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We study the joint evolution of dispersal and specialization concerning resource usage in a mechanistically underpinned structured discrete-time metapopulation model. We show that dispersal significantly affects the evolution of specialization and that specialization is a key factor that determines the possibility of evolutionary branching in dispersal propensity. Allowing both dispersal propensity and specialization to evolve as a consequence of natural selection is necessary in order to understand the evolutionary dynamics. The joint evolution of dispersal and specialization forms a natural evolutionary path leading to the coexistence of generalists and specialists. We show that in this process, the number of different patch types and the resource distribution are essential.

Introduction

During the last decades, research has been active both in the field of the evolution of dispersal (see e.g. reviews by [START_REF] Johnson | Evolution of Dispersal: Theoretical Models and Empirical Tests Using Birds and Mammals[END_REF]; [START_REF] Levin | The Ecology and Evolution of Seed Dispersal: A Theoretical Perspective[END_REF] and [START_REF] Ronce | How Does It Feel to Be Like a Rolling Stone? Ten Questions About Dispersal Evolution[END_REF]) and in that of the evolution of specialization (see e.g. reviews by [START_REF] Futuyma | The evolution of ecological specialization[END_REF] and [START_REF] Ravigné | Live Where You Thrive: Joint Evolution of Habitat Choice and Local Adaptation Facilitates Specialization and Promotes Diversity[END_REF]). However, only few studies have focused on the case in which both of the traits can evolve and are subject to natural selection [START_REF] Kisdi | Dispersal: Risk Spreading versus Local Adaptation[END_REF][START_REF] Hanski | Metapopulation-level Adaption of Insect Host Plant Preference and Extinction-Colonization Dynamics in Heterogeneous Landscapes[END_REF][START_REF] Heinz | Speciation and the evolution of dispersal along environmental gradients[END_REF]. The lack of this type of studies has a natural explanation: in order to analyze dispersal, one has to use spatially structured models, which notably complicates the analysis of specialization. Nowadays, the adaptive dynamics approach [START_REF] Metz | How Should We Define Fitness for General Ecological Scenarios?[END_REF][START_REF] Geritz | Evolutionary Singular Strategies and the Adaptive Growth and Branching of the Evolutionary Tree[END_REF][START_REF] Durinx | Adaptive dynamics for physiologically structured population models[END_REF] provides us with tools suitable for a systematic analysis of the course of mutation limited, frequency and density dependent phenotypic evolution, also in the case of spatially structured ecological models [START_REF] Gyllenberg | On Fitness in Structured Metapopulations[END_REF][START_REF] Metz | How Should We Define Fitness in Structured Metapopulation Models? Including an Application to the Calculation of Evolutionarily Stable Dispersal Strategies[END_REF][START_REF] Parvinen | Evolution of dispersal in a structured metapopulation model in discrete time[END_REF].

Intuitively, one might expect that the interplay between the evolution of dispersal and the evolution of specialization is rather simple: the scarcely dispersing phenotype should benefit from specialism and adaptation to local conditions whereas the amply dispersing phenotype should benefit from generalism and capability to deal with different local conditions. Recent studies in the field of the evolution of specialization have shown, however, that this is not the whole truth. Instead, even non-monotonous relationships seem to be possible [START_REF] Ronce | When sources become sinks: Migrational meltdown in heterogeneous habitats[END_REF]Nurmi et al., 2008;Nurmi and Parvinen, 2008).

Therefore it is not possible to fully understand the evolution of specialization without studying the evolution of dispersal. Nurmi and Parvinen (2008) studied the way different ecological factors in a metapopulation affect the evolution of specialization when consumers face a trade-off between the abilities to consume two different resources. We expand their analysis by allowing dispersal to evolve as a consequence of natural selection.

In this paper we concentrate on presenting general ideas and results concerning the way different ecological factors affect the joint evolution of dispersal and specialization. We do not use any specific real population to estimate parameter values, but instead try to reveal all the significant evolutionary phenomena in the entire biologically realistic parameter domain. Correspondingly, we do not employ any explicit spatial patch configuration, but instead use global migration via a disperser pool. This also allows us to use an explicit algebraic expression for the invasion fitness.

Our model applies to several realistic biological systems. For example, several species of Lepidoptera seek for sodium in a behavior known as puddling.

Lepidoptera can use a variety of sodium sources (e.g. mud puddles, dung and carrions), and different species show different patterns of specialization concerning the use of resources [START_REF] Smedley | Sodium Uptake by Puddling in a Moth[END_REF][START_REF] Boggs | Resource Specialization in Puddling Lepidoptera[END_REF].

Naturally, these sources differ in their sodium levels and the amount of energy required to extract a unit of sodium. However, to illuminate the differences between generalists and specialists, we assume that there are two equivalent resources. Our modeling approach readily includes the possible occurrence of energetically different resources, but the inclusion of more than two resources would require a different approach. In the modeling of the population dynamics of Lepidoptera, structured metapopulation models are useful tools, since several Lepidoptera species live in fragmented landscapes in which extinction prone local populations are connected via dispersal [START_REF] Harrison | Spatial Dynamics of a Patchily Distributed Butterfly Species[END_REF]. Furthermore, our modeling approach enriches the Levins' type metapopulations with explicit resource distributions and dynamics; a step considered necessary for the conservation biology of butterflies by [START_REF] Dennis | Habitats and resources: the need for a resource-based definition to conserve butterflies[END_REF]. Another and more specific example of a biological system that fits the framework of our model consist of Glanville Fritillary butterflies (Melitaea Cinxia).

In Finland, these butterflies have been discovered to use two host plant species and to employ different patterns of specialization concerning the usage of the resources [START_REF] Hanski | Extinction-Colonization Dynamics and Host-Plant Choice in Butterfly Metapopulations[END_REF][START_REF] Hanski | Metapopulation-level Adaption of Insect Host Plant Preference and Extinction-Colonization Dynamics in Heterogeneous Landscapes[END_REF].

The metapopulation model

We analyze the same discrete-time model as Nurmi and Parvinen (2008), where

• The landscape consists of infinitely many spatially distinct habitat patches.

Each patch supports a local population and two nutritionally equivalent resources.

• The local between-season dynamics are mechanistically derived [START_REF] Geritz | On the mechanistic underpinning of discretetime population models with complex dynamics[END_REF]) from a within-season resource-consumer model with the two resources. Deterministic population dynamics consist of clonal reproduction, emigration, immigration and mortality.

• Local disasters occur randomly. A disaster wipes out the entire local population but leaves the patch habitable. Catastrophes affect only the consumer populations, not the resources.

The mechanistic underpinnings of the metapopulation dynamics enables us to base the analysis of the evolutionary dynamics directly on the individual-level traits [START_REF] Rueffler | Evolutionary Predictions Should Be Based on Individual-Level Traits[END_REF]. We will next only briefly review the derivation of the metapopulation model. We urge interested readers to consult the articles by [START_REF] Geritz | On the mechanistic underpinning of discretetime population models with complex dynamics[END_REF] and by Nurmi and Parvinen (2008) for the details of the derivation.

Mechanistic derivation of the local between-season dynamics

The within-season dynamics applies to species that hatch at the beginning of a season, migrate to a new patch with probability e, use local resources to produce eggs that also encounter mortality during the breeding season. At the end of the breeding season, all adults perish and only a fraction of the eggs survives to the following season.

In the absence of consumers, continuous-time within-season dynamics of resource i in patch type m are determined by the chemostat dynamics with carrying capacity K m i , i.e.,

Ṙm i = α 1 - R m i K m i ,
where R m i denotes the density of the resource. One can set parameter α equal to one by scaling the other parameters, see the Appendix by Nurmi and Parvinen (2008) for details. Furthermore, we assume that there is only a finite number of patch types differing from each other only in the carrying capacities of the resources.Consumers differ only in their strategy vectors (e, s), where e ∈ (0, 1] denotes the probability that an individual decides to emigrate after hatching.

