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Joint evolution of specialization and dispersal in
structured metapopulations

Tuomas Nurmi∗,a, Kalle Parvinena

aDepartment of Mathematics, FIN-20014 University of Turku, Finland

Abstract

We study the joint evolution of dispersal and specialization concerning resource
usage in a mechanistically underpinned structured discrete-time metapopulation
model. We show that dispersal significantly affects the evolution of specializa-
tion and that specialization is a key factor that determines the possibility of evo-
lutionary branching in dispersal propensity. Allowing both dispersal propensity
and specialization to evolve as a consequence of natural selection is necessary in
order to understand the evolutionary dynamics. The joint evolution of dispersal
and specialization forms a natural evolutionary path leading to the coexistence
of generalists and specialists. We show that in this process, the number of
different patch types and the resource distribution are essential.

Key words: Adaptive dynamics, Dispersal, Specialization, Trade-off,
Specialist, Generalist, Evolution, Metapopulation

1. Introduction1

During the last decades, research has been active both in the field of the evo-2

lution of dispersal (see e.g. reviews by Johnson and Gaines (1990); Levin et al.3

(2003) and Ronce (2007)) and in that of the evolution of specialization (see e.g.4

reviews by Futuyma and Moreno (1988) and Ravigné et al. (2009)). However,5

only few studies have focused on the case in which both of the traits can evolve6

and are subject to natural selection (Kisdi, 2002; Hanski and Heino, 2003; Heinz7

et al., 2009). The lack of this type of studies has a natural explanation: in order8

to analyze dispersal, one has to use spatially structured models, which notably9

complicates the analysis of specialization. Nowadays, the adaptive dynamics10

approach (Metz et al., 1992; Geritz et al., 1998; Durinx et al., 2008) provides11

us with tools suitable for a systematic analysis of the course of mutation lim-12

ited, frequency and density dependent phenotypic evolution, also in the case of13

spatially structured ecological models (Gyllenberg and Metz, 2001; Metz and14

Gyllenberg, 2001; Parvinen, 2006).15

∗Corresponding author.
Email address: tuomas.nurmi@utu.fi (Tuomas Nurmi)

Preprint submitted to Journal of Theoretical Biology November 15, 2010



Intuitively, one might expect that the interplay between the evolution of1

dispersal and the evolution of specialization is rather simple: the scarcely dis-2

persing phenotype should benefit from specialism and adaptation to local con-3

ditions whereas the amply dispersing phenotype should benefit from generalism4

and capability to deal with different local conditions. Recent studies in the5

field of the evolution of specialization have shown, however, that this is not the6

whole truth. Instead, even non-monotonous relationships seem to be possible7

(Ronce and Kirkpatrick, 2001; Nurmi et al., 2008; Nurmi and Parvinen, 2008).8

Therefore it is not possible to fully understand the evolution of specialization9

without studying the evolution of dispersal.10

Nurmi and Parvinen (2008) studied the way different ecological factors in11

a metapopulation affect the evolution of specialization when consumers face a12

trade-off between the abilities to consume two different resources. We expand13

their analysis by allowing dispersal to evolve as a consequence of natural selec-14

tion.15

In this paper we concentrate on presenting general ideas and results concern-16

ing the way different ecological factors affect the joint evolution of dispersal and17

specialization. We do not use any specific real population to estimate parameter18

values, but instead try to reveal all the significant evolutionary phenomena in19

the entire biologically realistic parameter domain. Correspondingly, we do not20

employ any explicit spatial patch configuration, but instead use global migration21

via a disperser pool. This also allows us to use an explicit algebraic expression22

for the invasion fitness.23

Our model applies to several realistic biological systems. For example, sev-24

eral species of Lepidoptera seek for sodium in a behavior known as puddling.25

Lepidoptera can use a variety of sodium sources (e.g. mud puddles, dung and26

carrions), and different species show different patterns of specialization con-27

cerning the use of resources (Smedley and Eisner, 1995; Boggs and Day, 2004).28

Naturally, these sources differ in their sodium levels and the amount of energy29

required to extract a unit of sodium. However, to illuminate the differences30

between generalists and specialists, we assume that there are two equivalent31

resources. Our modeling approach readily includes the possible occurrence of32

energetically different resources, but the inclusion of more than two resources33

would require a different approach. In the modeling of the population dynamics34

of Lepidoptera, structured metapopulation models are useful tools, since several35

Lepidoptera species live in fragmented landscapes in which extinction prone lo-36

cal populations are connected via dispersal (Harrison and Thomas, 1992). Fur-37

thermore, our modeling approach enriches the Levins’ type metapopulations38

with explicit resource distributions and dynamics; a step considered necessary39

for the conservation biology of butterflies by Dennis et al. (2006).40

Another and more specific example of a biological system that fits the frame-41

work of our model consist of Glanville Fritillary butterflies (Melitaea Cinxia).42

In Finland, these butterflies have been discovered to use two host plant species43

and to employ different patterns of specialization concerning the usage of the44

resources (Hanski and Singer, 2001; Hanski and Heino, 2003).45
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2. The metapopulation model1

We analyze the same discrete-time model as Nurmi and Parvinen (2008),2

where3

• The landscape consists of infinitely many spatially distinct habitat patches.4

Each patch supports a local population and two nutritionally equivalent5

resources.6

• The local between-season dynamics are mechanistically derived (Geritz7

and Kisdi, 2004) from a within-season resource–consumer model with the8

two resources. Deterministic population dynamics consist of clonal repro-9

duction, emigration, immigration and mortality.10

• Local disasters occur randomly. A disaster wipes out the entire local11

population but leaves the patch habitable. Catastrophes affect only the12

consumer populations, not the resources.13

The mechanistic underpinnings of the metapopulation dynamics enables us to14

base the analysis of the evolutionary dynamics directly on the individual-level15

traits (Rueffler et al., 2006). We will next only briefly review the derivation of16

the metapopulation model. We urge interested readers to consult the articles17

by Geritz and Kisdi (2004) and by Nurmi and Parvinen (2008) for the details18

of the derivation.19

2.1. Mechanistic derivation of the local between-season dynamics20

The within-season dynamics applies to species that hatch at the beginning21

of a season, migrate to a new patch with probability e, use local resources to22

produce eggs that also encounter mortality during the breeding season. At the23

end of the breeding season, all adults perish and only a fraction of the eggs24

survives to the following season.25

In the absence of consumers, continuous-time within-season dynamics of26

resource i in patch type m are determined by the chemostat dynamics with27

carrying capacity Km
i , i.e.,28

Ṙm
i = α

(
1−

Rm
i

Km
i

)
,

where Rm
i denotes the density of the resource. One can set parameter α equal to29

one by scaling the other parameters, see the Appendix by Nurmi and Parvinen30

(2008) for details. Furthermore, we assume that there is only a finite number31

of patch types differing from each other only in the carrying capacities of the32

resources.Consumers differ only in their strategy vectors (e, s), where e ∈ (0, 1]33

denotes the probability that an individual decides to emigrate after hatching.34

An individual survives dispersal with probability π (independent of e). Fur-35

thermore, s ∈ [0, 1] stands for the individual’s degree of specialization such that36

s = 1 corresponds to a devoted specialist using only resource 1, s = 0 to a de-37

voted specialist using only resource 2, and s = 0.5 corresponds to an unbiased38
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generalist. A local population with strategy e = 0 (no dispersal) is not viable1

since local catastrophes are liable to make this population extinct in the long2

run. We assume that mutations may affect only one trait (either specialization3

or dispersal) at a time. The two traits can evolve independently, and all kinds4

of trait combinations are possible (no pleiotropy). These assumptions allow us5

to deduce the qualitative course of evolution using fitness isocline plots (see,6

e.g., Figure 1), which is generally not possible for more complicated mutational7

variance–covariance structures (Leimar, 2001, 2009).8

Consumers with strategy (e, s) use type i resource with effort βi(s) according9

to the law of mass action. Since the resources are nutritionally equivalent, we10

assume that there exists such an increasing function β that β(0) = 0, β1(s) =11

β(s) and β2(s) = β(1 − s). It is possible, by scaling the other parameters12

appropriately, to determine (without loss of generality) that β(1) = 1. Whenever13

an explicit definition of the function β is necessary, we define that14

β(s) =
1− exp(−θs)

1− exp(−θ)
, θ �= 0. (1)

This formula is not defined for θ = 0, but since limθ→0 β(s) = s, it is natural to15

define that β(s) = s when θ = 0. The trade-off parameter θ determines whether16

the trade-off function (i.e., the resource consumption function) β is concave17

(θ > 0), convex (θ < 0) or linear (θ = 0). If it is linear, the trade-off function18

