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Limiting genotype frequencies of Y-linked genes
through bisexual branching processes with blind

choice

G. Alsmeyera, C. Gutiérrezb,* and R. Mart́ınezb

aInst. Math. Statistics, Dept. Mathematics and Comp. Science, University of Münster, D-48149 Münster,
Germany
bDepartment of Mathematics, University of Extremadura, 06006 Badajoz, Spain

ABSTRACT

The limiting genotype growth rates and the limiting genotype frequencies of Y-linked genes are
studied in a two-sex monogamous population. To this end, the evolution of the numbers of females,
males, and mating units of each genotype is modeled by a multitype bisexual branching process in
which it assumed that the gene has no influence on the mating process. It is deduced from this model
that the average numbers of female and male descendants per mating unit of a genotype determine its
growth rate, which does not depend on the behaviour of the other genotypes. Hence, the dominant
genotype is found. Conditions for the simultaneous survival of genotypes to have positive probability
are also investigated. Finally, the main results are illustrated by means of examples.

Keywords: Sex-linked inheritance. Bidimensional two-sex stochastic model. Perfect fidelity mating.
Rates of growth.

1 Introduction

In human and many animal populations the sex of an individual is determined by a pair of chromosomes
X and Y. The females are homozygous and carry XX chromosomes, whereas the males are heterozygous
and carry XY chromosomes. The inheritance of traits may or may not be sex related. For traits on
autosomal chromosomes, both sexes have the same probability of expressing the trait. There is also
the possibility of sex linkage – phenotypic expression of an allele related to the chromosomal sex of the
individual. The present work focuses on Y-linkage. For humans, there are many more X-linked than
Y-linked traits because there are far more genes on the X- than on the Y-chromosome. Nevertheless,
recent research has shown the significance of Y-linked genes in the biology of humans and other animals,
see, for instance, Quintana-Murci and Fellous (2001) or www.nature.com/nature/focus/ychromosome/.

Bisexual branching processes provide a natural class of candidates when looking for an appropriate math-
ematical model for the propagation of Y-linked genes in two-sex populations. Roughly speaking, these
processes form an extension of classical two-type Galton-Watson branching processes by additionally im-
posing a mating structure. González et al. (2009) have recently introduced a model of this kind for the
evolution of Y-linked genes which occur in two allelic forms, called R and r. They assume monogamous
mating (mating with perfect fidelity) with blind choice, which means that females choose their mate
without recognizing or caring about his genotype. The latter condition may be justified by the fact that
Y-linked genes are typically not expressed in males, or, if they are, do not have any preferential impact
on the mating process. Using this model, we shall focus on the evolution of the numbers of R-couples
between a female and a type R male and of r-couples between a female and a type r male over successive
generations. Our goal is to describe the growth behaviour of this bivariate process and related geno-
type frequencies under regimes in which at least one of the allele types survives. Of particular interest
are situations where this holds true for both types simultaneously (coexistence) with positive probability.
Conditions to guarantee this have been identified in the aforementioned work which may also be consulted
for further background information and motivation.

*Corresponding author. Tel.: +34927257195x57571.
E-mail addresses: gerolda@math.uni-muenster.de (G. Alsmeyer), cgutierrez@unex.es (C. Gutiérrez), rmartinez@unex.es (R.
Mart́ınez).
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This article contains six further sections. Section 2 is devoted to a description of the model including a
definition of the Y-linked bisexual Galton-Watson branching process with blind choice (the basic math-
ematical object we shall be studying). The limiting growth rate of each genotype given the ultimate
extinction of the other is derived in Section 3 together with the limiting sex ratio. Section 4 provides suf-
ficient conditions under which indefinite growth of both genotypes has either positive or zero probability.
The limiting growth rate of each genotype in the event that both types survive is studied in Section 6,
once again together with the limiting sex ratio. All proofs of the results presented are provided in the
final Section 7.

2 Description of the model

The following model, introduced by González et al. (2009), describes the evolution of the number of
carriers of a Y-linked gene in a two-sex monogamous population. The gene occurs in two allelic forms,
denoted R and r. Since the Y-chromosome is haploid and specific to males, the population is formed
by females and by two types of male, denoted R- and r-males, depending on which allele they carry.
There are thus two types of couple, denoted R- and r-couples, depending on whether the male is of type
R or type r. By the rules of genetic inheritance, an x-couple can only give birth to females or x-males
(x ∈ {r, R}).

Assuming non-overlapping generations, labeled by integers n = 0, 1, 2, ..., and given the number of couples
of each type in generation n, the stochastic mechanism that determines the number of females, males,
and couples of each genotype in the (n + 1)-th generation may be divided into two stages, reproduction
and mating.