An individual survives dispersal with probability π (independent of e). Furthermore, s ∈ [0, 1] stands for the individual's degree of specialization such that s = 1 corresponds to a devoted specialist using only resource 1, s = 0 to a devoted specialist using only resource 2, and s = 0.5 corresponds to an unbiased generalist. A local population with strategy e = 0 (no dispersal) is not viable since local catastrophes are liable to make this population extinct in the long run. We assume that mutations may affect only one trait (either specialization or dispersal) at a time. The two traits can evolve independently, and all kinds of trait combinations are possible (no pleiotropy). These assumptions allow us to deduce the qualitative course of evolution using fitness isocline plots (see, e.g., Figure 1), which is generally not possible for more complicated mutational variance-covariance structures [START_REF] Leimar | Evolutionary Change and Darwinian Demons[END_REF][START_REF] Leimar | Multidimensional convergence stability[END_REF].

Consumers with strategy (e, s) use type i resource with effort β i (s) according to the law of mass action. Since the resources are nutritionally equivalent, we assume that there exists such an increasing function

β that β(0) = 0, β 1 (s) = β(s) and β 2 (s) = β(1 -s).
It is possible, by scaling the other parameters appropriately, to determine (without loss of generality) that β(1) = 1. Whenever an explicit definition of the function β is necessary, we define that

β(s) = 1 -exp(-θs) 1 -exp(-θ) , θ = 0. ( 1 
)
This formula is not defined for θ = 0, but since lim θ→0 β(s) = s, it is natural to define that β(s) = s when θ = 0. The trade-off parameter θ determines whether the trade-off function (i.e., the resource consumption function) β is concave (θ > 0), convex (θ < 0) or linear (θ = 0). If it is linear, the trade-off function β(s) = s can be mechanistically interpreted, for example, resulting from search time allocation between the two resources. In case θ = 0, we have not found any mechanistic explanation for the form of the function β. We simply use negative values of θ to phenomenologically model the situations with an additional cost of generalism and positive values of θ to model the situations with an additional benefit of generalism.

Moreover, we assume that there occurs no within-season adult mortality and that the resource dynamics are fast compared to the consumer population dynamics, i.e., the resource population is always at the quasi-equilibrium determined by the consumer population sizes. This allows us to derive the following Beverton-Holt type fecundity function for a type j consumer who employs strategy (e j , s j ) and lives in a patch of the type m in a time step n:

f m (s j , Φ, X n ) = λβ(s j )K m 1 1 + K m 1 h β(s h )x (h) n + λβ(1 -s j )K m 2 1 + K m 2 h β(1 -s h )x (h) n , (2) 
where

Φ = e 1 s 1 , e 2 s 2 , • • • , e k s k
is a vector comprising the strategies employed in the patch and

X n = (x (1) n , x (2) n , . . . , x (k)
n ) is a vector comprising the corresponding population sizes in time step n. Parameter λ determines the intrinsic growth rate of consumers, i.e., how much eggs can a consumer produce with certain amount of nutrients gained from the two resources.

Metapopulation dynamics

The local populations interact only by means of dispersal, which takes place via a common disperser pool. In this process emigrants enter the disperser pool, after which all individuals that survive dispersal are distributed evenly to all patches regardless of their quality or spatial configuration.Let D j n to denote the average per patch number of type j dispersers at time step n (disperser pool size of type j dispersers), we can finally determine the actual dynamics of the local population size x j n of type j consumers employing strategy (e j , s j ) in a patch type m in the metapopulation model as

x j n+1 = C(n + 1)(1 -e j )f m (s j , Φ, X n )x j n + πD j n , (3) 
where C(n + 1) is a random variable drawn from the Bernoulli distribution with parameter c (catastrophe probability), i.e., C(n+1) = 1, if the local population avoids catastrophes in time step n (probability 1 -c), 0, if there occurs a local catastrophe after time step n (probability c).

Note that catastrophes occur between the breeding seasons, and the event of a catastrophe taking place in a specific patch is independent of other patches.

When a catastrophe occurs, it wipes out the entire local population (all eggs).

In the following season, a new local population is established by immigrants.

In principle, we can for each time step calculate D j n by summing up the amount of type j disperser produced by each patch (e j x j n ). In practice, however, the actual calculation of D j n in this way is rather demanding. Fortunately, as we focus only on metapopulations featuring a globally attracting fixed point equilibrium, we can neglect this calculation and solve D j n from a fixed point equation. In the fixed point D j n has a constant value D j and this value must be such that once a disperser enters a local population it and its descendants will on average produce exactly one new successful disperser.

We can derive an explicit formula for the invasion fitness of a rare mutant in this population model. This derivation follows the guidelines given by Gyllenberg and Metz (2001) (continuous-time models) and [START_REF] Parvinen | Evolution of dispersal in a structured metapopulation model in discrete time[END_REF] (adaptation to discrete-time models). However, this formula is rather lengthy and thus we prompt the reader to consult Nurmi and Parvinen (2008).

We carry out most of the analysis in an environment that is symmetric in a sense that for each patch type with a certain combination of carrying capacities there exists an equally common patch type with swapped carrying capacities.

In this case, the unbiased generalist strategy is always a singular specialization strategy, i.e., there is no directional natural selection acting on the specialization component of the strategy. In a symmetric environment, it is easy to point out the differences between generalists and specialists and observe how different ecological factors affect the evolutionary dynamics.

Results for one evolving trait

Both the evolution of specialization and the evolution of dispersal obey some rules that are independent of the other component of the strategy vector. To obtain a general overview of the course of the evolution in our model, we first describe these independent components.

The evolution of specialization

The results we review here have been presented by Nurmi and Parvinen (2008). They are valid for any positive dispersal propensity e.

In a symmetric environment, the unbiased generalist strategy s = 0.5 is always a singular strategy. The specialist strategies s = 0 and s = 1 are boundaries of the strategy space. Thus the evolutionary uninvadability coincides with the evolutionary attractivity.

The evolutionary dynamics of specialization are dominated by trade-off parameter θ, which measures the cost/benefit of generalism (see Equations ( 1) and ( 2)). For low values of θ, the evolutionary dynamics of specialization always converge to a specialist strategy. As θ increases, the generalist strategy first turns from an evolutionary repellor into a branching point. Two evolutionarily repelling non-generalist singular strategies appear, but the specialist strategies still remain evolutionarily attracting. As θ increases further, the non-generalist singular strategies diverge further from the generalist strategy and finally leave the strategy space, after which the evolution of specialization converges to the generalist strategy independently of the initial state and evolutionary branching takes place. For even greater values of θ the generalist strategy becomes an evolutionary endpoint. Nurmi and Parvinen (2008) found no parameter combinations such that both the generalist strategy and the specialist strategies would appear simultaneously as evolutionary endpoints in a monomorphic population.

Altogether, there are two critical values of θ:

• At θ * 1 , the generalist strategy turns from an evolutionary repellor into a branching point.

• At θ * 2 , the generalist strategy turns from a branching point into an evolutionary endpoint (ESS)

According to Nurmi and Parvinen (2008), θ * 2 is for most parameter combinations located in the neighborhood of zero, which corresponds to linear trade-off.

Whenever evolutionary branching occurs (θ * 1 < θ < θ * 2 ), the population becomes dimorphic. Usually the evolutionary dynamics of a dimorphic population end in the combination of the two extreme specialists s 1 = 0 and s 2 = 1.

This again is a boundary of the strategy space and thus also an evolutionary endpoint. However, when θ is only slightly smaller than θ * 2 , the evolutionary dynamics of a dimorphic population end in a singular strategy pair (s 1 , s 2 ), in which 0 < s 1 < 1 and s 2 = 1 -s 1 (in a symmetric environment). Whenever this singular strategy pair is reached in an evolutionary process starting from a monomorphic population it is an evolutionary endpoint and further branching of specialization in the dimorphic population is not possible. We urge interested readers to consult the article by Nurmi and Parvinen (2008) for further information.

The evolution of dispersal

Evolution of dispersal in our model has not been studied previously, but our findings are qualitatively similar to those by [START_REF] Parvinen | Evolution of dispersal in a structured metapopulation model in discrete time[END_REF] based on a Ricker-model without specialization. The results we present here are valid for any specialization strategy s.