β(s) = s can be mechanistically interpreted, for example, resulting from search19

time allocation between the two resources. In case θ �= 0, we have not found any20

mechanistic explanation for the form of the function β. We simply use negative21

values of θ to phenomenologically model the situations with an additional cost22

of generalism and positive values of θ to model the situations with an additional23

benefit of generalism.24

Moreover, we assume that there occurs no within-season adult mortality25

and that the resource dynamics are fast compared to the consumer population26

dynamics, i.e., the resource population is always at the quasi-equilibrium deter-27

mined by the consumer population sizes. This allows us to derive the following28

Beverton-Holt type fecundity function for a type j consumer who employs strat-29

egy (ej , sj) and lives in a patch of the type m in a time step n:30

fm(sj , Φ, Xn) =
λβ(sj)K

m
1

1 + Km
1

∑
h β(sh)x

(h)
n

+
λβ(1 − sj)K

m
2

1 + Km
2

∑
h β(1 − sh)x

(h)
n

, (2)

where31

Φ =

((
e1

s1

)
,

(
e2

s2

)
, · · · ,

(
ek

sk

))

is a vector comprising the strategies employed in the patch and32

Xn = (x(1)
n , x(2)

n , . . . , x(k)
n )

is a vector comprising the corresponding population sizes in time step n. Pa-33

rameter λ determines the intrinsic growth rate of consumers, i.e., how much34

eggs can a consumer produce with certain amount of nutrients gained from the35

two resources.36
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2.2. Metapopulation dynamics1

The local populations interact only by means of dispersal, which takes place2

via a common disperser pool. In this process emigrants enter the disperser pool,3

after which all individuals that survive dispersal are distributed evenly to all4

patches regardless of their quality or spatial configuration.Let Dj
n to denote the5

average per patch number of type j dispersers at time step n (disperser pool6

size of type j dispersers), we can finally determine the actual dynamics of the7

local population size xj
n of type j consumers employing strategy (ej , sj) in a8

patch type m in the metapopulation model as9

x
j
n+1 = C(n + 1)(1− ej)f

m(sj , Φ, Xn)xj
n + πDj

n, (3)

where C(n+1) is a random variable drawn from the Bernoulli distribution with10

parameter c (catastrophe probability), i.e.,11

C(n+1) =

{
1, if the local population avoids catastrophes in time step n (probability 1− c),
0, if there occurs a local catastrophe after time step n (probability c).

Note that catastrophes occur between the breeding seasons, and the event12

of a catastrophe taking place in a specific patch is independent of other patches.13

When a catastrophe occurs, it wipes out the entire local population (all eggs).14

In the following season, a new local population is established by immigrants.15

In principle, we can for each time step calculate Dj
n by summing up the16

amount of type j disperser produced by each patch (ejx
j
n). In practice, however,17

the actual calculation of Dj
n in this way is rather demanding. Fortunately, as18

we focus only on metapopulations featuring a globally attracting fixed point19

equilibrium, we can neglect this calculation and solve Dj
n from a fixed point20

equation. In the fixed point Dj
n has a constant value Dj and this value must be21

such that once a disperser enters a local population it and its descendants will22

on average produce exactly one new successful disperser.23

We can derive an explicit formula for the invasion fitness of a rare mutant in24

this population model. This derivation follows the guidelines given by Gyllen-25

berg and Metz (2001) (continuous-time models) and Parvinen (2006) (adapta-26

tion to discrete-time models). However, this formula is rather lengthy and thus27

we prompt the reader to consult Nurmi and Parvinen (2008).28

We carry out most of the analysis in an environment that is symmetric in a29

sense that for each patch type with a certain combination of carrying capacities30

there exists an equally common patch type with swapped carrying capacities.31

In this case, the unbiased generalist strategy is always a singular specialization32

strategy, i.e., there is no directional natural selection acting on the specialization33

component of the strategy. In a symmetric environment, it is easy to point out34

the differences between generalists and specialists and observe how different35

ecological factors affect the evolutionary dynamics.36

3. Results for one evolving trait37

Both the evolution of specialization and the evolution of dispersal obey some38

rules that are independent of the other component of the strategy vector. To39
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obtain a general overview of the course of the evolution in our model, we first1

describe these independent components.2

3.1. The evolution of specialization3

The results we review here have been presented by Nurmi and Parvinen4

(2008). They are valid for any positive dispersal propensity e.5

In a symmetric environment, the unbiased generalist strategy s = 0.5 is6

always a singular strategy. The specialist strategies s = 0 and s = 1 are bound-7

aries of the strategy space. Thus the evolutionary uninvadability coincides with8

the evolutionary attractivity.9

The evolutionary dynamics of specialization are dominated by trade-off pa-10

rameter θ, which measures the cost/benefit of generalism (see Equations (1)11

and (2)). For low values of θ, the evolutionary dynamics of specialization al-12

ways converge to a specialist strategy. As θ increases, the generalist strategy first13

turns from an evolutionary repellor into a branching point. Two evolutionarily14

repelling non-generalist singular strategies appear, but the specialist strategies15

still remain evolutionarily attracting. As θ increases further, the non-generalist16

singular strategies diverge further from the generalist strategy and finally leave17

the strategy space, after which the evolution of specialization converges to the18

generalist strategy independently of the initial state and evolutionary branch-19

ing takes place. For even greater values of θ the generalist strategy becomes an20

evolutionary endpoint. Nurmi and Parvinen (2008) found no parameter combi-21

nations such that both the generalist strategy and the specialist strategies would22

appear simultaneously as evolutionary endpoints in a monomorphic population.23

Altogether, there are two critical values of θ:24

• At θ∗1 , the generalist strategy turns from an evolutionary repellor into a25

branching point.26

• At θ∗2 , the generalist strategy turns from a branching point into an evolu-27

tionary endpoint (ESS)28

According to Nurmi and Parvinen (2008), θ∗2 is for most parameter combinations29

located in the neighborhood of zero, which corresponds to linear trade-off.30

Whenever evolutionary branching occurs (θ∗1 < θ < θ∗2), the population31

becomes dimorphic. Usually the evolutionary dynamics of a dimorphic popula-32

tion end in the combination of the two extreme specialists s1 = 0 and s2 = 1.33

This again is a boundary of the strategy space and thus also an evolutionary34

endpoint. However, when θ is only slightly smaller than θ∗2 , the evolutionary35

dynamics of a dimorphic population end in a singular strategy pair (s1, s2), in36

which 0 < s1 < 1 and s2 = 1 − s1 (in a symmetric environment). Whenever37

this singular strategy pair is reached in an evolutionary process starting from a38

monomorphic population it is an evolutionary endpoint and further branching39

of specialization in the dimorphic population is not possible. We urge inter-40

ested readers to consult the article by Nurmi and Parvinen (2008) for further41

information.42
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3.2. The evolution of dispersal1

Evolution of dispersal in our model has not been studied previously, but2

our findings are qualitatively similar to those by Parvinen (2006) based on a3

Ricker-model without specialization. The results we present here are valid for4

any specialization strategy s.5

Trade-off parameter θ dominated the evolution of specialization, whereas it6

affects the evolution of dispersal mostly indirectly by setting the evolutionary at-7

tractor of the specialization strategy. In a monomorphic population, our model8

has only a single evolutionarily singular dispersal propensity, which is always9

evolutionarily attracting. The numerical value of this propensity is primarily10

determined by catastrophe probability c and probability π of surviving disper-11

sal. The higher the probability π, the higher the singular dispersal propensity.12

When there remains any risk of dispersal (π < 1), the catastrophe probabil-13

ity affects the singular dispersal propensity in a non-monotonous way: in the14

absence of catastrophes (c = 0), all local populations stay at the fixed point15

of Equation (3) and thus the strategy not to disperse is an evolutionarily at-16

tracting singular strategy, as proved by Parvinen (2006). As the catastrophe17

probability increases, the singular dispersal propensity increases in the begin-18

ning, too. This is due to the fact that catastrophes result in empty patches,19

which make dispersal profitable. As the catastrophe probability increases fur-20

ther, most individuals find themselves in sparsely populated patches with plenty21

of resources. This decreases the advantages of dispersal and causes the singular22

dispersal propensity to diminish. The value of the singular dispersal propensity23

reaches zero again at the threshold where the metapopulation loses its viability.24

This phenomenon has been observed also by, for example Ronce et al. (2000);25

Gyllenberg et al. (2002) and Parvinen (2006). In this paper, we focus mainly on26

the domain in which the singular dispersal propensity appears as an increasing27

function of the catastrophe probability.28

Various mechanisms resulting in evolutionary branching or polymorphisms of29

dispersal have been observed in different metapopulation models. These mech-30

anisms include temporal variation in form of cyclic (Doebeli and Ruxton, 1997;31

Parvinen, 1999) or chaotic (Holt and McPeek, 1996) local population dynamics,32

or temporally and spatially varying carrying capacities (McPeek and Holt, 1992;33