In the reproduction phase, the R- and r-couples of the n-th generation, their numbers being denoted
by ZRn and Zrn, respectively, produce offspring independently of each other and according to a certain
reproduction law which is the same for a given genotype and independent of the generation they belong
to. We allow for different reproduction laws for each genotype and also assume that these reproduction
laws have finite means and variances. Let mR and mr denote the average number of offspring produced
by an R- and r-couple, respectively. An individual offspring is female with probability α and male with
probability 1 − α, independently of the sex designation of any other offspring. In particular, α is the
same for both genotypes. As a consequence, the average numbers of females and males generated by an
R-couple are αmR and (1 − α)mR, respectively, while the respective values for an r-couple are αmr and
(1−α)mr. At the end of the reproduction phase, one has the total numbers Fn+1, MRn+1, and Mrn+1 of
females, R-males stemming from R-couples, and of r-males stemming from r-couples, respectively, which
together constitute the (n + 1)-th generation.

In the mating phase, the number of couples of each genotype in the (n + 1)-th generation is determined,
given the total numbers of females, R-males, and r-males in this generation (Fn+1, MRn+1, and Mrn+1).
We assume monogamous (perfect fidelity) mating, i.e., each individual mates with only one individual
of the opposite sex if available. We further assume that the genotype has no impact on the mating
mechanism. This is clearly so if the total number of females is greater than or equal to the total number
of males because then every male finds a mate in the female population resulting in ZRn+1 = MRn+1

couples of type R and Zrn+1 = Mrn+1 couples of type r. However, if the total number of males exceeds the
total number of females, then each female picks a male at random without regard for its genotype (blind
choice) from the given pool of MRn+1 + Mrn+1 males. As a consequence, the total number of R-couples in
the (n + 1)-th generation has a hypergeometric distribution with parameters Fn+1, MRn+1 + Mrn+1, and
MRn+1, while the total number of r-couples in this generation equals the number of remaining females, i.e.,
Zrn+1 = Fn+1−ZRn+1. Notice that, by symmetry of the model, the law of Zrn+1 is also hypergeometric,
the parameters being Fn+1, MRn+1 + Mrn+1, and Mrn+1.

The bivariate sequence (ZRn, Zrn)n≥0 describing the evolution of the number of mating units of each
genotype over generations is called a Y-linked bisexual branching process with blind choice. It is shown
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in González et al. (2009) that each genotype shows the dual behaviour typical for branching processes
and known as the extinction-explosion dichotomy. This means that the number of couples of any type is
bound to undergo either extinction or indefinite growth. The survival of the population over generations
is therefore determined by the three events A∞,0 = {ZRn → ∞, Zrn → 0}, termed R-fixation, A0,∞ =
{ZRn → 0, Zrn → ∞}, termed r-fixation, and A∞,∞ = {ZRn → ∞, Zrn → ∞}, termed simultaneous
survival of both genotypes or coexistence. The following sections are devoted to the study of the asymptotic
growth of surviving genotypes in each of these three events.

3 Survival of only one genotype: Limiting growth rate

A necessary and sufficient condition for a genotype to have positive probability of fixation is that both
the female and the male mean offspring per couple of that genotype are greater than unity (see Result 2
in González et al. (2009)). This is due to the fact that, if fixation of a particular allele has occurred, the
corresponding genotype evolves essentially as a bisexual branching process with perfect fidelity mating
and the reproduction law of the surviving genotype. The asymptotic properties of this latter process
were studied by Bagley (1986), and the following result may be directly deduced from his work.

Result 3.1 Let τR = min{αmR, (1− α)mR} and τr = min{αmr, (1− α)mr}.
(i) If τR > 1, then P (A∞,0) > 0 and there exists a random variable WR, which is positive and finite on

A∞,0, such that almost surely (a.s.) on A∞,0

lim
n→∞

ZRn

τn
R

= WR, lim
n→∞

MRn

τn
R

=
(1 − α)mR

τR
WR and lim

n→∞
Fn

τn
R

=
αmR

τR
WR .

(ii) If τr > 1, then P (A0,∞) > 0 and there exists a random variable Wr, which is positive and finite on
A0,∞, such that a.s. on A0,∞

lim
n→∞

Zrn
τn
r

= Wr, lim
n→∞

Mrn
τn
r

=
(1 − α)mr

τr
Wr and lim

n→∞
Fn

τn
r

=
αmr

τr
Wr .

(iii) If max{τR, τr} > 1, then P (A∞,0 ∪A0,∞) > 0 and

lim
n→∞

Fn

Fn + Mn
= α a.s. on A∞,0 ∪A0,∞,

where Mn = MRn + Mrn denotes the total number of males in generation n.

Intuitively speaking, assertion (i) states that, if the r-couples have disappeared while the R-couples have
not, the numbers of R-couples, R-males, and females grow geometrically at rate τR. This rate depends on
the probability α of an offspring being a female and on the mean total number of offspring per R-couple,
viz. mR. Indeed, it equals the mean number of females per R-couple if α ≤ 0.5, and the mean number
of males per R-couple otherwise. A similar intuitive meaning can be given for assertion (ii). Finally,
assertion (iii) states that the limiting sex ratio of the population in the events of fixation only depends
on the probability of an offspring being female.