Trade-off parameter θ dominated the evolution of specialization, whereas it affects the evolution of dispersal mostly indirectly by setting the evolutionary attractor of the specialization strategy. In a monomorphic population, our model has only a single evolutionarily singular dispersal propensity, which is always evolutionarily attracting. The numerical value of this propensity is primarily determined by catastrophe probability c and probability π of surviving dispersal. The higher the probability π, the higher the singular dispersal propensity.

When there remains any risk of dispersal (π < 1), the catastrophe probability affects the singular dispersal propensity in a non-monotonous way: in the absence of catastrophes (c = 0), all local populations stay at the fixed point of Equation ( 3) and thus the strategy not to disperse is an evolutionarily attracting singular strategy, as proved by [START_REF] Parvinen | Evolution of dispersal in a structured metapopulation model in discrete time[END_REF]. As the catastrophe probability increases, the singular dispersal propensity increases in the beginning, too. This is due to the fact that catastrophes result in empty patches, which make dispersal profitable. As the catastrophe probability increases further, most individuals find themselves in sparsely populated patches with plenty of resources. This decreases the advantages of dispersal and causes the singular dispersal propensity to diminish. The value of the singular dispersal propensity reaches zero again at the threshold where the metapopulation loses its viability.

This phenomenon has been observed also by, for example [START_REF] Ronce | Evolutionarily stable dispersal rates do not always increase with local extinction rates[END_REF]; [START_REF] Gyllenberg | Evolutionary Suicide and Evolution of Dispersal in Structured Metapopulations[END_REF] and [START_REF] Parvinen | Evolution of dispersal in a structured metapopulation model in discrete time[END_REF]. In this paper, we focus mainly on the domain in which the singular dispersal propensity appears as an increasing function of the catastrophe probability.

Various mechanisms resulting in evolutionary branching or polymorphisms of dispersal have been observed in different metapopulation models. These mechanisms include temporal variation in form of cyclic [START_REF] Doebeli | Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space[END_REF][START_REF] Parvinen | Evolution of migration in a metapopulation[END_REF] or chaotic [START_REF] Holt | Chaotic population dynamics favors the evolution of dispersal[END_REF] local population dynamics, or temporally and spatially varying carrying capacities [START_REF] Mcpeek | The Evolution of Dispersal in Spatially and Temporally Varying Environments[END_REF][START_REF] Mathias | Divergent Evolution of Dispersal in a Heterogeneous Landscape[END_REF]. However, catastrophes alone, have been observed not to create enough temporal variation to promote branching. For example, [START_REF] Gyllenberg | Evolutionary Suicide and Evolution of Dispersal in Structured Metapopulations[END_REF] did not find evolutionary branching in a structured metapopulation model defined in continuous time with one patch type. [START_REF] Parvinen | Evolutionary Branching of Dispersal Strategies in Structured Metapopulations[END_REF] studied the corresponding model with several patch types, and observed that catastrophes together with spatial heterogeneity in the sense of different patch types can result in evolutionary branching of dispersal. The necessary level of spatial heterogeneity can be obtained with differences in growth conditions alone, as well as with differences in catastrophe rates alone. A similar observation in a metapopulation model with small local populations, and thus locally stochastic population dynamics, was made by [START_REF] Parvinen | Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity[END_REF] [START_REF] Parvinen | Evolutionary Branching of Dispersal Strategies in Structured Metapopulations[END_REF]. An unbiased generalist regards the two resources as identical and therefore it observes no difference between two patches with swapped resource carrying capacities (K

1 1 = K 2 2 and K 1 2 = K 2 1 ).
The reasoning above together with our numerical results let us conjecture that evolutionary branching of dispersal is not possible in a metapopulation comprising unbiased generalist individuals in an environment comprising two patch types with swapped carrying capacities. For a specialist, evolutionary branching of dispersal in such an environment is possible (Figures 1B and3B).

Joint adaptive dynamics of specialization and dispersal

Evolutionary scenarios in a symmetric environment comprising two patch types

In this section, we analyze the case in which both of the aforementioned traits can evolve and are subject to natural selection.

As mentioned above, we are able to derive an explicit algebraic formula for the fitness function of the model. We have not found means for mathematical analysis of this formula. Instead, all our results concerning the evolution of a monomorphic population rely on numerical analysis of this formula. We illustrate the course of evolution by showing the fitness gradient isoclines of dispersal and specialization: we plot the evolutionarily singular dispersal propensities as a function of the specialization strategy on the vertical axis together with the singular specialization strategies as a function of the dispersal propensity on the horizontal axis. From these isocline plots, we deduce the way dispersal and specialization evolve in a monomorphic population.

Although it is, in principle, possible to solve polymorphic singular strategies numerically, it is more illustrative to follow the course of the evolution starting from a monomorphic population. The expected course of evolution in the case in which mutations would be infinitesimally small could be analyzed by using the canonical equation of adaptive dynamics [START_REF] Dieckmann | The Dynamical Theory of Coevolution: A Derivation from Stochastic Ecological Processes[END_REF]. In this paper, however, we illustrate evolution in a polymorphic population by using evolutionary simulations that include the effects of mutational stochasticity (see Appendix).

From the evolutionary simulations, we can deduce the evolutionary endpoints, and use the speed at which the evolution of dispersal and specialization proceeds to compare the strengths of the evolutionary forces influencing these traits. This is possible, because we run our simulations with identical evolutionary parameters (mutation rate, expected size and variance of the mutations etc.)

for dispersal and specialization. The simulations we present are not individual based, instead, they result from repeated iterations of the metapopulation dynamics and infrequent insertions of new mutants employing a strategy close to one of the resident strategies. See Appendix for the description of the simulation procedure. The evolutionary time on the horizontal axis of the simulation figures is an abstract concept only applicable to comparison between the times that are needed to obtain different evolutionary endpoints.

Figures 1 and 2 illustrate the qualitatively different fitness gradient isocline configurations that are possible in symmetric environments. Figure 1 illustrates all qualitatively different isocline configurations possible in environments comprising two patch types with swapped carrying capacities. Besides the case with swapped carrying capacities, an environment is symmetric also when within each patch type the carrying capacities of the two resources are equivalent although they differ between patch types. Furthermore, in environments comprising more than two patch types there are several ways to construct symmetric environments. Isocline configurations in such environments are illustrated in Figure 2 to the extent that they are qualitatively different from those in Figure 1.

In each column in Figure 1 The simulation ends up in A: a monomorphic population using strategy (e, s) ≈ (0.15, 1). B: a dimorphic population using strategies (e, s) ≈ (0.1, 0) and (0.7, 0). C: a dimorphic population using strategies (e, s) ≈ (0.15, 1) and (0.15, 0). D: a monomorphic population using strategy (e, s) ≈ (0.18, 0.5). Therefore, evolutionary branching of specialization will occur, and finally evolutionary dynamics end in a dimorphic population with two specialist strategies as illustrated in Figure 5B. Note that when the strategy is one-dimensional we never observe evolutionary branching near a repelling non-ESS singular strategy, because the evolution of a monomorphic population does never enter the neighborhood of such a singular strategy. The evolutionary simulation corresponding to the isocline configuration depicted in Figure 1D is not illustrated here since it is qualitatively similar to the on in Figure 5, expect that instead low dispersal propensities evolutionary dynamics end in dispersal dimorphisms.
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Thus the observed evolutionary endpoint is either qualitatively similar to the one in Figure 3B or to the one in Figure 4.

Figure 1G depicts the fitness gradient isocline configuration in the case with moderately concave trade-off function (small benefit of generalism). The isocline configuration looks rather simple, whereas the result of a corresponding evolutionary simulation shown in Figure 6 is surprisingly complicated. The simulation illustrates how decreasing dispersal propensity triggers evolutionary branching of specialization. However, the divergent forces caused by the tendency to reduce competition are, in this ecological setting, not strong enough to override the benefits of generalism, and specialization approaches an intermediate singular strategy pair instead of a full specialization.