Mathias et al., 2001). However, catastrophes alone, have been observed not to34

create enough temporal variation to promote branching. For example, Gyllen-35

berg et al. (2002) did not find evolutionary branching in a structured metapop-36

ulation model defined in continuous time with one patch type. Parvinen (2002)37

studied the corresponding model with several patch types, and observed that38

catastrophes together with spatial heterogeneity in the sense of different patch39

types can result in evolutionary branching of dispersal. The necessary level40

of spatial heterogeneity can be obtained with differences in growth conditions41

alone, as well as with differences in catastrophe rates alone. A similar observa-42

tion in a metapopulation model with small local populations, and thus locally43

stochastic population dynamics, was made by Parvinen et al. (2003) (one patch44

type) and Parvinen and Metz (2008) (several patch types).45
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Parvinen (2006) studied a discrete-time metapopulation model and found1

another additional mechanism, which can together with catastrophes result in2

evolutionary branching. Even though all local populations would eventually3

reach an equilibrium population size, if they are not hit by a catastrophe, this4

convergence to the equilibrium can be non-monotonous due to overcompensation5

in the local discrete-time dynamics, such as in the Ricker model. Parvinen6

(2006) observed that such temporal heterogeneity together with catastrophes7

can result in evolutionary branching of dispersal.8

Local growth in the metapopulation model studied in this article is of the9

Beverton-Holt type, where convergence to the population-dynamical equilibrium10

is monotonous. Therefore the mechanism for evolutionary branching of dispersal11

observed by Parvinen (2006) is not present here. According to our observations,12

the evolutionarily singular dispersal propensity is in most cases uninvadable by13

mutants featuring a different dispersal propensity. As can be expected based14

on the reasoning above, we can observe evolutionary branching of dispersal, if15

individuals encounter a sufficient amount of spatial heterogeneity in the sense16

of different patch types (Parvinen, 2002). An unbiased generalist regards the17

two resources as identical and therefore it observes no difference between two18

patches with swapped resource carrying capacities (K1
1 = K2

2 and K1
2 = K2

1 ).19

The reasoning above together with our numerical results let us conjecture that20

evolutionary branching of dispersal is not possible in a metapopulation com-21

prising unbiased generalist individuals in an environment comprising two patch22

types with swapped carrying capacities. For a specialist, evolutionary branching23

of dispersal in such an environment is possible (Figures 1B and 3B).24

4. Joint adaptive dynamics of specialization and dispersal25

4.1. Evolutionary scenarios in a symmetric environment comprising two patch26

types27

In this section, we analyze the case in which both of the aforementioned28

traits can evolve and are subject to natural selection.29

As mentioned above, we are able to derive an explicit algebraic formula for30

the fitness function of the model. We have not found means for mathematical31

analysis of this formula. Instead, all our results concerning the evolution of a32

monomorphic population rely on numerical analysis of this formula. We illus-33

trate the course of evolution by showing the fitness gradient isoclines of dispersal34

and specialization: we plot the evolutionarily singular dispersal propensities as35

a function of the specialization strategy on the vertical axis together with the36

singular specialization strategies as a function of the dispersal propensity on37

the horizontal axis. From these isocline plots, we deduce the way dispersal and38

specialization evolve in a monomorphic population.39

Although it is, in principle, possible to solve polymorphic singular strategies40

numerically, it is more illustrative to follow the course of the evolution starting41

from a monomorphic population. The expected course of evolution in the case in42

which mutations would be infinitesimally small could be analyzed by using the43
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canonical equation of adaptive dynamics (Dieckmann and Law, 1996). In this1

paper, however, we illustrate evolution in a polymorphic population by using2

evolutionary simulations that include the effects of mutational stochasticity (see3

Appendix).4

From the evolutionary simulations, we can deduce the evolutionary end-5

points, and use the speed at which the evolution of dispersal and specialization6

proceeds to compare the strengths of the evolutionary forces influencing these7

traits. This is possible, because we run our simulations with identical evolution-8

ary parameters (mutation rate, expected size and variance of the mutations etc.)9

for dispersal and specialization. The simulations we present are not individual10

based, instead, they result from repeated iterations of the metapopulation dy-11

namics and infrequent insertions of new mutants employing a strategy close to12

one of the resident strategies. See Appendix for the description of the simula-13

tion procedure. The evolutionary time on the horizontal axis of the simulation14

figures is an abstract concept only applicable to comparison between the times15

that are needed to obtain different evolutionary endpoints.16

Figures 1 and 2 illustrate the qualitatively different fitness gradient isocline17

configurations that are possible in symmetric environments. Figure 1 illustrates18

all qualitatively different isocline configurations possible in environments com-19

prising two patch types with swapped carrying capacities. Besides the case with20

swapped carrying capacities, an environment is symmetric also when within each21

patch type the carrying capacities of the two resources are equivalent although22

they differ between patch types. Furthermore, in environments comprising more23

than two patch types there are several ways to construct symmetric environ-24

ments. Isocline configurations in such environments are illustrated in Figure 225

to the extent that they are qualitatively different from those in Figure 1.26

In each column in Figure 1 the value of the parameter θ increases from27

top to down, while other parameters are kept constant. This illustrates the28

bifurcation pattern depicted in section 3.1 for the evolutionary dynamics of29

specialization. The panels with θ = −3 (strong trade-off and strongly convex30

trade-off function), θ = −1 (moderately strong trade-off and weakly convex31

trade-off function), and θ = 1 (weak trade-off and concave trade-off function)32

illustrate the evolutionary scenarios that are ”typical” in the model, whereas33

the evolutionary phenomena depicted in panels with θ = −1.8 and θ = 0.134

take place only in narrow intermediate parameter domains. The results of the35

evolutionary simulations corresponding to these ”typical” cases are collected to36

Figure 3.37

Figures 1A, 3A, 1B, and 3B illustrate the case with strong trade-off (high38

cost of generalism). There the specialization strategy first evolves to full spe-39

cialism (s = 0 or s = 1, depending on the initial state). In the case illustrated40

in Figures 1A and 3A evolutionary dynamics end in a monomorphic specialist41

population. If dispersal survival π is sufficiently high, evolutionary branching42

of dispersal may occur (Figures 1B and 3B). Branching results in a dispersal di-43

morphism where two morphs can coexist in a metapopulation because the more44

dispersive morph is able to occupy empty patches efficiently but is outcompeted45

locally by the less dispersive morph in the case the patch avoids catastrophes suf-46
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Figure 2: Symmetric environments II: Evolutionarily singular specialization strategies as
a function of the dispersal propensity (horizontal axis) and the singular dispersal propensity
as a function of specialization (vertical axis). Thick black curve = CSS, thick grey curve =
branching point, thin black curve = evolutionary repellor. Parameter values: λ = 3, c = 0.05
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Figure 3: Strategies present in the metapopulation during an evolutionary simulation. Grey
curve: the specialization component s of the strategy, black curve: the dispersal component e.
Initial strategies A: (e, s) = (0.6, 0.6), B:(e, s) = (0.4, 0.4), C and D:(e, s) = (1, 1). Parameter
values in panels A, B, C and D correspond to the ones in Figure 1A, 1B, 1E and 1I, respectively.
The simulation ends up in
A: a monomorphic population using strategy (e, s) ≈ (0.15, 1).
B: a dimorphic population using strategies (e, s) ≈ (0.1, 0) and (0.7, 0).
C: a dimorphic population using strategies (e, s) ≈ (0.15, 1) and (0.15, 0).
D: a monomorphic population using strategy (e, s) ≈ (0.18, 0.5).
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ficiently long. In the case illustrated Figures 1B and 3B consumers utilize solely1

one resource leaving the other intact. The other resource is, however, capa-2

ble of sustaining a corresponding dispersal dimorphism; Figure 4 illustrates, for3

slightly different parameter values, the way evolutionary branching of special-4

ization initiates an evolutionary path that leads to a quadrimorphic population5

comprised of two differently specialized dispersal dimorphisms.6

Figures 1I, 1J, and 3D illustrate the case with weak trade-off (additional ben-7

efit of generalism). In this case the evolutionary dynamics of specialization end8

in a monomorphic generalist population and evolutionary branching of dispersal9

is not possible (see section 3.2). An evolutionary simulation corresponding to10

the isocline configuration depicted in Figure 1I is illustrated in Figure 3D. An11

evolutionary simulation corresponding to the isocline configuration depicted in12

Figure 1J would be qualitatively similar (not illustrated).13

Figures 1E, 1F, 3C, and 4 illustrate the case with moderately strong trade-14

off. There a monomorphic population first evolves to generalism, and then15

evolutionary branching of specialization occurs resulting in a metapopulation16

comprising two devoted specialists. Due to the symmetry of the environment,17

the two specialist morphs encounter identical selective forces influencing dis-18

persal propensity and thus the dispersal propensities end up in equal values.19

However, since mutations occur randomly, the evolutionary paths in the strat-20

egy space are not identical. In the case illustrated in Figures 1E and 3C dis-21

persal is rather risky (π = 0.8) and evolutionary branching of dispersal is not22

possible. Thus, finally evolutionary dynamics end in a dimorphic population23

comprising two scarcely dispersing devoted specialists. If dispersal survival is24

high (π = 0.99), as is the case in Figures 1F and 4, evolutionary brancing of25

dispersal may follow that of specialization. The evolutionary dynamics end in26

a quadrimorphic metapopulation, where each of the two resources hosts both27

scarcely and moderately dispersing specialists.28

Figures 1C and 1D illustrate cases where there may appear several evolu-29

tionarily singular specialization strategies and, depending on the initial strategy,30

the evolution of specialization in a monomorphic population may proceed either31

to generalism or specialism. However, since we now study the evolution of a32

two-dimensional strategy, the initial state no longer solely determines the fate33

of the population: Figure 5 shows the results of two evolutionary simulations34

with one and the same initial state and ecological and evolutionary parameters35

(corresponding to Figure 1C). The initial strategy lies in the strategy domain36

where the evolution of specialization directs towards specialism. The result37

of an evolutionary simulation leading to a monomorphic specialist population38

is shown in Figure 5A. However, mutations affect randomly either specialism39

or dispersal. It thus is possible that by coincidence or due to the work of a40

”Darwinian Demon” (in a sense of Leimar (2001)), a long sequence of succes-41

sive mutations affects only dispersal propensity. This is the case in the initial42

phase of the simulation illustrated in Figure 5B, where dispersal propensity di-43

minishes while specialization remains unchanged in the absence of mutations44

affecting specialization. As a result, the prevailing strategy of the metapop-45

ulation is such that the specialization strategy is in the neighborhood of the46
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Figure 4: Panel A illustrates strategies present in the metapopulation during an evolutionary
simulation. Grey curve = the specialization component s of the strategy, black curve = the dis-
persal component e. Each dot in Panels B-F represents a strategy that has been present in the
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repelling singular specialization strategy that is not an ESS. (See, e.g., Figure1