4 Conditions for survival of both genotypes (coexistence)

It should be no surprise that the event of the simultaneous survival of both alleles has positive probability
if the mean numbers of females and of males per couple of both genotypes are all greater than unity (i.e.,
min{αmR, αmr, (1 − α)mR, (1 − α)mr} > 1). This statement was proved in González et al. (2009) (see
Result 6 therein) if the probability α for an offspring to be female is different from 0.5. The case α = 0.5
is included in the following result.

Result 4.1 Let ZR0 and Zr0 both be positive.
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(i) If α > 0.5 and min{(1− α)mR, (1− α)mr} > 1, then P (A∞,∞) > 0.

(ii) If α ≤ 0.5 and min{αmR, αmr} > 1, then P (A∞,∞) > 0.

However, if the mean number of male offspring per couple of either genotype is less than or equal to
unity (i.e., min{(1 − α)mR, (1 − α)mr} ≤ 1), or if the mean number of female offspring per couple of
either genotype is strictly less than unity (i.e., min{αmR, αmr} < 1), then simultaneous survival of both
genotypes has probability zero (see Result 4 in González et al. (2009)). This leaves one open case,
namely when the mean number of female descendants equals unity for couples of one genotype, while
being greater than unity for couples of the other genotype. The following result takes care of this case
for which one should notice that the probability for a descendant to be female is necessarily less than 0.5.

Result 4.2 Suppose that α < 0.5 and either αmR = 1 < αmr or αmr = 1 < αmR holds true. Put
τ = max{αmR, αmr}. Then either P (A∞,∞) = 0 or

lim
n→∞

Zn

τn
= 0 and lim inf

n→∞
Zn

ρn
= 0 a.s. on A∞,∞,

for any ρ ∈ (1, τ), where Zn = ZRn + Zrn.

For an intuitive interpretation, let us consider the situation when α < 0.5 and αmR = 1 < αmr. Then
τ equals αmr, which means that the r-genotype dominates the R-genotype, and τ constitutes the exact
geometric growth rate of the number of r-couples in the event of fixation of the r-genotype (see Result
3.1). However, we infer from the above result that simultaneous survival of both genotypes entails that
the number of couples, and in particular of r-couples, grows at a rate less than τ . Indeed, the growth rate
drops infinitely often below any ρ ∈ (1, τ). Hence, the competition of r- and R-males for females has a
considerable effect as opposed to the situation of fixation where one type eventually disappears. Even so,
the result raises the question as to whether P (A∞,∞) > 0 does occur at all under the stated conditions.
We believe that an answer not only would require much deeper and more sophisticated mathematical
tools, but would lead us beyond the scope and purpose of the present communication.

Let is now proceed with an illustration of the above result. Assume that α < 0.5 and αmR = 1 < αmr.
Based on the behaviour of R-couples, González et al. (2009) conjectured that simultaneous survival of both
genotypes has probability zero. Further evidence for this conjecture is provided by the following argument
regarding the behaviour of r-couples. As in the aforementioned article, we consider the situation where
α = 0.4 and reproduction laws are Poisson with means mR = 2.5 and mr = 2.52, which implies αmR = 1
and αmr = 1.008 > 1, and hence τ = αmr. By Monte-Carlo simulation, we generated realizations of
(ZRn, Zrn)n≥0 with ZR0 = Zr0 = 3 that survived 1000 generations. Typical outcomes are displayed in
Figure 1. For these, Figure 2 shows the behaviour of (ZRn + Zrn)/τn (left plot) and log(ZRn + Zrn) (right
plot) over generations. These indicate that the total number of couples normalized by the growth rate
of the dominant genotype approaches a positive limit. For the sample (n, log(ZRn + Zrn))n=700,...,1000,
we also calculated the sample linear correlation coefficient to be 0.999369 and the slope of the regression
line to be 0.007913, which is very close to the theoretical value log τ = 0.007968. In view of Result 4.2
and coherent with the above conjecture, we conclude that in this realization the R-genotype is likely to
disappear so that fixation of the r-genotype occurs.

5 Coexistence: Limiting growth rates and frequencies

In this section, we return to the situation of Result 4.1 and assume that the mean numbers of females and
males per couple of both genotypes are greater than unity, i.e., min{αmR, (1−α)mR, αmr, (1−α)mr} > 1
(which conforms to the condition in Result 4.1(i) or (ii) depending on whether α > 0.5 or α ≤ 0.5).
Then simultaneous survival of both genotypes occurs with positive probability, so that it makes sense
to determine the limiting growth rates for the numbers of females, R-males, R-couples, and their r-
counterparts. Answers are provided by the following two results that deal with the two cases α > 0.5
and α ≤ 0.5 separately. We note and will prove in Lemma 6 that in the first case the number of females
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Figure 1: Realizations of ZRn (left plot) and Zrn (right plot) in a process where both genotypes have
survived until generation 1000.
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Figure 2: Realizations of (ZRn + Zrn)/τn (left plot) and log(ZRn + Zrn) (right plot) in a process where
both genotypes have survived until generation 1000.

always exceeds the number of males from some generation onwards, whereas the number of males is
eventually always greater than the number of females if α < 0.5. The boundary case α = 0.5 is more
delicate because neither of the previous two statements holds true (oscillating situation). We therefore
expect results that depend on the value of α.