The two specialization strategies are, however, specialized enough to enable evolutionary branching of dispersal. In Figure 6E both traits appear to undergo simultaneous evolutionary branching. However, the driving force underlying this phenomena is evolutionary branching of dispersal. The changes in the dispersal propensity of a certain morph also change the evolutionary forces acting on the specialization strategy of the morph. The evolutionary forces acting on specialization are in this setting strong enough to cause detectable changes in specialization already while evolutionary branching of dispersal is underway.

Once evolutionary branching of dispersal has occurred, the more dispersive morphs start to evolve towards generalism while the less dispersive morphs become more specialized. Finally, either both of the more dispersive morphs converge to generalism or one of them dies out and the other converges to generalism (see Figure 6). This results in a trimorphic coexistence of a generalist and two specialists. In this trimorphism the more dispersive morph finds its niche by efficiently colonizing patches emptied by catastrophes. On the other hand, the low dispersal specialists get along as, in the long run, they can take over the patches rich in the resource they are specialized in.

Usually higher dispersal survival results in larger parameter domain where evolutionary branching of dispersal is possible. Surprisingly, in the case with θ = 0.1 (Figures 1G and1H) the effect is opposite. In the case illustrated in Figure 1H with π = 0.99 a monomorphic generalist population results whereas in the case illustrated in Figure 1G with π = 0.8 evolutionary dynamics end in a trimorphic population. The evolutionary simulation corresponding to the isocline configuration 1H is not illustrated here since it is qualitatively similar to the one in Figure 3D.

However, the phenomenon depicted in Figure 6 occurs only in a narrow intermediate parameter domain: for most parameter combinations, evolutionary branching of dispersal is not possible in a metapopulation consisting of intermediately specialized individuals. Furthermore, it requires fine-tuning of the parameter values to obtain evolution to a dimorphic metapopulation featuring two intermediately specialized morphs. To sum up, in symmetric environments with two patch types evolution to the coexistence of generalists and specialists is an extremely rare occasion. However, when there are more than two patch types the situation is different.

Besides the case with swapped carrying capacities, an environment is symmetric also when within each patch type the carrying capacities of the two resources are equivalent although they differ between patch types. In this case dispersal does not affect the invadability of the unbiased generalist strategy and Figures 2B and 7B illustrate the case in which the evolution of a monomorphic population converges to a generalist strategy that is a branching point both for the specialization strategy and for the dispersal propensity. In this case the evolutionary endpoint is qualitatively similar to the one in Figure 4.

In Figure 2C, the environment is symmetric and comprises three patch types.

Section 4.2 below is devoted to the detailed analysis of this case, where it is possible that after evolutionary branching of dispersal, only the scarcely dispersing morph undergoes evolutionary branching of specialization and finally the evolutionary dynamics end in a combination of two scarcely dispersing specialists and an abundantly dispersing generalist. Evolutionary branching of dispersal in a metapopulation consisting of generalists does not alone ensure evolution to the coexistence of specialists and generalists. In addition, trade-off parameter θ must have an appropriate value (according to our observations usually in the neighborhood of θ = 0.1) and the resource distribution must be such that dispersal affects the benefits of specialization. To sum up, Figure 9 does not illustrate the parameter domain where evolution dynamics end in the coexistence of generalists and specialists, but gives a rough approximation of the parameter domain where such evolutionary scenarios may be found.

In Figure 9 each curve corresponds to a different resource distribution. The singular dispersal propensity is a branching point above the curves and an ESS below. Based on Figure 9, one can observe that the size of the parameter domain where branching may occur is mainly determined by the difference between patches that act as sources and "pseudo-sinks" in the metapopulation dynamics [START_REF] Watkinson | Sources, sinks and pseudo-sinks[END_REF] whereas the fraction of source patches or total resource availability (column K * ) only have a small effect.

Qualitatively different evolutionary scenarios in asymmetric environments

Although assuming a symmetric environment simplifies the analysis of evolutionary dynamics, since the unbiased generalist strategy s = 0.5 is then evolutionary singular, it is not biologically very realistic. However, for most asymmetric environments without a strong bias in the total metapopulation level amounts of resources, there still exists a unique singular specialization strategy and the evolutionary dynamics are qualitatively similar to a case with a symmetric environment.

The previously analyzed case with two patch types and swapped carrying capacities becomes asymmetric, when the proportions of the two patch types are not equal. Figures 10A-D illustrate qualitatively different evolutionary scenarios in this case. Note that an unbiased generalist with strategy s = 0.5 still observes no differences between the two patch types, and thus the evolutionary singular dispersal propensity is not a branching point for s ≈ 0.5. Another option to break the symmetry is to use non-swapped carrying capacities. Resources may be on average equally common throughout the metapopulation, but are distributed unevenly to patches (Figure 10E andF). In this case a source-(pseudo-)sink structure [START_REF] Watkinson | Sources, sinks and pseudo-sinks[END_REF] is possible for the dynamics of metapopulation consisting of generalists, and the evolutionary singular dispersal propensity may be a branching point for s ≈ 0.5.

Panel A of Figure 10 shows that when the singular specialization strategy is evolutionarily repelling, it becomes biased towards the less abundant resource (as expected). This entails that the more abundant the resource is, the larger is the basin of attraction of the evolutionary dynamics of the corresponding specialist strategy. On the other hand, Panels B and C of Figure 10 show that, when the singular strategy is evolutionarily attracting, it is biased towards the more abundant resource. However, when the absolute value of the trade-off parameter θ becomes sufficiently high, the additional costs or benefits of generalism overwhelm the effects of asymmetricity and the singular specialization strategy remains close to the unbiased generalist strategy. More detailed analyses of the evolution of specialization in asymmetric environments have been presented by Nurmi and Parvinen (2008) and [START_REF] Parvinen | Dispersal and the Evolution of Specialisation in a two-habitat type metapopulation[END_REF] (featuring a constant dispersal propensity).

Figure 10D illustrates the case in which the singular specialization strategy is sufficiently distant from the unbiased generalist strategy s = 0.5 in order to enable evolutionary branching of dispersal. The result of a corresponding evolutionary simulation is shown in Figure 11. We actually observe two successive events of evolutionary branching of dispersal. In both cases the dispersal propensity at the branching point is rather large. Therefore the dispersal propensity of one of the emerging morphs cannot increase much more and it remains nearly generalist, while the dispersal propensity of the other emerging morph decreases substantially. During the first event of evolutionary branching the morph with decreasing dispersal propensity specializes in the less abundant resource 1 (s = 1), whereas during the second evolutionary branching the newly appeared morph with decreasing dispersal propensity specializes in the more abundant resource (s = 0). Finally, the metapopulation reaches a trimorphic state comprised of one abundantly dispersing generalist and two scarcely dispersing specialists. The exploited niches are qualitatively similar to those in the case involving symmetric environments (Figure 6).

Figures 10E and 10F illustrate the cases with non-swapped carrying capacities, where each resource is in total equally abundant. The evolutionary simulation illustrated in Figure 12 (corresponding to Figure 10E) ends in a combination of the two devoted specialists such that one specialist undergoes evolutionary branching of dispersal whereas the other converges to a single dispersal propensity (Compare with Figure 4).

The fitness isocline configuration illustrated in Figure 10F resembles the one illustrated in Figure 2C (with three patch types) and hence one might intuitively expect that evolution to the trimorphic coexistence of a generalist and two specialists could be possible also in a two-patch environment with non-swapped carrying capacities. However, we have not found any parameter combinations resulting in such a scenario. Instead, evolutionary dynamics typically end in a dimorphic population comprising one amply dispersing generalist and one scarcely dispersing specialist as illustrated in Figure 13.

Evolutionary effects of the parameters that determine the ecological dynamics

In this section we analyze the way the parameters that determine the ecological dynamics affect the evolutionary dynamics. We carry out our analysis in a symmetric environment comprising two patch types with swapped carrying capacities, but we believe that our results are fairly robust against moderate changes in the structure of the environment.

Even though small changes in the trade-off parameter θ usually do not have direct significant effects on the evolution of dispersal, θ is an essential element in the evolution of dispersal because of indirect effects. It namely determines the concavity or convexity of the trade-off function β(s) and thus has a significant effect on the evolutionary attractors in which the evolutionary dynamics of specialization end in. Figure 14 illustrates the dispersal propensity at the evolutionary endpoint(s) as a function of the trade-off parameter θ. Evolu-tionary branching of dispersal is not possible in the parameter domain under consideration.