2 of Nurmi and Parvinen (2008), top row, case θ = −1.2). In the neighbor-2

hood of such a singular strategy there are typically strategies that can coexist3

(Case (a) in Figure 2 of Geritz et al. (1998)). As illustrated in Figure 4 of Geritz4

et al. (1998), dimorphic selection near a non-ESS singular strategy is disruptive.5

Therefore, evolutionary branching of specialization will occur, and finally evo-6

lutionary dynamics end in a dimorphic population with two specialist strategies7

as illustrated in Figure 5B. Note that when the strategy is one-dimensional we8

never observe evolutionary branching near a repelling non-ESS singular strat-9

egy, because the evolution of a monomorphic population does never enter the10

neighborhood of such a singular strategy. The evolutionary simulation corre-11

sponding to the isocline configuration depicted in Figure 1D is not illustrated12

here since it is qualitatively similar to the on in Figure 5, expect that instead13

low dispersal propensities evolutionary dynamics end in dispersal dimorphisms.14

Thus the observed evolutionary endpoint is either qualitatively similar to the15

one in Figure 3B or to the one in Figure 4.16

Figure 1G depicts the fitness gradient isocline configuration in the case with17

moderately concave trade-off function (small benefit of generalism). The iso-18

cline configuration looks rather simple, whereas the result of a corresponding19

evolutionary simulation shown in Figure 6 is surprisingly complicated. The20

simulation illustrates how decreasing dispersal propensity triggers evolutionary21

branching of specialization. However, the divergent forces caused by the ten-22

dency to reduce competition are, in this ecological setting, not strong enough23

to override the benefits of generalism, and specialization approaches an inter-24

mediate singular strategy pair instead of a full specialization.25

The two specialization strategies are, however, specialized enough to enable26

evolutionary branching of dispersal. In Figure 6E both traits appear to undergo27

simultaneous evolutionary branching. However, the driving force underlying this28

phenomena is evolutionary branching of dispersal. The changes in the dispersal29

propensity of a certain morph also change the evolutionary forces acting on30

the specialization strategy of the morph. The evolutionary forces acting on31

specialization are in this setting strong enough to cause detectable changes in32

specialization already while evolutionary branching of dispersal is underway.33

Once evolutionary branching of dispersal has occurred, the more dispersive34

morphs start to evolve towards generalism while the less dispersive morphs35

become more specialized. Finally, either both of the more dispersive morphs36

converge to generalism or one of them dies out and the other converges to37

generalism (see Figure 6). This results in a trimorphic coexistence of a generalist38

and two specialists. In this trimorphism the more dispersive morph finds its39

niche by efficiently colonizing patches emptied by catastrophes. On the other40

hand, the low dispersal specialists get along as, in the long run, they can take41

over the patches rich in the resource they are specialized in.42

Usually higher dispersal survival results in larger parameter domain where43

evolutionary branching of dispersal is possible. Surprisingly, in the case with44

θ = 0.1 (Figures 1G and 1H) the effect is opposite. In the case illustrated in45

Figure 1H with π = 0.99 a monomorphic generalist population results whereas46
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in the case illustrated in Figure 1G with π = 0.8 evolutionary dynamics end1

in a trimorphic population. The evolutionary simulation corresponding to the2

isocline configuration 1H is not illustrated here since it is qualitatively similar3

to the one in Figure 3D.4

However, the phenomenon depicted in Figure 6 occurs only in a narrow in-5

termediate parameter domain: for most parameter combinations, evolutionary6

branching of dispersal is not possible in a metapopulation consisting of inter-7

mediately specialized individuals. Furthermore, it requires fine-tuning of the8

parameter values to obtain evolution to a dimorphic metapopulation featuring9

two intermediately specialized morphs. To sum up, in symmetric environments10

with two patch types evolution to the coexistence of generalists and specialists11

is an extremely rare occasion. However, when there are more than two patch12

types the situation is different.13

Besides the case with swapped carrying capacities, an environment is sym-14

metric also when within each patch type the carrying capacities of the two15

resources are equivalent although they differ between patch types. In this case16

dispersal does not affect the invadability of the unbiased generalist strategy and17

hence only rather simple evolutionary scenarios are possible. A simple calcula-18

tion shows that if the trade-off function is concave (θ > θ∗2 = 0), the evolutionary19

dynamics of specialization always end in generalism. If the trade-off function20

is convex (θ < θ∗2 = 0) the evolutionary dynamics of specialization always end21

either in the combination of two specialists or in a monomorphic specialist pop-22

ulation. Evolutionary branching of dispersal is, in this setting, possible both23

in metapopulations consisting of specialists and in metapopulations consisting24

of generalists if there are sufficiently different patch types and sufficiently high25

dispersal survival (π). Compared with Figure 1, the only qualitatively different26

evolutionary scenarios are those involving evolutionary branching of dispersal27

in a metapopulation comprising generalists. Panels A and B in Figure 2 illus-28

trate the fitness isocline configurations in these cases and Figure 7 illustrates29

the results of the corresponding evolutionary simulations.30

Figures 2A and 7A illustrate the case in which evolutionary dynamics end in31

a dispersal dimorphism in a metapopulation consisting of generalist individuals.32

Figures 2B and 7B illustrate the case in which the evolution of a monomorphic33

population converges to a generalist strategy that is a branching point both for34

the specialization strategy and for the dispersal propensity. In this case the35

evolutionary endpoint is qualitatively similar to the one in Figure 4.36

In Figure 2C, the environment is symmetric and comprises three patch types.37

Section 4.2 below is devoted to the detailed analysis of this case, where it is pos-38

sible that after evolutionary branching of dispersal, only the scarcely dispersing39

morph undergoes evolutionary branching of specialization and finally the evo-40

lutionary dynamics end in a combination of two scarcely dispersing specialists41

and an abundantly dispersing generalist.42
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4.2. Qualitatively different evolutionary scenarios in symmetric environments1

comprising more than two patch types2

Mostly, our results with two patch types are qualitatively similar to those3

with several different patch types. The only essential qualitative difference is4

the following: In a symmetric environment with two patch types either evo-5

lutionary branching of dispersal is not possible in a metapopulation consist-6

ing of generalists (environments with swapped resource carrying capacities) or7

dispersal propensity does not affect the invadability of the generalist strategy8

(environments where the resource carrying capacities are equal in each patch9

type). In an environment with more than two patch types it is easy to find10

such parameter combinations that branching of dispersal propensity is possible11

in a metapopulation comprising generalists, and that the dispersal propensity12

significantly affects the invadability of the generalist strategy.13

This provides a natural evolutionary path to the coexistence of generalists14

and specialists: After the initial phase of evolutionary branching of dispersal,15

the two branches diverge further apart from each other and, given that trade-off16

parameter θ has an appropriate value, the generalist strategy may turn from17

an ESS to an evolutionary branching point for the less dispersive morph. This18

results in evolutionary branching of the specialization strategy employed by19

the scarcely dispersing morph. In environments comprising two patch types,20

evolution hardly leads to the coexistence of specialists and generalists and can21

only be observed in a narrow parameter domain. In symmetric environments22

comprising several patch types it is easy to construct parameter combinations23

where the evolutionary dynamics of an initially monomorphic population end24

in the coexistence of two specialists and a generalist, as illustrated in Figures25

2C and 8.26

Note that although panel A in Figure 8 may seem to indicate a degenerate27

case in which specialization divides in three branches, this is not the case. In-28

stead, after evolutionary branching of dispersal, both morphs employ the same29

specialization strategy, s = 0.5. The morph with low dispersal propensity un-30

dergoes branching of specialization into two branches, while the specialization31

strategy of the high-dispersal morph remains at s = 0.5 as illustrated in Figures32