Result 5.1 If α > 0.5 and min{(1−α)mR, (1−α)mr} > 1, then there exist nonnegative and finite random
variables WR and Wr, which are positive on A∞,∞, such that a.s. on this event

lim
n→∞

ZRn

((1 − α)mR)n
= WR and lim

n→∞
Zrn

((1− α)mr)n
= Wr,

lim
n→∞

MRn

((1 − α)mR)n
= WR and lim

n→∞
Mrn

((1− α)mr)n
= Wr,

and
lim

n→∞
Fn

τn
=

α

1− α

(
WR I{mR≥mr} + Wr I{mR≤mr}

)
,

where τ = max{(1− α)mR, (1− α)mr} and I{a≥b} is equal to 1 if a ≥ b, and 0 otherwise.

Intuitively speaking, the total numbers of couples and males of each genotype grow geometrically at the
same rate, defined by the mean number of males generated by a couple of this genotype. This follows from
the fact that, from some generation onwards, the total number of couples of each genotype is determined
by the total number of males of this type. Moreover, the total number of females in the population grows
geometrically as well, but at a rate defined by the mean number of males generated by the dominant
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Figure 3: Logarithm of the total number of R-couples (left plot), the total number of r-couples (middle
plot), and the total number of couples (right plot) from a path of a process in which both genotypes have
survived until generation 200.

genotype. We note that this also is the case for the total number of couples and the total number of
males.

The remaining cases α < 0.5 and α = 0.5, though qualitatively different as explained above, can be dealt
with together in the following result.

Result 5.2 If α ≤ 0.5 and min{αmR, αmr} > 1, then there exist nonnegative and finite random variables
W*

R and W*
r , which are positive on A∞,∞, such that a.s. on this event

lim
n→∞

ZRn

(αmR)n
= W*

R and lim
n→∞

Zrn
(αmr)n

= W*
r ,

lim
n→∞

MRn

(αmR)n
=

1− α

α
W*

R and lim
n→∞

Mrn
(αmr)n

=
1− α

α
W*

r ,

and
lim

n→∞
Fn

τn
=
(
W*

R I{mR≥mr} + W*
r I{mR≤mr}

)
,

where τ = max{αmR, αmr}.
Notice that, upon setting WR = 1−α

α W*
R and Wr = 1−α

α W*
r , the assertions of Result 5.1 and Result 5.2

actually coincide in the case α = 0.5, as one would expect.

We shall illustrate the above results by another Monte-Carlo simulation for which we assumed α = 0.5 and
reproduction laws to be Poisson with means mR = 2.10 and mr = 2.15. Figure 3 shows semi-logarithmic
plots of the total number of R-couples (left plot), the total number of r-couples (middle plot), and the
total number of couples (right plot) from a realization of (ZRn, Zrn)n≥0 with ZR0 = Zr0 = 50 in which
both genotypes have survived until generation 200. One observes that the dominant r-genotype has the
greater growth rate, which is the same for the total number of couples.

It is now immediate to deduce from Results 5.1 and 5.2 the limiting genotype frequencies and the limiting
sex ratio.

Result 5.3 If min{αmR, (1−α)mR, αmr, (1−α)mr} > 1 and WR, Wr, W*
R, W*

r are as in Results 5.1 and
5.2, then a.s. on A∞,∞

lim
n→∞

ZRn

Zn
= W, lim

n→∞
MRn

Mn
= W and lim

n→∞
Fn

Fn + Mn
= α,
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Figure 4: Histogram of ZR100 /τ100 (left plot), Zr100 /τ100 (middle plot) and ZR100 /(ZR100 + Zr100) (right
plot).

where

W =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if mR > mr

WR /(WR + Wr), if mR = mr and α > 0.5
W*

R /(W*
R + W*

r ), if mR = mr and α ≤ 0.5
0, if mR < mr,

recalling that Zn = ZRn + Zrn and Mn = MRn + Mrn.

One thus sees that the limiting sex ratio in the population does not depend on the Y-linked gene but only
on the probability of an offspring being female. Moreover, neither does the limiting R-genotype frequency
among mating units and males depend on α, but equals unity if mR is greater than mr, i.e., if the R-
genotype is dominant. Equality of mR and mr implies 0 < W < 1 a.s. on A∞,∞, since WR, Wr, W*

R, W*
r

are all a.s. positive and finite on this event. The limiting genotype frequencies thus being strictly between
zero and unity, we conclude that there is no dominant genotype in this case. Naturally, the results for
the r-genotype are analogous, replacing W with 1−W.