Since the two resources are nutritionally equivalent and the environment is symmetric in Figure 14, the specialists employing strategy s = 0 encounter equivalent environmental conditions as the specialists using strategy s = 1.

Thus the evolutionary forces influencing dispersal are similar and, therefore, we observe only one manifestation of evolutionarily singular dispersal propensity even when the population is dimorphic and includes the two specialists (Figure 14, areas B and C). Furthermore, since β(0) = 0 and β(1) = 1 are independent of θ, the trade-off parameter cannot affect the ecological dynamics or the evolution of dispersal as long as the metapopulation comprises only devoted specialists (the values of θ sufficiently small). Moreover, devoted specialists utilize only the resource they are specialized in and do not affect the availabilities of the other resource to any extent. This means that specialists using strategy s = 0 do not affect the ecological dynamics of the specialists employing strategy s = 1.

Altogether, the evolution of dispersal invariably occurs under similar conditions both in a monomorphic population comprised of devoted specialists using either strategy s = 0 or strategy s = 1 and in a dimorphic population comprised of the two specialists. Therefore we observe a straight line across areas A, B, and C in Figure 14.

The sizes of the local specialist populations are greatest in the patches where the specialists are well-adapted. Since, in our model, dispersal is undirected, the dispersing specialists usually have a rather high risk of ending up in a patch that is less favorable than the original patch. Thus it is natural that the singular dispersal propensity is greatest in area D of Figure 14, where the metapopulation consists of unbiased generalists employing strategy s = 0.5 Furthermore, the singular dispersal propensity appears in area D as an increasing function of θ.

This is natural since, for generalists, increasing θ results in an increased value for the resource usage effort β for both resources. This increases fecundity and speeds up the population growth especially in small local populations which, again, makes dispersal more profitable (see equations ( 1) and ( 2)).

Since the trade-off parameter θ measures the additional benefit or cost of generalism, one can use the information on the way different parameters affect the critical values θ * 1 and θ * 2 to deduce the way changes in different parameters affect the evolutionary capabilities of the different specialization strategies. Nurmi and Parvinen (2008) have shown that, when dispersal propensity has a constant value, factors that favor the spread of the generalist strategy (decrease both θ * 1 and θ * 2 ) are decreasing catastrophe probability, increasing fecundity and increasing dispersal survival. Nurmi and Parvinen (2008) have also shown that increasing the difference between the resource carrying capacities in the patches (increasing the environmental heterogeneity) enlarges the parameter domain where evolutionary branching of specialization may occur (by decreasing θ * 1 and increasing θ * 2 ).We now investigate how these results of Nurmi and Parvinen (2008) change when dispersal propensity is not constant, but instead evolves as a consequence of natural selection. This means that when calculating the critical values of θ, we for each parameter combination assume that disper-sal propensity has obtained the corresponding evolutionarily stable value. In

Figure 15, we illustrate the way different ecological parameters affect the evolutionary properties of the generalist strategy in this case. In order to enable a simple comparison between the results, we follow exactly the presentation structure of Nurmi and Parvinen (2008). The upper row in Figure 15 The panels in the lower row of Figure 15 tempt one to conclude that the evolutionarily stable dispersal propensity of the generalist is always higher than the corresponding propensity of the specialist. Even though this conclusion is rather natural, it cannot be drawn from these results, since the value of the trade-off parameter is different for the black and grey curves.

The panels in the upper row of Figure 15 are qualitatively similar to those presented by Nurmi and Parvinen (2008) in regard to fecundity, environmental heterogeneity and dispersal survival. The panel illustrating the effect of a decrease in the catastrophe probability is, however, qualitatively different. Nurmi and Parvinen (2008) suggested that decreasing the catastrophe probability favors the spread of the generalist strategy, but our results suggest that it enlarges the parameter domain where evolutionary branching of specialization may occur. This difference is based on the fact that decreasing catastrophe probability also decreases the evolutionarily stable dispersal propensity and, consequently, further isolates the patches. Thus, even in the cases when branching is not possible within a single patch, it is possible at the metapopulation level, because due to the increasing isolation each patch can finally be taken over by the specialist that is best adapted to the conditions in the patch type concerned.

When analyzing the evolutionary effects of environmental heterogeneity, one resource carrying capacity is kept constant while the other is increased. Besides increasing the environmental heterogeneity this also accelerates the local population growth especially in small local populations. Thus, in the presentation structure adopted from Nurmi and Parvinen (2008), the evolutionary effects of environmental heterogeneity combine with the effects of fecundity. When we analyzed the environmental heterogeneity such that the sum of the carrying capacities was kept constant (the analysis is not illustrated), we observed that both the singular dispersal propensity and the critical value θ * 1 were virtually independent of the heterogeneity, whereas the critical value θ * 2 increased along with the environmental heterogeneity. Thus in Figure 15, the observation that increasing environmental heterogeneity enlarges the parameter domain in which the generalist strategy is evolutionarily attracting and increases dispersal is an artefact caused by accelerated local growth. However, the conclusion that increasing the environmental heterogeneity enlarges the parameter domain where evolutionary branching may occur, remains valid.

Discussion

Summary

We have studied the evolutionary change in a metapopulation context when both dispersal propensity and specialization concerning resource usage can evolve and are subject to natural selection. We observed that, for all viable parameter combinations, there is a unique singular dispersal propensity towards which natural selection drives the dispersal propensity in a monomorphic population.

The numerical value of this singular propensity is mainly determined by the probability to survive dispersal (π) and the catastrophe probability (c). The type of this singular strategy (ESS or a branching point) is, on the other hand, mainly determined by the dispersal survival (π), the amount of environmental heterogeneity (differences between the resource carrying capacities), and, above all, by the evolutionary attractor of the specialization strategy, i.e., whether the metapopulation consists of specialists or generalists (determined mainly by trade-off parameter θ).

In the presence of temporal variations (local catastrophes), dispersal affects the evolution of specialization in a cumbersome, non-monotonous way [START_REF] Ronce | When sources become sinks: Migrational meltdown in heterogeneous habitats[END_REF]Nurmi et al., 2008;Nurmi and Parvinen, 2008). In this paper we have shown that allowing also dispersal propensity to evolve as a consequence of natural selection greatly clarifies our conception of the evolution of specialization in spatially heterogenous models, because it allows us to readily focus our analysis on the evolutionarily relevant dispersal propensities.

Especially the differences between our results and those of Nurmi and Parvinen (2008) indicate that, when studying the evolution of specialization also evolution of dispersal should be taken into account (see Figure 15).

The evolutionary simulations we have performed demonstrate that the evolution of dispersal is usually slower than the evolution of specialization, i.e., evolutionary forces influencing specialization are stronger than those influencing dispersal. This phenomenon is rather natural, since the degree of specialization always affects reproduction (see Equation ( 2)). Dispersal affects both the reproduction of the dispersers and the reproduction of those remaining. However, the effect on the dispersers' fecundity depends crucially on how the original patch and the target patch differ in terms of quality and crowdedness. Thus it requires several generations and dispersal events to be able to observe the average effect of dispersal on the dispersers' fecundity. On the other hand, the fecundity of the remaining individuals is increased by dispersals only in crowded patches.

When two traits are evolving and there are significant differences in the strength of the evolutionary forces influencing them, it is even possible that the evolution of the faster evolving trait halts the evolution of the other. For example, in Figures 3A, 4B-C, 6B, and 12B-C the evolution of specialization halts the evolution of dispersal at the initial phase. This may occur, because when a new mutant dispersal propensity comes up, it has initially a very small population size that increases rather slowly even if the mutant is capable to invade the population. New mutants usually come up before this mutant population has reached a significant size. Consequently, since the mutations affect only one trait at a time, the new mutants usually have a dispersal propensity inherited from the initial resident population. If any of these mutants has a specialization strategy that is capable to invade the resident, this mutant (carrying the original dispersal propensity) will increase rapidly in population size (due to the stronger evolutionary forces) and outcompete the other strategies, including the one in which the new dispersal propensity results in higher fitness compared to the initial resident population. This phenomenon is based on clonal interference. It is possible in our model since there is no pleiotropy or recombination [START_REF] Gerrish | The fate of competing beneficial mutations in an asexual population[END_REF].