8B-F.33

In our model, each evolutionary path to the trimorphic coexistence of two34

specialists and a generalist involves evolutionary branching of dispersal in a35

metapopulation comprising generalist or nearly generalist individuals. There-36

fore, it is of interest to study when evolutionary branching of dispersal is possi-37

ble. Figure 9 illustrates the way dispersal survival π, catastrophe probability c38

and the distribution of the resources in the environment affect the possibility of39

evolutionary branching of dispersal in metapopulations consisting of generalist40

individuals.41

Evolutionary branching of dispersal in a metapopulation consisting of gen-42

eralists does not alone ensure evolution to the coexistence of specialists and43

generalists. In addition, trade-off parameter θ must have an appropriate value44

(according to our observations usually in the neighborhood of θ = 0.1) and the45
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resource distribution must be such that dispersal affects the benefits of special-1

ization. To sum up, Figure 9 does not illustrate the parameter domain where2

evolution dynamics end in the coexistence of generalists and specialists, but3

gives a rough approximation of the parameter domain where such evolutionary4

scenarios may be found.5

In Figure 9 each curve corresponds to a different resource distribution. The6

singular dispersal propensity is a branching point above the curves and an ESS7

below. Based on Figure 9, one can observe that the size of the parameter domain8

where branching may occur is mainly determined by the difference between9

patches that act as sources and ”pseudo-sinks” in the metapopulation dynamics10

(Watkinson and Sutherland, 1995) whereas the fraction of source patches or11

total resource availability (column K∗) only have a small effect.12

4.3. Qualitatively different evolutionary scenarios in asymmetric environments13

Although assuming a symmetric environment simplifies the analysis of evo-14

lutionary dynamics, since the unbiased generalist strategy s = 0.5 is then evo-15

lutionary singular, it is not biologically very realistic. However, for most asym-16

metric environments without a strong bias in the total metapopulation level17

amounts of resources, there still exists a unique singular specialization strat-18

egy and the evolutionary dynamics are qualitatively similar to a case with a19

symmetric environment.20

The previously analyzed case with two patch types and swapped carrying21

capacities becomes asymmetric, when the proportions of the two patch types22

are not equal. Figures 10A-D illustrate qualitatively different evolutionary sce-23

narios in this case. Note that an unbiased generalist with strategy s = 0.5 still24

observes no differences between the two patch types, and thus the evolution-25

ary singular dispersal propensity is not a branching point for s ≈ 0.5. Another26

option to break the symmetry is to use non-swapped carrying capacities. Re-27

sources may be on average equally common throughout the metapopulation, but28

are distributed unevenly to patches (Figure 10E and F). In this case a source–29

(pseudo-)sink structure (Watkinson and Sutherland, 1995) is possible for the30

dynamics of metapopulation consisting of generalists, and the evolutionary sin-31

gular dispersal propensity may be a branching point for s ≈ 0.5.32

Panel A of Figure 10 shows that when the singular specialization strategy is33

evolutionarily repelling, it becomes biased towards the less abundant resource34

(as expected). This entails that the more abundant the resource is, the larger is35

the basin of attraction of the evolutionary dynamics of the corresponding spe-36

cialist strategy. On the other hand, Panels B and C of Figure 10 show that, when37

the singular strategy is evolutionarily attracting, it is biased towards the more38

abundant resource. However, when the absolute value of the trade-off param-39

eter θ becomes sufficiently high, the additional costs or benefits of generalism40

overwhelm the effects of asymmetricity and the singular specialization strategy41

remains close to the unbiased generalist strategy. More detailed analyses of the42

evolution of specialization in asymmetric environments have been presented by43

Nurmi and Parvinen (2008) and Parvinen and Egas (2004) (featuring a constant44

dispersal propensity).45
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Figure 10D illustrates the case in which the singular specialization strategy1

is sufficiently distant from the unbiased generalist strategy s = 0.5 in order2

to enable evolutionary branching of dispersal. The result of a corresponding3

evolutionary simulation is shown in Figure 11. We actually observe two suc-4

cessive events of evolutionary branching of dispersal. In both cases the disper-5

sal propensity at the branching point is rather large. Therefore the dispersal6

propensity of one of the emerging morphs cannot increase much more and it7

remains nearly generalist, while the dispersal propensity of the other emerging8

morph decreases substantially. During the first event of evolutionary branching9

the morph with decreasing dispersal propensity specializes in the less abundant10

resource 1 (s = 1), whereas during the second evolutionary branching the newly11

appeared morph with decreasing dispersal propensity specializes in the more12

abundant resource (s = 0). Finally, the metapopulation reaches a trimorphic13

state comprised of one abundantly dispersing generalist and two scarcely dis-14

persing specialists. The exploited niches are qualitatively similar to those in the15

case involving symmetric environments (Figure 6).16

Figures 10E and 10F illustrate the cases with non-swapped carrying ca-17

pacities, where each resource is in total equally abundant. The evolutionary18

simulation illustrated in Figure 12 (corresponding to Figure 10E) ends in a19

combination of the two devoted specialists such that one specialist undergoes20

evolutionary branching of dispersal whereas the other converges to a single dis-21

persal propensity (Compare with Figure 4).22

The fitness isocline configuration illustrated in Figure 10F resembles the one23

illustrated in Figure 2C (with three patch types) and hence one might intuitively24

expect that evolution to the trimorphic coexistence of a generalist and two25

specialists could be possible also in a two-patch environment with non-swapped26

carrying capacities. However, we have not found any parameter combinations27

resulting in such a scenario. Instead, evolutionary dynamics typically end in28

a dimorphic population comprising one amply dispersing generalist and one29

scarcely dispersing specialist as illustrated in Figure 13.30

4.4. Evolutionary effects of the parameters that determine the ecological dynam-31

ics32

In this section we analyze the way the parameters that determine the eco-33

logical dynamics affect the evolutionary dynamics. We carry out our analysis34

in a symmetric environment comprising two patch types with swapped carrying35

capacities, but we believe that our results are fairly robust against moderate36

changes in the structure of the environment.37

Even though small changes in the trade-off parameter θ usually do not have38

direct significant effects on the evolution of dispersal, θ is an essential element39

in the evolution of dispersal because of indirect effects. It namely determines40

the concavity or convexity of the trade-off function β(s) and thus has a signif-41

icant effect on the evolutionary attractors in which the evolutionary dynamics42

of specialization end in. Figure 14 illustrates the dispersal propensity at the43

evolutionary endpoint(s) as a function of the trade-off parameter θ. Evolu-44
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tionary branching of dispersal is not possible in the parameter domain under1

consideration.2

Since the two resources are nutritionally equivalent and the environment3

is symmetric in Figure 14, the specialists employing strategy s = 0 encounter4

equivalent environmental conditions as the specialists using strategy s = 1.5

Thus the evolutionary forces influencing dispersal are similar and, therefore, we6

observe only one manifestation of evolutionarily singular dispersal propensity7

even when the population is dimorphic and includes the two specialists (Figure8

14, areas B and C). Furthermore, since β(0) = 0 and β(1) = 1 are independent of9

θ, the trade-off parameter cannot affect the ecological dynamics or the evolution10

of dispersal as long as the metapopulation comprises only devoted specialists11

(the values of θ sufficiently small). Moreover, devoted specialists utilize only the12

resource they are specialized in and do not affect the availabilities of the other13

resource to any extent. This means that specialists using strategy s = 0 do14

not affect the ecological dynamics of the specialists employing strategy s = 1.15

Altogether, the evolution of dispersal invariably occurs under similar conditions16

both in a monomorphic population comprised of devoted specialists using either17

strategy s = 0 or strategy s = 1 and in a dimorphic population comprised of18

the two specialists. Therefore we observe a straight line across areas A, B, and19

C in Figure 14.20

The sizes of the local specialist populations are greatest in the patches where21

the specialists are well-adapted. Since, in our model, dispersal is undirected,22

the dispersing specialists usually have a rather high risk of ending up in a patch23

that is less favorable than the original patch. Thus it is natural that the singular24

dispersal propensity is greatest in area D of Figure 14, where the metapopulation25

consists of unbiased generalists employing strategy s = 0.5 Furthermore, the26

singular dispersal propensity appears in area D as an increasing function of θ.27

This is natural since, for generalists, increasing θ results in an increased value28

for the resource usage effort β for both resources. This increases fecundity and29

speeds up the population growth especially in small local populations which,30

again, makes dispersal more profitable (see equations (1) and (2)).31

Since the trade-off parameter θ measures the additional benefit or cost of32

generalism, one can use the information on the way different parameters affect33

the critical values θ∗1 and θ∗2 to deduce the way changes in different parame-34

ters affect the evolutionary capabilities of the different specialization strategies.35

Nurmi and Parvinen (2008) have shown that, when dispersal propensity has a36

constant value, factors that favor the spread of the generalist strategy (decrease37

both θ∗1 and θ∗2) are decreasing catastrophe probability, increasing fecundity38

and increasing dispersal survival. Nurmi and Parvinen (2008) have also shown39

that increasing the difference between the resource carrying capacities in the40

patches (increasing the environmental heterogeneity) enlarges the parameter41

domain where evolutionary branching of specialization may occur (by decreas-42

ing θ∗1 and increasing θ∗2).We now investigate how these results of Nurmi and43

Parvinen (2008) change when dispersal propensity is not constant, but instead44

evolves as a consequence of natural selection. This means that when calculating45

the critical values of θ, we for each parameter combination assume that disper-46
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sal propensity has obtained the corresponding evolutionarily stable value. In1