To illustrate the statistical properties of the random variable W in the case mR = mr, we consider the
situation where α = 0.4 and reproduction laws are Poisson and geometric with common mean 2.55 for
the R- and r-genotypes. We put τ = αmR = 1.02. Based on the simulation of 10 000 simulations over
100 generations with both genotypes surviving this time span, Figure 4 shows the empirical distributions
(displayed as histograms) of the total numbers of R-couples (left plot) and r-couples (middle plot) in
generation 100, normalized by τ100, i.e., ZR100 /τ100 and Zr100 /τ100, respectively. The behaviour of
the proportion of R-couples in generation 100, i.e., ZR100 /(ZR100 + Zr100), is shown in the right plot.
The largest observed values appear for Zr100 /τ100 ≈ W*

r which may be attributed to the fact that the
Poisson reproduction law for R-couples has a smaller dispersion than the geometric reproduction law of
r-couples. As a consequence, the limiting R-genotype frequency is more likely to be less than one-half,
i.e. P (W < 0.5) > 0.5.

6 Concluding remarks

With a focus on Y-linked genes that occur in two allelic forms R and r, this work has dealt with the
classical problem in population genetics of determining genotype frequencies. Adopting a generation point
of view, we studied the evolution of the number of carriers of the two alleles in a two-sex monogamous
population under the assumption that the gene considered has no effect on the mating process. This
means that a female chooses her mate without regard to, or even knowledge of, his genotype (blind
choice). An appropriate model leading to so-called Y-linked bisexual branching processes with blind
choice was provided by González et al. (2009). Their work should also be consulted for good background
information about the biological relevance of studying Y-linkage. By applying advanced mathematical

7



tools from the theory of branching processes, see Asmussen and Hering (1983) (Chapter XI), we derived
the limiting growth rates of surviving genotypes as functions of the mean numbers of females and males
generated by a mating unit (couple).

In particular, a genotype x ∈ {R, r} has positive probability of survival if the mean numbers of female and
male descendants per x-couple are both greater than unity. Our results then show that the growth rates
for the numbers of x-couples and x-males coincide in the event of survival. In particular, both quantities
grow geometrically, and the limiting growth rate equals the mean number of female offspring per x-couple
if the probability α for a descendant to be female is less than 0.5, whereas it equals the mean number of
male offspring per x-couple if α ≥ 0.5. Furthermore, this behaviour does not depend on the extinction
or survival of the other genotype. However, if both genotypes survive, it is impossible for the limiting
growth rate of one type to be determined by the mean number of female offspring per couple of this
type while for the other genotype this asymptotic rate equals the number of male offspring per couple
of the respective type. More precisely, these rates turn out to be either αmR and αmr, or (1 − α)mR

and (1−α)mr, respectively. As a consequence, there exists a dominant genotype with limiting frequency
unity on the event of joint survival if mR 	= mr, while mR = mr entails balanced coexistence of the two
types in the sense that their limiting frequencies are a.s. positive and random. Finally, we found that the
limiting sex ratio equals the probability of being female, and thus does not depend on the Y-linked gene.

In conclusion, the limiting behaviour of Y-linked genes in a bisexual branching model with blind choice
may be different from those obtained in classical genetic models, for example, in models for which the
Hardy-Weinberg law holds true and thus no dominant genotype exists in the population. This may be
due to the fact that the population size is considered constant in these models which constrains the
modes of long-term behaviour. However, even with varying population size a different limiting behaviour
is possible and indeed observed, for example, for Y-linked genes modeled by bisexual branching processes
with preferential mating (see González et al. (2006) and González et al. (2008)), where the behaviour of
one genotype depends on the survival of the other.

7 Proofs

7.1 Setup and basic notation

We shall first provide a formal definition of the model. Consider two independent sequences

{(FRn,l, MRn,l) : n = 0, 1, ...; l = 1, 2...} and {(Frn,l, Mrn,l) : n = 0, 1, ...; l = 1, 2...}
of independent, identically distributed, nonnegative, and integer-valued bivariate random vectors such
that, for x ∈ {R, r}, (Fxn,l, Mxn,l) represents the total number of females and males, respectively, stemming
from the l-th x-couple in the n-th generation. We assume that the distribution of Fxn,l + Mxn,l has mean
mx and finite variance. Moreover, the conditional distribution of (Fxn,l, Mxn,l) given Fxn,l + Mxn,l = k
is multinomial with parameters k, α, and (1 − α), for k ≥ 0 and 0 < α < 1, where α represents the
probability for an offspring to be female. It follows that E[Fxn,l] = αmx and E[Mxn,l] = (1 − α)mx for
each x ∈ {R, r}.

Given the total number of R-couples and r-couples in generation n, denoted by ZRn and Zrn, respectively,
the total number of female and male offspring generated by each genotype is given by

(FRn+1, MRn+1) =
ZRn∑
l=1

(FRn,l, MRn,l) and (Frn+1, Mrn+1) =
Zrn∑
l=1

(Frn,l, Mrn,l),

with the usual convention that the empty sum is defined as zero. Here, Fxn+1 represents the number
of females and Mxn+1 the number of males in the (n + 1)-th generation stemming from x-couples for
x ∈ {R, r}. Consequently, the total number of female and male offspring comprising this generation is
given by

Fn+1 = FRn+1 + Frn+1 and Mn+1 = MRn+1 + Mrn+1,
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respectively.

