bar{\partial} u=f$ dans la boule et dans le polydisque de \mathbb{C}^{n}. Annales de l'institut Fourier, 30(4):121-154, 1980.
[5] J-P. Demailly and C. Laurent-Thiébaut. Formules intégrales pour les formes différentielles de type (p, q) dans les variétés de Stein. Ann. Sci. Ecole Norm. Sup., 4(4):579-598, 1987.
[6] L. Hörmander. An introduction to complex analysis in several variables. North-Holland/American Elsevier, 1973.
[7] N. Kerzman. Hölder and L^{p} estimates for solutions of $\bar{\partial} u=f$ in strongly pseudoconvex domains. Comm. Pure. Appl. Math., 24:301-379, 1971.
[8] C. Menini. Estimations pour la résolution du $\bar{\partial}$ sur une intersection d'ouverts strictement pseudoconvexes. Math. Z., 1:87-93, 1997.
[9] N. Ovrelid. Integral representation formulas and L^{p} estimates for the $\bar{\partial}$ equation. Math. Scand., 29:137-160, 1971.
[10] J-P. Serre. Un théorème de dualité. Comment. Math. Helv., 29:9-26, 1955.