Figure 15, we illustrate the way different ecological parameters affect the evo-2

lutionary properties of the generalist strategy in this case. In order to enable3

a simple comparison between the results, we follow exactly the presentation4

structure of Nurmi and Parvinen (2008). The upper row in Figure 15 illustrates5

the critical values of trade-off parameter θ as a function of various ecological6

parameters. The lower row illustrates the corresponding evolutionarily stable7

dispersal propensities. It is noteworthy that the scales of the vertical axes are8

different in each panel on the lower row. Thus only catastrophe probability9

and dispersal survival probability significantly affect the evolutionarily stable10

dispersal propensity.11

The panels in the lower row of Figure 15 tempt one to conclude that the12

evolutionarily stable dispersal propensity of the generalist is always higher than13

the corresponding propensity of the specialist. Even though this conclusion is14

rather natural, it cannot be drawn from these results, since the value of the15

trade-off parameter is different for the black and grey curves.16

The panels in the upper row of Figure 15 are qualitatively similar to those17

presented by Nurmi and Parvinen (2008) in regard to fecundity, environmental18

heterogeneity and dispersal survival. The panel illustrating the effect of a de-19

crease in the catastrophe probability is, however, qualitatively different. Nurmi20

and Parvinen (2008) suggested that decreasing the catastrophe probability fa-21

vors the spread of the generalist strategy, but our results suggest that it enlarges22

the parameter domain where evolutionary branching of specialization may oc-23

cur. This difference is based on the fact that decreasing catastrophe probability24

also decreases the evolutionarily stable dispersal propensity and, consequently,25

further isolates the patches. Thus, even in the cases when branching is not26

possible within a single patch, it is possible at the metapopulation level, be-27

cause due to the increasing isolation each patch can finally be taken over by the28

specialist that is best adapted to the conditions in the patch type concerned.29

When analyzing the evolutionary effects of environmental heterogeneity, one30

resource carrying capacity is kept constant while the other is increased. Besides31

increasing the environmental heterogeneity this also accelerates the local pop-32

ulation growth especially in small local populations. Thus, in the presentation33

structure adopted from Nurmi and Parvinen (2008), the evolutionary effects of34

environmental heterogeneity combine with the effects of fecundity. When we35

analyzed the environmental heterogeneity such that the sum of the carrying36

capacities was kept constant (the analysis is not illustrated), we observed that37

both the singular dispersal propensity and the critical value θ∗1 were virtually38

independent of the heterogeneity, whereas the critical value θ∗2 increased along39

with the environmental heterogeneity. Thus in Figure 15, the observation that40

increasing environmental heterogeneity enlarges the parameter domain in which41

the generalist strategy is evolutionarily attracting and increases dispersal is an42

artefact caused by accelerated local growth. However, the conclusion that in-43

creasing the environmental heterogeneity enlarges the parameter domain where44

evolutionary branching may occur, remains valid.45
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5. Discussion1

5.1. Summary2

We have studied the evolutionary change in a metapopulation context when3

both dispersal propensity and specialization concerning resource usage can evolve4

and are subject to natural selection. We observed that, for all viable parame-5

ter combinations, there is a unique singular dispersal propensity towards which6

natural selection drives the dispersal propensity in a monomorphic population.7

The numerical value of this singular propensity is mainly determined by the8

probability to survive dispersal (π) and the catastrophe probability (c). The9

type of this singular strategy (ESS or a branching point) is, on the other hand,10

mainly determined by the dispersal survival (π), the amount of environmental11

heterogeneity (differences between the resource carrying capacities), and, above12

all, by the evolutionary attractor of the specialization strategy, i.e., whether13

the metapopulation consists of specialists or generalists (determined mainly by14

trade-off parameter θ).15

In the presence of temporal variations (local catastrophes), dispersal affects16

the evolution of specialization in a cumbersome, non-monotonous way (Ronce17

and Kirkpatrick, 2001; Nurmi et al., 2008; Nurmi and Parvinen, 2008). In this18

paper we have shown that allowing also dispersal propensity to evolve as a19

consequence of natural selection greatly clarifies our conception of the evolu-20

tion of specialization in spatially heterogenous models, because it allows us to21

readily focus our analysis on the evolutionarily relevant dispersal propensities.22

Especially the differences between our results and those of Nurmi and Parvinen23

(2008) indicate that, when studying the evolution of specialization also evolution24

of dispersal should be taken into account (see Figure 15).25

The evolutionary simulations we have performed demonstrate that the evo-26

lution of dispersal is usually slower than the evolution of specialization, i.e.,27

evolutionary forces influencing specialization are stronger than those influencing28

dispersal. This phenomenon is rather natural, since the degree of specialization29

always affects reproduction (see Equation (2)). Dispersal affects both the repro-30

duction of the dispersers and the reproduction of those remaining. However, the31

effect on the dispersers’ fecundity depends crucially on how the original patch32

and the target patch differ in terms of quality and crowdedness. Thus it requires33

several generations and dispersal events to be able to observe the average effect34

of dispersal on the dispersers’ fecundity. On the other hand, the fecundity of35

the remaining individuals is increased by dispersals only in crowded patches.36

When two traits are evolving and there are significant differences in the37

strength of the evolutionary forces influencing them, it is even possible that the38

evolution of the faster evolving trait halts the evolution of the other. For exam-39

ple, in Figures 3A, 4B-C, 6B, and 12B-C the evolution of specialization halts40

the evolution of dispersal at the initial phase. This may occur, because when a41

new mutant dispersal propensity comes up, it has initially a very small popu-42

lation size that increases rather slowly even if the mutant is capable to invade43

the population. New mutants usually come up before this mutant population44

has reached a significant size. Consequently, since the mutations affect only one45
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trait at a time, the new mutants usually have a dispersal propensity inherited1

from the initial resident population. If any of these mutants has a specializa-2

tion strategy that is capable to invade the resident, this mutant (carrying the3

original dispersal propensity) will increase rapidly in population size (due to the4

stronger evolutionary forces) and outcompete the other strategies, including the5

one in which the new dispersal propensity results in higher fitness compared to6

the initial resident population. This phenomenon is based on clonal interfer-7

ence. It is possible in our model since there is no pleiotropy or recombination8

(Gerrish and Lenski, 1998).9

However, the core of our results is associated with the trimorphic coexistence10

of generalists and specialists. Such coexistence was first demonstrated in a model11

compiled by Wilson and Yoshimura (1994). In their model, the coexistence was12

found not to be evolutionarily attainable in an initially monomorphic popu-13

lation. In other words, the evolution of an initially monomorphic population14

never leads to the trimorphic coexistence if mutations are assumed small and15

infrequent (Egas et al., 2004). Later on, trimorphic coexistence has been shown16

evolutionarily attainable under cyclic resource dynamics (Abrams, 2006a,b) or17

when the assumptions concerning the consumer behavior are relatively restric-18

tive (Egas et al., 2004). Nurmi and Parvinen (2008) have shown that, even19

though the possibility of trimorphic coexistence is typical to our modeling ap-20

proach, it is never evolutionarily attainable when only specialization can evolve.21

Our results show that when also dispersal can evolve and several patch types22

exist, coexistence becomes evolutionarily attainable even under equilibrium dy-23

namics and in a model that is not customized for this purpose.24

In our model, a typical evolutionary path leading to trimorphic coexistence25

starts with evolutionary branching of dispersal in a metapopulation consist-26

ing of generalist individuals (or in more general, in a metapopulation where27

individuals are not fully specialized). In the consequent competition, the less28

dispersive morph may benefit from specialism, which finally leads to a trimor-29

phic metapopulation comprising one abundantly dispersing generalist and two30

scarcely dispersing specialists. This scenario is rare in environments with only31

two patch types but more common when there are at least three patch types.32

In our model, on the other hand, the local dynamics are determined by33

the Beverton–Holt equation featuring only monotonous convergence to fixed34

points. Cyclic or chaotic local population dynamics may promote evolutionary35

branching of dispersal in a metapopulation model (see e.g. Parvinen (2006) and36

the references therein). Thus it is an interesting task for the future to study the37

joint evolution of specialization and dispersal under non-equilibrium dynamics.38

In general, comparisons between studies focusing on the joint evolution of39

specialization and dispersal are rather cumbersome. There are only few studies40

of this kind and they all focus on different questions from different viewpoints41