Given (Fn+1, MRn+1, Mrn+1), and taking into account that monogamous mating is assumed, one obtains

Zn+1 = Fn+1 ∧Mn+1

as the total number of couples in the (n + 1)-th generation. Here a ∧ b := min{a, b} for real numbers
a, b. Moreover, Zn+1 = Mn+1 entails ZRn+1 = MRn+1 and Zrn+1 = Mrn+1, whereas Zn+1 = Fn+1 entails
that the conditional distribution of ZRn+1 is hypergeometric with parameters (Fn+1, Mn+1, MRn+1) (see
Hush and Scovel (2005) for details about the hypergeometric distribution) and Zrn+1 = Fn+1−ZRn+1.
We note that the process (ZRn, Zrn)n≥0 forms a homogeneous Markov chain and that all states (i, j) with
i, j ≥ 1 are communicating (see property P2 in González et al. (2009)).

Finally, we introduce the filtrations Gn = σ(ZR0, Zr0, FRk, MRk, Frk, Mrk, ZRk, Zrk, k = 1, . . . , n), n ≥ 1
(G0 = σ(ZR0, Zr0)) and Fn = σ(Gn−1, FRn, MRn, Frn, Mrn), n ≥ 1. For any i, j ≥ 0, we write P(i,j)(·) for
P (·|ZR0 = i, Zr0 = j) and E(i,j)[·] for E[·|ZR0 = i, Zr0 = j].

7.2 Proof of Result 4.1

We have only to consider the case α = 0.5 and min{αmR, αmr} > 1, referring to the work by González
et al. (2009) for all other cases.

One can fix ε > 0 so small that η1 = α(mR− ε)(1− 3ε/ min{mR + ε, mr + ε}) > 1 and η2 = α(mr − ε)(1−
3ε/ min{mR + ε, mr + ε}) > 1. Let An = {ZRn+1 > η1 ZRn, Zrn+1 > η2 Zrn}, for all n ≥ 0. One then has
that

P(i,j)(A∞,∞) ≥ P(i,j)

( ∞⋂
n=0

{ZRn+1 > η1 ZRn, Zrn+1 > η2 Zrn}
)

= lim
n→∞P(i,j)

(
n⋂

l=0

Al

)

= lim
n→∞P(i,j) (A0)

n∏
l=1

P(i,j)

(
Al

∣∣∣∣
l−1⋂
k=0

Ak

)
. (1)

Since (ZRn, Zrn)n≥0 satisfies the Markov property, one further infers for any n ≥ 1

P(i,j)

(
An

∣∣∣∣
n−1⋂
k=0

Ak

)
= P(i,j)

⎛
⎝An

∣∣∣∣ ⋃
i′,j′>0

{(ZRn, Zrn) = (i′, j′)} ∩
n−1⋂
k=0

Ak

⎞
⎠

≥ inf
i′>ηn

1 i, j′>ηn
2 j

P(i,j)

(
An

∣∣∣∣{(ZRn, Zrn) = (i′, j′)} ∩
n−1⋂
k=0

Ak

)

= inf
i′>ηn

1 i, j′>ηn
2 j

P(i′,j′) (A0) . (2)

Therefore, a suitable lower positive bound for the last infimum (as a function of n) needs to be found in
order to conclude that P(i,j)(A∞,∞) > 0. Towards this end, one first notes that

Ac
0 = {ZR1 ≤ η1 ZR0} ∪ {Zr1 ≤ η2 Zr0}
⊆ {ZR1 ≤ η1 ZR0, MR1 > η1 ZR0, F1 > M1} ∪ {MR1 ≤ η1 ZR0}

∪
(
D ∩ {ZR1 ≤ η1 ZR0, F1 ≤ M1}

)
∪Dc

∪ {Zr1 ≤ η2 Zr0, Mr1 > η2 Zr0, F1 > M1} ∪ {Mr1 ≤ η2 Zr0}
∪
(
D ∩ {Zr1 ≤ η2 Zr0, F1 ≤ M1}

)
, (3)
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where D = AFR ∩AMR ∩AFr ∩AMr, with

AFR = {|FR1−αmR ZR0 | ≤ αε ZR0}, AMR = {|MR1−(1− α)mR ZR0 | ≤ (1− α)ε ZR0}
AFr = {|Fr1−αmr Zr0 | ≤ αε Zr0} and AMr = {|Mr1−(1− α)mr Zr0 | ≤ (1− α)ε Zr0}.