However, the core of our results is associated with the trimorphic coexistence of generalists and specialists. Such coexistence was first demonstrated in a model compiled by [START_REF] Wilson | On the Coexistence of Specialists and Generalists[END_REF]. In their model, the coexistence was found not to be evolutionarily attainable in an initially monomorphic population. In other words, the evolution of an initially monomorphic population never leads to the trimorphic coexistence if mutations are assumed small and infrequent [START_REF] Egas | Evolution restricts the Coexistence of Specialists and Generalists: The Role of the Trade-off Structure[END_REF]. Later on, trimorphic coexistence has been shown evolutionarily attainable under cyclic resource dynamics (Abrams, 2006a,b) or when the assumptions concerning the consumer behavior are relatively restrictive [START_REF] Egas | Evolution restricts the Coexistence of Specialists and Generalists: The Role of the Trade-off Structure[END_REF]. Nurmi and Parvinen (2008) have shown that, even though the possibility of trimorphic coexistence is typical to our modeling approach, it is never evolutionarily attainable when only specialization can evolve.

Our results show that when also dispersal can evolve and several patch types exist, coexistence becomes evolutionarily attainable even under equilibrium dynamics and in a model that is not customized for this purpose.

In our model, a typical evolutionary path leading to trimorphic coexistence starts with evolutionary branching of dispersal in a metapopulation consisting of generalist individuals (or in more general, in a metapopulation where individuals are not fully specialized). In the consequent competition, the less dispersive morph may benefit from specialism, which finally leads to a trimorphic metapopulation comprising one abundantly dispersing generalist and two scarcely dispersing specialists. This scenario is rare in environments with only two patch types but more common when there are at least three patch types.

In our model, on the other hand, the local dynamics are determined by the Beverton-Holt equation featuring only monotonous convergence to fixed points. Cyclic or chaotic local population dynamics may promote evolutionary branching of dispersal in a metapopulation model (see e.g. [START_REF] Parvinen | Evolution of dispersal in a structured metapopulation model in discrete time[END_REF] and the references therein). Thus it is an interesting task for the future to study the joint evolution of specialization and dispersal under non-equilibrium dynamics.

In general, comparisons between studies focusing on the joint evolution of specialization and dispersal are rather cumbersome. There are only few studies of this kind and they all focus on different questions from different viewpoints [START_REF] Kisdi | Dispersal: Risk Spreading versus Local Adaptation[END_REF][START_REF] Hanski | Metapopulation-level Adaption of Insect Host Plant Preference and Extinction-Colonization Dynamics in Heterogeneous Landscapes[END_REF][START_REF] Heinz | Speciation and the evolution of dispersal along environmental gradients[END_REF]. [START_REF] Kisdi | Dispersal: Risk Spreading versus Local Adaptation[END_REF] has studied a model of two patches, in which there appears adaptation to the different local conditions. Compared to our model, she assumed the temporal variations to be rather mild: "good" and "bad" years that occur randomly and independently in each patch. These temporal variations were not influential enough to allow selection for dispersal. Thus, a high degree of dispersal or generalism usually appeared only as a response to the competition with low-dispersal specialists. This contrasts with our model, in which the singular dispersal propensity may take on any value depending on the dispersal survival and the catastrophe probability. Moreover, sufficient changes in tradeoff parameter θ always determine the endpoint of the evolution of specialization independent of the other parameter values. western Finland, the dispersal propensity always evolved to rather low value (≈ 0.1). Dispersal dimorphism was not observed, and specialization in a specific host plant did not significantly affect the evolution of dispersal. The females were predicted to prefer the more abundant host plant in each patch. This preference, on the other hand, was strongly affected by the distribution of the host plants in the surrounding patch network. However, absolute specialism involving the exclusion of the other host plant was never observed. It is an interesting task for the future to find out whether our model can be fine-tuned to cover the dynamics of Melitaea and used to predict the evolving ecological and evolutionary dynamics.

Main features and limitations of the modeling approach

The metapopulation theory concerning the evolution of specialization was initiated by [START_REF] Parvinen | Dispersal and the Evolution of Specialisation in a two-habitat type metapopulation[END_REF], who integrated the context of structured metapopulations to the long tradition of habitat specialization models [START_REF] Levins | Theory of Fitness in a Heterogeneous Environment. I. The Fitness Set and Adaptive Function[END_REF][START_REF] Van Tienderen | Evolution of Generalists and Specialists in Spatially Heterogenous Environments[END_REF][START_REF] Brown | Evolution in Heterogeneous Environments: Effects of Migration on Habitat Specialization[END_REF][START_REF] Kisdi | Dispersal: Risk Spreading versus Local Adaptation[END_REF]. Traditionally, habitat specialization models have not rationalized the differences between various patches. Nurmi et al. (2008) underpinned these differences by considering the distribution of resources. According to them, each patch type is characterized by the availability of two resources. Nurmi et al. (2008) studied specialization concerning the utilization of resources. Their model is a straightforward generalization of the habitat specialization models in a sense that, it is capable to assume any finite number of patch types, but in the case with two patch types it is equivalent to the habitat specialization models.

Once the explicit resource distribution was included in the model, there arose a need for modeling their dynamics as well. Therefore, Nurmi and Parvinen (2008) underpinned the metapopulation dynamics with a continuous-time resource-consumer dynamics adopted from [START_REF] Geritz | On the mechanistic underpinning of discretetime population models with complex dynamics[END_REF], and commenced to study the evolution of specialization concerning resource utilization.

The model used in this paper was the same as the one analyzed by Nurmi and Parvinen (2008), except that here we assumed also dispersal to evolve as consequence of natural selection.

A spatial structure, either explicit or implicit, is a necessity for any model that involves dispersal. Mere spatial variation is not, however, a sufficient condition for evolution to favor dispersal. Instead, spatial heterogeneity usually hinders dispersal, especially if the population is capable to adapt to local conditions. This is because the population size is at its largest value in the patches to which the species is best adapted and, in consequence, the dispersers risk migrating to a less favorable habitat [START_REF] Gadgil | Dispersal: Population Consequences and Evolution[END_REF][START_REF] Hastings | Can Spatial Variation Alone Lead to Selection for Dispersal?[END_REF][START_REF] Parvinen | Evolution of migration in a metapopulation[END_REF][START_REF] Gyllenberg | Evolutionary Suicide and Evolution of Dispersal in Structured Metapopulations[END_REF]. Previous studies have shown that, in addition to local adaptation and spatial variation, the main factors influencing the evolution of dispersal include temporal variations, kin selection, inbreeding avoidance, direct costs of dispersal, and interspecific interactions (see e.g. [START_REF] Clobert | Dispersal[END_REF] and the related references).

The temporal variations in our model occur rather drastically in the form of catastrophes eradicating entire local populations. More subtle manifestations of variation would probably incline the evolution towards a lower dispersal propensity. Our results agree with the general conception according to which increasing the frequency of environmental disturbances (catastrophes) increases dispersal provided that the ecological parameters are not close to the viability boundaries.

Also spatial heterogeneity and direct costs of dispersal are integral parts of all structured metapopulation models. Our results contribute to the general knowledge by pointing out that the costs of dispersal combined with local adaptation substantially determine whether dispersal branching is possible.

Even though we explicitly model the population dynamics in each patch, our model is not adequate for the analysis kin selection. In a model with finite local populations, each dispersing individual benefits those relatives that do not disperse by reducing crowding in the patch. However, we assume that the local populations are large (i.e., the local population dynamics are described deterministically). Thus in the initial phase of an invasion, the effect of a mutant population on the population dynamics is ignorable even locally. Thus a dispersing mutant is not able to benefit those relatives that do not disperse. Also inbreeding depression is, unfortunately, beyond the scope of this model since the related evolutionary analysis is based on the adaptive dynamics approach that assumes a rather simple genetic architecture and clonal reproduction.