(Kisdi, 2002; Hanski and Heino, 2003; Heinz et al., 2009).42

Kisdi (2002) has studied a model of two patches, in which there appears43

adaptation to the different local conditions. Compared to our model, she as-44

sumed the temporal variations to be rather mild: ”good” and ”bad” years that45

occur randomly and independently in each patch. These temporal variations46
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were not influential enough to allow selection for dispersal. Thus, a high degree1

of dispersal or generalism usually appeared only as a response to the competi-2

tion with low-dispersal specialists. This contrasts with our model, in which the3

singular dispersal propensity may take on any value depending on the dispersal4

survival and the catastrophe probability. Moreover, sufficient changes in trade-5

off parameter θ always determine the endpoint of the evolution of specialization6

independent of the other parameter values.7

Heinz et al. (2009) have studied the joint evolution of dispersal distance and8

local adaptation in an environment with a continuously varying character by9

means of individual based simulation models. Their viewpoint is very different10

from ours and this prevents direct comparisons between results. However in11

their model, predictions based on asexual model are, qualitatively speaking,12

principally consistent with the predictions derived from the sexual model.13

Hanski and Heino (2003) have carried out a simulation-based case study14

on the evolution of dispersal and host-plant preference (specialization) among15

Glanville fritillary butterflies Melitaea cinxia. In the model parametrized on16

the basis of observing the actual metapopulation in the Åland Islands in south17

western Finland, the dispersal propensity always evolved to rather low value18

(≈ 0.1). Dispersal dimorphism was not observed, and specialization in a specific19

host plant did not significantly affect the evolution of dispersal. The females20

were predicted to prefer the more abundant host plant in each patch. This21

preference, on the other hand, was strongly affected by the distribution of the22

host plants in the surrounding patch network. However, absolute specialism23

involving the exclusion of the other host plant was never observed. It is an24

interesting task for the future to find out whether our model can be fine-tuned25

to cover the dynamics of Melitaea and used to predict the evolving ecological26

and evolutionary dynamics.27

5.2. Main features and limitations of the modeling approach28

The metapopulation theory concerning the evolution of specialization was29

initiated by Parvinen and Egas (2004), who integrated the context of structured30

metapopulations to the long tradition of habitat specialization models (Levins,31

1962; van Tienderen, 1991; Brown and Pavlovic, 1992; Kisdi, 2002). Tradition-32

ally, habitat specialization models have not rationalized the differences between33

various patches. Nurmi et al. (2008) underpinned these differences by con-34

sidering the distribution of resources. According to them, each patch type is35

characterized by the availability of two resources. Nurmi et al. (2008) studied36

specialization concerning the utilization of resources. Their model is a straight-37

forward generalization of the habitat specialization models in a sense that, it is38

capable to assume any finite number of patch types, but in the case with two39

patch types it is equivalent to the habitat specialization models.40

Once the explicit resource distribution was included in the model, there41

arose a need for modeling their dynamics as well. Therefore, Nurmi and Parvi-42

nen (2008) underpinned the metapopulation dynamics with a continuous-time43

resource–consumer dynamics adopted from Geritz and Kisdi (2004), and com-44

menced to study the evolution of specialization concerning resource utilization.45
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The model used in this paper was the same as the one analyzed by Nurmi1

and Parvinen (2008), except that here we assumed also dispersal to evolve as2

consequence of natural selection.3

A spatial structure, either explicit or implicit, is a necessity for any model4

that involves dispersal. Mere spatial variation is not, however, a sufficient con-5

dition for evolution to favor dispersal. Instead, spatial heterogeneity usually6

hinders dispersal, especially if the population is capable to adapt to local con-7

ditions. This is because the population size is at its largest value in the patches8

to which the species is best adapted and, in consequence, the dispersers risk mi-9

grating to a less favorable habitat (Gadgil, 1971; Hastings, 1983; Parvinen, 1999;10

Gyllenberg et al., 2002). Previous studies have shown that, in addition to local11

adaptation and spatial variation, the main factors influencing the evolution of12

dispersal include temporal variations, kin selection, inbreeding avoidance, direct13

costs of dispersal, and interspecific interactions (see e.g. Clobert et al. (2001)14

and the related references).15

The temporal variations in our model occur rather drastically in the form of16

catastrophes eradicating entire local populations. More subtle manifestations of17

variation would probably incline the evolution towards a lower dispersal propen-18

sity. Our results agree with the general conception according to which increasing19

the frequency of environmental disturbances (catastrophes) increases dispersal20

provided that the ecological parameters are not close to the viability boundaries.21

Also spatial heterogeneity and direct costs of dispersal are integral parts of all22

structured metapopulation models. Our results contribute to the general knowl-23

edge by pointing out that the costs of dispersal combined with local adaptation24

substantially determine whether dispersal branching is possible.25

Even though we explicitly model the population dynamics in each patch,26

our model is not adequate for the analysis kin selection. In a model with finite27

local populations, each dispersing individual benefits those relatives that do not28

disperse by reducing crowding in the patch. However, we assume that the local29

populations are large (i.e., the local population dynamics are described deter-30

ministically). Thus in the initial phase of an invasion, the effect of a mutant31

population on the population dynamics is ignorable even locally. Thus a dis-32

persing mutant is not able to benefit those relatives that do not disperse. Also33

inbreeding depression is, unfortunately, beyond the scope of this model since34

the related evolutionary analysis is based on the adaptive dynamics approach35

that assumes a rather simple genetic architecture and clonal reproduction.36

Enabling the analysis of inbreeding depression is not the only reason that37

encourages one to, in the future, extend this model to cover sexual reproduction38

and more complicated genetic architectures. There are several studies suggest-39

ing that the phenotypic models of evolution, to some extent, enable one to40

predict the course of evolution also in sexually reproducing populations (May-41

nard Smith, 1981; Weissing, 1996; Taylor, 1996; Heinz et al., 2009). The major-42

ity of these studies, however, focuses on models lacking a spatial structure. In43

metapopulation models, the situation is complicated by the fact that a globally44

rare mutant may simultaneously be locally prevailing in some patches. There-45

fore the possible existence of mutant homozygotes should not be ignored in the46
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invasion analysis, either (Ravigné et al., 2006; Parvinen and Metz, 2008). On1

the other hand, a spatially heterogenous population structure may assist the2

appearance of assortative mating, which together with disruptive selection may3

enable sympatric speciation (Dieckmann and Doebeli, 1999; Geritz and Kisdi,4

2000).5

Whereas the evolution of dispersal always takes place in the balance be-6

tween the costs and benefits of dispersal, the trade-off between the abilities7

of an individual to consume different resources needs to be explicitly modeled8

(Joshi and Thompson, 1995; Fry, 1996). The ecological discrete-time dynam-9

ics in our model have mechanistic underpinnings in continuous-time resource–10

consumer dynamics except for trade-off parameter θ determining the shape (con-11

vexity/concavity) of the trade-off function that crucially affects the evolution-12

ary dynamics of specialization. Unfortunately, mechanistic determination of the13

trade-off function is possible only in a specific ecological setting, not generally.14

In our model, only the case featuring a linear trade-off (θ = 0) offers a mech-15

anistic biological interpretation. According to it, trade-offs arise purely from a16

search-time allocation between the two resources. In this case the evolution of17

specialization in a monomorphic population always leads to generalism forming18

either an evolutionary endpoint or a branching point. Our modeling approach19

favors generalists as dispersal occurs randomly, i.e., dispersers are not able to20

choose their target patches. Including different manifestations of habitat selec-21

tion might benefit specialists and enable evolution leading to a monomorphic22

specialist population even in the case of a linear trade-off (Ravigné et al., 2009).23

Even though we studied the joint evolution of two different traits, we did24

not explicitly consider the genetic linkage or epistasis, because the genetic ar-25

chitecture we assumed was too simple for a rational study of these subjects.26

Since we assumed that the inheritance was clonal and that mutations only af-27

fected only one trait at a time, we indeed assumed a complete genetic linkage28

between the two traits. On the other hand, since we assumed that the two29

traits could evolve independently and that all different trait combinations were30

possible, pleiotropy could not affect the evolutionary dynamics. The adaptive31

dynamics approach also provides tools for the analysis of the case where both32

traits could evolve simultaneously. Leimar (2001, 2009) has shown that in this33

case, different mutational variance–covariance structures and fitness interactions34

may crucially affect the evolutionary dynamics. Furthermore, Ravigné et al.35

(2009) have shown that the joint evolution of habitat specialization and habi-36

tat selection may crucially affect the specialization process. In their model the37

possibility of pleiotropic mutations promoted evolutionary branching of special-38

ization. Pleiotropy presumably has a resembling effect also in our model. This39

effect, however, is likely milder since habitat selection is expected to have much40

stronger effect on specialization than randomly targeted dispersal. Pleiotropy41

might, as well, promote the evolution to the trimorphic coexistence of specialists42

and a generalist. Unfortunately, when mutations do not occur independently43

or do not affect only one trait at a time, it is difficult find any general results44

concerning the evolutionary dynamics and, above all, it is no longer possible to45

fully illustrate different evolutionary scenarios by plotting the fitness gradient46
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isoclines. Especially, pleiotropy may affect the invadability of a singular strat-1