Since (ZR1, Zr1) = (MR1, Mr1) if F1 > M1, one infers that

P(i′,j′)(ZR1 ≤ η1 ZR0, MR1 > η1 ZR0, F1 > M1) = 0 (4)
and P(i′,j′)(Zr1 ≤ η2 Zr0, Mr1 > η2 Zr0, F1 > M1) = 0 (5)

for all i′, j′ ≥ 1. Moreover, as η1 < α(mR − ε), η2 < α(mr − ε), α = 1 − α = 0.5, and reproduction laws
are assumed to have finite variances, it follows with the help of Chebyshev’s inequality that

P(i′,j′)(MR1 ≤ η1 ZR0) ≤ P(i′,j′)(MR1 ≤ α(mR − ε)ZR0)

= P(i′,j′)

⎛
⎝ i′∑

k=1

(MRk0−(1− α)mR) ≤ −εi′

⎞
⎠ ≤ C1

i′
, (6)

for some positive constant C1. Similar arguments give

P(i′,j′)
(
Mr1 ≤ η2 Zr0

) ≤ C2

j′
and P(i′,j′)(Dc) ≤ C3

i′
+

C4

j′
, (7)

for suitable positive constants C2, C3, and C4. Furthermore, on {F1 ≤ M1} ∈ F1, the conditional
distribution of ZR1 given F1 is hypergeometric. Hence, by following the same steps as given in the proof
of Result 6 in González et al. (2009), one obtains for sufficiently large i′ that

P(i′,j′)(D ∩ {ZR1 ≤ η1 ZR0, F1 ≤ M1})
= E(i′,j′)[P(i′,j′)(ZR1 ≤ η1 ZR0 |F1)ID∩{F1≤M1}]

= E(i′,j′)

[
P(i′,j′)

(
ZR1−E(i′,j′)[ZR1 |F1] ≤ η1i

′ − MR1 F1

MR1 + Mr1

∣∣∣∣F1

)
ID∩{F1≤M1}

]
≤ E(i′,j′)

[
P(i′,j′)

(
ZR1−E(i′,j′)[ZR1 |F1] ≤ −δi′

∣∣F1

)
ID∩{F1≤M1}

]
≤ E(i′,j′)

[
exp

(
−2

δ2i′2 − 1
MRn +1

)
ID∩{F1≤M1}

]

≤ exp
(
−2

δ2i′2 − 1
γ4i′ + 1

)
≤ K1e

−B1i′ , (8)

where δ = α(mR − ε)ε/ min{mR + ε, mr + ε} and K1, B1 are suitable positive constants. A similar
estimation yields

P(i′,j′)
(
D ∩ {Zr1 ≤ η2 Zr0, F1 ≤ M1}

) ≤ K2e
−B2j′ , (9)

for all sufficiently large j′ and some positive constants K2 and B2. By combining (3)–(9), one finds that

P(i′,j′)(A0) = 1− P(i′,j′)(Ac
0) ≥ 1− C5

i′
− C6

j′
−K1e

−B1i′ −K2e
−B2j′ , (10)

for some positive constants C5, C6 and sufficiently large i′, j′. Since η1, η2 > 1, it finally follows from (1)
and (2) that

P(i,j)(A∞,∞) ≥ P(i,j) (A0) lim
n→∞

n∏
l=1

inf
i′>ηl

1i, j′>ηl
2j

P(i′,j′) (A0)

≥ P(i,j) (A0) lim
n→∞

n∏
l=1

(
1− C5

ηl
1i
− C6

ηl
2j
−K1e

−B1ηl
1i −K2e

−B2ηl
2j

)
> 0

for all sufficiently large i, j. But since all states with non-zero coordinates are communicating, one has
in fact that P(i,j)(A∞,∞) > 0 for all i, j ≥ 1. This completes the proof.
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7.3 Proof of Result 4.2

The proof is furnished by the following three lemmata. The first two provide us with some useful
martingales and supermartingales. We make the usual assumption that empty sums are defined as 0.

Lemma 1 If mr ≥ mR, then the sequence (Xn)n≥0, defined by

Xn =
Zn

(αmr)n
+

mr −mR

mr

n−1∑
k=0

ZRk

(αmr)k
+ Un, n ≥ 0,

with

Un =
n∑

k=1

E[(Fk −Mk)I{Fk>Mk}|Gk−1]
(αmr)k

, n ≥ 0,

constitutes a nonnegative martingale with respect to (Gn)n≥0 and converges a.s. to a finite random vari-
able. Furthermore, there exists a nonnegative and finite random variable W such that

lim
n→∞

Zn

(αmr)n
= lim

n→∞
ZRn + Zrn

(αmr)n
= W a.s.

If mr > mR, then limn→∞(αmr)−n ZRn = 0 a.s. and limn→∞(αmr)−n Zrn = W a.s.