Enabling the analysis of inbreeding depression is not the only reason that encourages one to, in the future, extend this model to cover sexual reproduction and more complicated genetic architectures. There are several studies suggesting that the phenotypic models of evolution, to some extent, enable one to predict the course of evolution also in sexually reproducing populations (Maynard [START_REF] Smith | Will a sexual population evolve to an ESS[END_REF][START_REF] Weissing | Genetic versus phenotypic models of selection: can genetics be neglected in a long-term perspective[END_REF][START_REF] Taylor | The Selection Differential in Quantitative Genetics and ESS Models[END_REF][START_REF] Heinz | Speciation and the evolution of dispersal along environmental gradients[END_REF]. The majority of these studies, however, focuses on models lacking a spatial structure. In metapopulation models, the situation is complicated by the fact that a globally rare mutant may simultaneously be locally prevailing in some patches. Therefore the possible existence of mutant homozygotes should not be ignored in the invasion analysis, either [START_REF] Ravigné | Selective interactions between short-distance pollen and seed dispersal in selfcompatible species[END_REF][START_REF] Parvinen | A novel fitness proxy in structured locally finite metapopulations with diploid genetics, with an application to dispersal evolution[END_REF]. On the other hand, a spatially heterogenous population structure may assist the appearance of assortative mating, which together with disruptive selection may enable sympatric speciation [START_REF] Dieckmann | On the origin of species by sympatric speciation[END_REF][START_REF] Geritz | Adaptive Dynamics in Diploid, Sexual Populations and the Evolution of Reproductive Isolation[END_REF].

Whereas the evolution of dispersal always takes place in the balance between the costs and benefits of dispersal, the trade-off between the abilities of an individual to consume different resources needs to be explicitly modeled [START_REF] Joshi | Trade-offs and the evolution of host specialization[END_REF][START_REF] Fry | The evolution of host specialization: Are trade-offs overrated?[END_REF]. The ecological discrete-time dynamics in our model have mechanistic underpinnings in continuous-time resourceconsumer dynamics except for trade-off parameter θ determining the shape (convexity/concavity) of the trade-off function that crucially affects the evolutionary dynamics of specialization. Unfortunately, mechanistic determination of the trade-off function is possible only in a specific ecological setting, not generally.

In our model, only the case featuring a linear trade-off (θ = 0) offers a mechanistic biological interpretation. According to it, trade-offs arise purely from a search-time allocation between the two resources. In this case the evolution of specialization in a monomorphic population always leads to generalism forming either an evolutionary endpoint or a branching point. Our modeling approach favors generalists as dispersal occurs randomly, i.e., dispersers are not able to choose their target patches. Including different manifestations of habitat selection might benefit specialists and enable evolution leading to a monomorphic specialist population even in the case of a linear trade-off [START_REF] Ravigné | Live Where You Thrive: Joint Evolution of Habitat Choice and Local Adaptation Facilitates Specialization and Promotes Diversity[END_REF].

Even though we studied the joint evolution of two different traits, we did not explicitly consider the genetic linkage or epistasis, because the genetic architecture we assumed was too simple for a rational study of these subjects.

Since we assumed that the inheritance was clonal and that mutations only affected only one trait at a time, we indeed assumed a complete genetic linkage between the two traits. On the other hand, since we assumed that the two traits could evolve independently and that all different trait combinations were possible, pleiotropy could not affect the evolutionary dynamics. The adaptive dynamics approach also provides tools for the analysis of the case where both traits could evolve simultaneously. [START_REF] Leimar | Evolutionary Change and Darwinian Demons[END_REF][START_REF] Leimar | Multidimensional convergence stability[END_REF] has shown that in this case, different mutational variance-covariance structures and fitness interactions may crucially affect the evolutionary dynamics. Furthermore, [START_REF] Ravigné | Live Where You Thrive: Joint Evolution of Habitat Choice and Local Adaptation Facilitates Specialization and Promotes Diversity[END_REF] have shown that the joint evolution of habitat specialization and habitat selection may crucially affect the specialization process. In their model the possibility of pleiotropic mutations promoted evolutionary branching of specialization. Pleiotropy presumably has a resembling effect also in our model. This effect, however, is likely milder since habitat selection is expected to have much stronger effect on specialization than randomly targeted dispersal. Pleiotropy might, as well, promote the evolution to the trimorphic coexistence of specialists and a generalist. Unfortunately, when mutations do not occur independently or do not affect only one trait at a time, it is difficult find any general results concerning the evolutionary dynamics and, above all, it is no longer possible to fully illustrate different evolutionary scenarios by plotting the fitness gradient isoclines. Especially, pleiotropy may affect the invadability of a singular strategy: a singular strategy that is uninvadable by mutants with either different dispersal propensity or different specialization strategy may be invadable by a mutant different both in dispersal and specialization [START_REF] Leimar | Evolutionary Change and Darwinian Demons[END_REF]. On the other hand, even the case without pleiotropy involves the main features of the joint evolution we wish to present here. Therefore, we postpone dealing with pleiotropic mutations to our future research.

A. Simulation procedure

We run evolutionary simulations in an environment consisting of 1000 patches.

The procedure is as follows:

1. Iterate the metapopulation dynamics for 1000 generations.

2. Remove all the strategies the metapopulation size of which has decreased below 25 percent of the size initial size at the time the mutant entered the metapopulation. These strategies are considered extinct.

3. If the number of strategies in the metapopulation is larger than 25, go back to step 1. In order to speed up the simulation we limit the number of coexisting strategies to 25.

4. Pick one strategy that will mutate. The probability to pick a certain strategy is determined by the strategy's metapopulation size divided by the total metapopulation size.

5. Toss a coin to decide, whether the mutation will affect dispersal propensity or specialization. The simulation ended in a trimorphic population using strategies (e, s) ≈ (0.2, 0.5), (0.1, 0.1) and (0.1, 0.9). The other parameter values correspond to the ones in Figure 1G. 
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 1 Figure 3.Figures 1A, 3A, 1B, and 3B illustrate the case with strong trade-off (high cost of generalism). There the specialization strategy first evolves to full specialism (s = 0 or s = 1, depending on the initial state). In the case illustrated in Figures1A and 3Aevolutionary dynamics end in a monomorphic specialist population. If dispersal survival π is sufficiently high, evolutionary branching of dispersal may occur (Figures1B and 3B). Branching results in a dispersal dimorphism where two morphs can coexist in a metapopulation because the more dispersive morph is able to occupy empty patches efficiently but is outcompeted locally by the less dispersive morph in the case the patch avoids catastrophes suf-
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 23 Figure 2: Symmetric environments II: Evolutionarily singular specialization strategies as a function of the dispersal propensity (horizontal axis) and the singular dispersal propensity as a function of specialization (vertical axis). Thick black curve = CSS, thick grey curve = branching point, thin black curve = evolutionary repellor. Parameter values: λ = 3, c = 0.05
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 4 Figures 1I, 1J, and 3D illustrate the case with weak trade-off (additional benefit of generalism). In this case the evolutionary dynamics of specialization end in a monomorphic generalist population and evolutionary branching of dispersal is not possible (see section 3.2). An evolutionary simulation corresponding to the isocline configuration depicted in Figure1Iis illustrated in Figure3D. An evolutionary simulation corresponding to the isocline configuration depicted in Figure1Jwould be qualitatively similar (not illustrated).Figures1E, 1F, 3C, and 4 illustrate the case with moderately strong tradeoff. There a monomorphic population first evolves to generalism, and then evolutionary branching of specialization occurs resulting in a metapopulation comprising two devoted specialists. Due to the symmetry of the environment, the two specialist morphs encounter identical selective forces influencing dispersal propensity and thus the dispersal propensities end up in equal values.However, since mutations occur randomly, the evolutionary paths in the strategy space are not identical. In the case illustrated in Figures1E and 3Cdispersal is rather risky (π = 0.8) and evolutionary branching of dispersal is not possible. Thus, finally evolutionary dynamics end in a dimorphic population comprising two scarcely dispersing devoted specialists. If dispersal survival is high (π = 0.99), as is the case in Figures1F and 4, evolutionary brancing of dispersal may follow that of specialization. The evolutionary dynamics end in a quadrimorphic metapopulation, where each of the two resources hosts both scarcely and moderately dispersing specialists.Figures 1C and 1D illustrate cases where there may appear several evolutionarily singular specialization strategies and, depending on the initial strategy, the evolution of specialization in a monomorphic population may proceed either to generalism or specialism. However, since we now study the evolution of a two-dimensional strategy, the initial state no longer solely determines the fate of the population: Figure5shows the results of two evolutionary simulations with one and the same initial state and ecological and evolutionary parameters (corresponding to Figure1C). The initial strategy lies in the strategy domain where the evolution of specialization directs towards specialism. The result of an evolutionary simulation leading to a monomorphic specialist population is shown in Figure5A. However, mutations affect randomly either specialism or dispersal. It thus is possible that by coincidence or due to the work of a "Darwinian Demon" (in a sense of[START_REF] Leimar | Evolutionary Change and Darwinian Demons[END_REF]), a long sequence of successive mutations affects only dispersal propensity. This is the case in the initial phase of the simulation illustrated in Figure5B, where dispersal propensity diminishes while specialization remains unchanged in the absence of mutations affecting specialization. As a result, the prevailing strategy of the metapopulation is such that the specialization strategy is in the neighborhood of the