egy: a singular strategy that is uninvadable by mutants with either different2

dispersal propensity or different specialization strategy may be invadable by a3

mutant different both in dispersal and specialization (Leimar, 2001). On the4

other hand, even the case without pleiotropy involves the main features of the5

joint evolution we wish to present here. Therefore, we postpone dealing with6

pleiotropic mutations to our future research.7

A. Simulation procedure8

We run evolutionary simulations in an environment consisting of 1000 patches.9

The procedure is as follows:10

1. Iterate the metapopulation dynamics for 1000 generations.11

2. Remove all the strategies the metapopulation size of which has decreased12

below 25 percent of the size initial size at the time the mutant entered the13

metapopulation. These strategies are considered extinct.14

3. If the number of strategies in the metapopulation is larger than 25, go15

back to step 1. In order to speed up the simulation we limit the number16

of coexisting strategies to 25.17

4. Pick one strategy that will mutate. The probability to pick a certain18

strategy is determined by the strategy’s metapopulation size divided by19

the total metapopulation size.20

5. Toss a coin to decide, whether the mutation will affect dispersal propensity21

or specialization.22

6. Pick the size of the mutation using normal distribution, the expectation23

being zero and the standard deviation 0.012. It is plausible to use the24

same distribution for both traits since they receive values from the same25

interval [0, 1].26

7. Check that the new strategy belongs to the strategy space and differs27

sufficiently from the present strategies, i.e., the Euclidian distance between28

the strategies in the (e, s)-plane is at least 0.006. If not, continue from29

step 4.30

8. Continue from step 1.31
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Figure 5: Two evolutionary simulations with identical ecological and evolutionary parameters
and the same initial state (e = 1, s = 0.19). The simulations have different evolutionary
endpoints because of random mutations. The parameter values identical with the ones in
Figure 1C.
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Figure 6: Panel A illustrates the strategies present in the metapopulation as a function of
evolutionary time. Grey curve = the specialization component s of the strategy, black curve =
the dispersal component e. Each dot in Panels B-I represents a strategy that has been present
in the metapopulation during the corresponding evolutionary time interval. The vertical axis
illustrates the dispersal propensity e and the horizontal axis illustrates specialization s. The
arrows in Panels B-I indicate the direction of evolution. The initial strategy (e, s) = (1, 1).
The simulation ended in a trimorphic population using strategies (e, s) ≈ (0.2, 0.5), (0.1, 0.1)
and (0.1, 0.9). The other parameter values correspond to the ones in Figure 1G.
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Figure 7: Locally symmetric environments: Strategies present in the metapopulation during
an evolutionary simulation. Grey curves = the specialization component s of the strategy,
black curves = the dispersal component e. The parameter values are the same as in the
corresponding panels in Figure 2. Initial strategy (e, s) = (0.05, 0.05).
Panel A: The simulation ends up in a quadrimorphic population using strategies (e, s) ≈
(0.44, 0), (0.44, 1), (0.07, 0) and (0.07, 1).
Panel B: The simulation ends up in a dimorphic population using strategies (e, s) ≈ (0.07, 0.5)
and (0.44, 0.5).
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Figure 8: Panel A illustrates the strategies present in the metapopulation as a function of
evolutionary time. Grey curve = the specialization component s of the strategy, black curve =
the dispersal component e. Each dot in Panels B-F represents a strategy that has been present
in the metapopulation during the corresponding evolutionary time interval. The vertical axis
illustrates the dispersal propensity e and the horizontal axis illustrates specialization s. The
arrows in Panels B-F indicate the direction of evolution. The initial strategy (e, s) = (0.1, 0.1).
The simulation ended in a trimorphic metapopulation using strategies (e, s) ≈ (0.1, 0), (0.1, 1)
and (0.8, 0.5). The other parameter values correspond to the ones in Figure 2C.
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Figure 9: Type of the singular dispersal propensity (ESS or a branching point) as a func-
tion of catastrophe probability c and dispersal survival π in a metapopulation consisting of
unbiased generalists. Different curves correspond to different resource distributions. Above
the curves the singular dispersal propensity is a branching point and below an ESS. Curves
drawn with same style correspond to cases with same fraction of patches acting as sources in
the metapopulation dynamics. Column K∗ = the average resource carrying capacity in the
corresponding patch type (same for both resource in symmetric environments). The other
parameter values are θ = 0.1 and λ = 3.

36



D
is

p
er

sa
l
p
ro

p
en

si
ty

A) θ = −3 B) θ = −1

0.5

0.50
0.01

1

1

0.5

0.50
0.01

1

1

C) θ = 1 D)

0.5

0.50
0.01

1

1

0.5

0.50
0.01

1

1

E) F)

0.5

0.50
0.01

1

1

0.5

0.50
0.01

1

1

Specialization
Figure 10: Asymmetric environments comprising two patch types: Evolutionarily
singular specialization strategies as a function of dispersal propensity (horizontal axis) and
singular dispersal propensity as a function of specialization (vertical axis). Thick black curve
= CSS, thick grey curve = branching point, thin black curve = evolutionary repellor. (A-D):
swapped carrying capacities in patches types with asymmetric proportions. Other parameter
values in Panels A, B and C: c = 0.05, π = 0.8, λ = 3, K1

1
= K2

2
= 3, K2

1
= K1

2
= 1

and p1 = 0.1, p2 = 0.9, Panel D: c = 0.1, π = 0.99, θ = 0.1, λ = 1.5, K1

1
= K2

2
= 10,

K2

1
= K1

2
= 1, p1 = 0.2, and p2 = 0.8.

(E-F) non-swapped carrying capacities in patch types with equal proportions (p1 = p2 = 0.5).
Panel E: π = 0.98, θ = −1, K2

1
= 2, and K2

2
= 3. Panel F: π = 0.99, θ = 0.01, K2

1
= 3, and

K2

2
= 4. Common parameter values in panels E and F: c = 0.05, λ = 3, K1

1
= 2, K1

2
= 1.
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Figure 11: Panel A illustrates the strategies present in the metapopulation as a function of
evolutionary time. Grey curve = the specialization component s of the strategy, black curve =
the dispersal component e. Each dot in Panels B-G represents a strategy that has been present
in the metapopulation during the corresponding evolutionary time interval. The vertical axis
illustrates the dispersal propensity e and the horizontal axis illustrates specialization s. The
arrows in Panels B-G indicate the direction of evolution. The initial strategy (e, s) = (0.1, 0.1).
The simulation ended in a trimorphic population using strategies (e, s) ≈ (0.25, 0), (1, 0.4)
and (0.1, 1). The other parameter values correspond to the ones in Figure 10D.
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Figure 12: Panel A illustrates the strategies present in the metapopulation as a function of
evolutionary time. Grey curve = the specialization component s of the strategy, black curve =
the dispersal component e. Each dot in Panels B-G represents a strategy that has been present
in the metapopulation during the corresponding evolutionary time interval. The vertical axis
illustrates the dispersal propensity e and the horizontal axis illustrates specialization s. The
arrows in Panels B-G indicate the direction of evolution. The initial strategy (e, s) = (1, 1).
The simulation ended in a trimorphic population using strategies (e, s) ≈ (0.1, 0), (0.65, 0)
and (0.67, 1). Parameter values correspond to the ones in Figure 10E.
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Figure 13: Panel A illustrates the strategies present in the metapopulation as a function of
evolutionary time. Grey curve = the specialization component s of the strategy, black curve =
the dispersal component e. Each dot in Panels B-G represents a strategy that has been present
in the metapopulation during the corresponding evolutionary time interval. The vertical axis
illustrates the dispersal propensity e and the horizontal axis illustrates specialization s. The
arrows in Panels B-G indicate the direction of evolution. The initial strategy (e, s) = (1, 1).
The simulation ended in a dimorphic population using strategies (e, s) ≈ (0.82, 0.55) and
(0.1, 0.09). Parameter values correspond to the ones in Figure 10F.
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Figure 14: Evolutionarily singular dispersal propensity as a function of trade-off parameter
θ. In area A, the evolution of specialization leads to a monomorphic specialist population
(Figures 1A and 3A), whereas in area C, it ends in a dimorphic population employing the
two fully specialized strategies (Figures 1E and 3C). In area B, the evolution of specialization
leads to a population including either one or two of the specialists depending mainly on the
initial state (Figures 1C and 5). In area D, the evolution of specialization leads to a generalist
population (Figures 1I and 3D). Parameter values c = 0.05, π = 0.8, λ = 3, K1

1
= K2

2
= 3,

K2

1
= K1

2
= 1 and p1 = p2 = 0.5 are the same as in the left column of Figure 1.
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Figure 15: The panels in the upper row illustrate the critical values of the trade-off parameter
θ as a function of different ecological parameters when dispersal propensity has the corre-
sponding evolutionarily stable value. In area A, the generalist strategy is an evolutionary
endpoint, in area B, it is a branching point and, in area C, it is an evolutionary repellor.
The curve separating areas C and B stands for the critical value θ∗

1
and the curve sepa-

rating areas B and A stands for the critical value θ∗
2

as a function of the parameter under
consideration. The panels in the lower row illustrate the evolutionarily singular dispersal
propensity as a function of different ecological parameters in a metapopulation consisting of
generalist individuals (θ = 1, black curve) and in a monomorphic metapopulation consist-
ing of devoted specialists (θ = −3, grey curve). The thick curve indicates that the singular
strategy is an evolutionary endpoint, and thin curve indicates that evolutionary branching
of dispersal may occur. In the analysis of the effect of environmental heterogeneity, we
determine that K2

1
= K1

2
= 1 and K1

1
= K2

2
= a and that a varies between 1 and 11.

The parameters not under consideration as bifurcation parameters have the following values:
c = 0.05, λ = 3, K1

1
= K2

2
= 3, K1

2
= K2

1
= 1, p1 = p2 = 0.5, π = 0.8.
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