  Figures 2A and 7A illustrate the case in which evolutionary dynamics end in a dispersal dimorphism in a metapopulation consisting of generalist individuals.

4. 2 .

 2 Qualitatively different evolutionary scenarios in symmetric environments comprising more than two patch types Mostly, our results with two patch types are qualitatively similar to those with several different patch types. The only essential qualitative difference is the following: In a symmetric environment with two patch types either evolutionary branching of dispersal is not possible in a metapopulation consisting of generalists (environments with swapped resource carrying capacities) or dispersal propensity does not affect the invadability of the generalist strategy (environments where the resource carrying capacities are equal in each patch type). In an environment with more than two patch types it is easy to find such parameter combinations that branching of dispersal propensity is possible in a metapopulation comprising generalists, and that the dispersal propensity significantly affects the invadability of the generalist strategy.This provides a natural evolutionary path to the coexistence of generalists and specialists: After the initial phase of evolutionary branching of dispersal, the two branches diverge further apart from each other and, given that trade-off parameter θ has an appropriate value, the generalist strategy may turn from an ESS to an evolutionary branching point for the less dispersive morph. This results in evolutionary branching of the specialization strategy employed by the scarcely dispersing morph. In environments comprising two patch types, evolution hardly leads to the coexistence of specialists and generalists and can only be observed in a narrow parameter domain. In symmetric environments comprising several patch types it is easy to construct parameter combinations where the evolutionary dynamics of an initially monomorphic population end in the coexistence of two specialists and a generalist, as illustrated in Figures2C and 8.Note that although panel A in Figure8may seem to indicate a degenerate case in which specialization divides in three branches, this is not the case. Instead, after evolutionary branching of dispersal, both morphs employ the same specialization strategy, s = 0.5. The morph with low dispersal propensity undergoes branching of specialization into two branches, while the specialization strategy of the high-dispersal morph remains at s = 0.5 as illustrated in Figures8B-F.In our model, each evolutionary path to the trimorphic coexistence of two specialists and a generalist involves evolutionary branching of dispersal in a metapopulation comprising generalist or nearly generalist individuals. Therefore, it is of interest to study when evolutionary branching of dispersal is possible. Figure9illustrates the way dispersal survival π, catastrophe probability c and the distribution of the resources in the environment affect the possibility of evolutionary branching of dispersal in metapopulations consisting of generalist individuals.

  illustrates the critical values of trade-off parameter θ as a function of various ecological parameters. The lower row illustrates the corresponding evolutionarily stable dispersal propensities. It is noteworthy that the scales of the vertical axes are different in each panel on the lower row. Thus only catastrophe probability and dispersal survival probability significantly affect the evolutionarily stable dispersal propensity.

  [START_REF] Heinz | Speciation and the evolution of dispersal along environmental gradients[END_REF] have studied the joint evolution of dispersal distance and local adaptation in an environment with a continuously varying character by means of individual based simulation models. Their viewpoint is very different from ours and this prevents direct comparisons between results. However in their model, predictions based on asexual model are, qualitatively speaking, principally consistent with the predictions derived from the sexual model.[START_REF] Hanski | Metapopulation-level Adaption of Insect Host Plant Preference and Extinction-Colonization Dynamics in Heterogeneous Landscapes[END_REF] have carried out a simulation-based case study on the evolution of dispersal and host-plant preference (specialization) among Glanville fritillary butterflies Melitaea cinxia. In the model parametrized on the basis of observing the actual metapopulation in the Åland Islands in south
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 56 Figure 5: Two evolutionary simulations with identical ecological and evolutionary parameters and the same initial state (e = 1, s = 0.19). The simulations have different evolutionary endpoints because of random mutations. The parameter values identical with the ones in Figure 1C.
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 78 Figure 7: Locally symmetric environments: Strategies present in the metapopulation during an evolutionary simulation. Grey curves = the specialization component s of the strategy, black curves = the dispersal component e. The parameter values are the same as in the corresponding panels in Figure 2. Initial strategy (e, s) = (0.05, 0.05).Panel A: The simulation ends up in a quadrimorphic population using strategies (e, s) ≈ (0.44, 0), (0.44, 1), (0.07, 0) and (0.07, 1). Panel B: The simulation ends up in a dimorphic population using strategies (e, s) ≈ (0.07, 0.5) and (0.44, 0.5).
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 9111213 Figure 9: Type of the singular dispersal propensity (ESS or a branching point) as a function of catastrophe probability c and dispersal survival π in a metapopulation consisting of unbiased generalists. Different curves correspond to different resource distributions. Above the curves the singular dispersal propensity is a branching point and below an ESS. Curves drawn with same style correspond to cases with same fraction of patches acting as sources in the metapopulation dynamics. Column K * = the average resource carrying capacity in the corresponding patch type (same for both resource in symmetric environments). The other parameter values are θ = 0.1 and λ = 3.

Dispersal propensity

Figure 14: Evolutionarily singular dispersal propensity as a function of trade-off parameter θ. In area A, the evolution of specialization leads to a monomorphic specialist population (Figures 1A and3A), whereas in area C, it ends in a dimorphic population employing the two fully specialized strategies (Figures 1E and3C). In area B, the evolution of specialization leads to a population including either one or two of the specialists depending mainly on the initial state (Figures 1C and5). In area D, the evolution of specialization leads to a generalist population (Figures 1I and3D). Parameter values c = 0.05, π = 0.8, λ = 3, K 1 1 = K 2 2 = 3, K 2 1 = K 1 2 = 1 and p 1 = p 2 = 0.5 are the same as in the left column of Figure 1. Figure 15: The panels in the upper row illustrate the critical values of the trade-off parameter θ as a function of different ecological parameters when dispersal propensity has the corresponding evolutionarily stable value. In area A, the generalist strategy is an evolutionary endpoint, in area B, it is a branching point and, in area C, it is an evolutionary repellor. The curve separating areas C and B stands for the critical value θ * 1 and the curve separating areas B and A stands for the critical value θ * 2 as a function of the parameter under consideration. The panels in the lower row illustrate the evolutionarily singular dispersal propensity as a function of different ecological parameters in a metapopulation consisting of generalist individuals (θ = 1, black curve) and in a monomorphic metapopulation consisting of devoted specialists (θ = -3, grey curve). The thick curve indicates that the singular strategy is an evolutionary endpoint, and thin curve indicates that evolutionary branching of dispersal may occur. In the analysis of the effect of environmental heterogeneity, we determine that K 2 1 = K 1 2 = 1 and K 1 1 = K 2 2 = a and that a varies between 1 and 11. The parameters not under consideration as bifurcation parameters have the following values: c = 0.05, λ = 3, K 1 1 = K 2 2 = 3, K 1 2 = K 2 1 = 1, p 1 = p 2 = 0.5, π = 0.8.
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