Proof. A.s. convergence of (Xn)n≥0 follows from the Martingale Convergence Theorem once we have
proved that this sequence is indeed a nonnegative martingale. To this end, let Bn = {Fn < Mn} for
n ≥ 0. For each n ≥ 0, one has

E[Xn+1 |Gn] =
E[Zn+1 |Gn]
(αmr)n+1

+
mr −mR

mr

n∑
k=0

ZRk

(αmr)k
+ Un+1

=
E[Fn+1 IBn+1 + Mn+1 IBc

n+1
|Gn]

(αmr)n+1
+

mr −mR

mr

n∑
k=0

ZRk

(αmr)k
+ Un+1

=
E[Fn+1 |Gn]
(αmr)n+1

+
mr −mR

mr

n∑
k=0

ZRk

(αmr)k
+ Un

=
α(mR ZRn +mr Zrn)

(αmr)n+1
+

mr −mR

mr

n∑
k=0

ZRk

(αmr)k
+ Un

=
Zn

(αmr)n
− (mr −mR)ZRn

αnmn+1
r

+
mr −mR

mr

n∑
k=0

ZRk

(αmr)k
+ Un a.s.

and the last line clearly equals Xn which is obviously nonnegative.
The a.s. convergence of (αmr)−n Zn follows directly from the a.s. convergence of Xn and the fact that
Xn−(αmr)−n Zn equals the sum of two non-decreasing and thus convergent terms, the first of which even
vanishes if mR = mr. If mr > mR, then

∑
k≥0(αmr)−k ZRk < ∞ a.s. and thus (αmr)−n ZRn → 0 a.s.

Lemma 2 The sequences (YR
n)n≥1 and (Yr

n)n≥1, defined by

Yx
n = I{Fn>0}

[
n∏

k=1

(
Mk

Fk
∨ 1
)]

Zxn

((1 − α)mx)n
, n ≥ 1,

for x ∈ {R, r}, where a ∨ b := max{a, b}, are both nonnegative supermartingales with respect to (Gn)n≥0

and thus a.s. convergent to nonnegative random variables.
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Proof. It suffices to verify the supermartingale property. Let Bn be defined as in the previous proof and
put

Rn =
[
Mn

Fn
∨ 1
]

I{Fn>0} for n ≥ 1.

Since {Fn+1 > 0} ⊆ {Fn > 0} for all n ≥ 1, it follows for any x ∈ {R, r} and n ≥ 1 that

E[Yx
n+1 |Gn] =

1
((1− α)mx)n+1

[
n∏

k=1

Rk

]
E[Rn+1 E[ZRn+1 |Fn+1]|Gn]

=
1

((1− α)mx)n+1

[
n∏

k=1

Rk

]
E

[
Rn+1

(
Fn+1 MRn+1

Mn+1
IBn+1 + MRn+1 IBc

n+1

) ∣∣∣∣Gn

]

=
1

((1− α)mx)n+1

[
n∏

k=1

Rk

](
E[MRn+1 |Gn]− E[MRn+1 I{Fn+1=0}|Gn]

)

≤ 1
((1− α)mx)n+1

[
n∏

k=1

Rk

]
E[MRn+1 |Gn]

=
1

((1− α)mx)n

[
n∏

k=1

Rk

]
ZRn a.s.,

which proves the asserted supermartingale property.

The last lemma shows that the ratio of the total number of females to the total number of males in each
generation equals α/(1−α) if both genotypes survive and the growth rate of the total number of couples
over one generation is ultimately greater than unity. It holds under no further assumptions on α, αmR or
αmr. In its proof, we will make use of the following simple analytic fact.

Fact. If (an)n≥0 and (bn)n≥0 are two sequences of positive numbers such that bn → 0 and an = a+O(bn)
for some a > 0 and n →∞, then a−1

n = a−1 + O(bn).

Lemma 3 If A := {lim infn→∞ Z−1
n Zn+1 > 1}∩A∞,∞ has positive probability, then for each 0 < ρ < 1/2

Fn+1

Mn+1
=

α

1− α
+ O(Z−ρ

n ) a.s. on A, as n →∞.

Proof. On A∞,∞, one can write

Fn+1

Mn+1
=

Fn+1

mR ZRn +mr Zrn

mR ZRn +mr Zrn
Mn+1

.

Then, by the above fact, it is enough to prove that, as n →∞,

Mn+1

mR ZRn +mr Zrn
= 1− α + O(Z−ρ

n ) and
Fn+1

mR ZRn +mr Zrn
= α + O(Z−ρ

n )

a.s. on A∞,∞. We shall only prove the first asymptotic relation because the second one follows analogously.
Fix any 0 < ρ < 1/2 and define

An = {|Mn+1−((1 − α)mR ZRn +(1− α)mr Zrn)| ≥ Z−ρ
n (mR ZRn +mr Zrn)}

for n ≥ 0. Applying Chebyshev’s inequality, it follows that, for some positive constant C,

∞∑
n=0

P (An|Gn) ≤
∞∑

n=0

V ar(Mn+1 |Gn)
Z−2ρ

n (mR ZRn +mr Zrn)2
≤ C

∞∑
n=0

1
Z1−2ρ

n

<∞ a.s. on A∞,∞,
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where we have also used that V ar(Mn+1 |Gn) ≤ C(mR ZRn +mr Zrn) a.s. for all n ≥ 0. Therefore, the
conditional Borel-Cantelli lemma yields

A∞,∞ ⊆
{ ∞∑

n=0

P (An|Gn) <∞
}

= lim inf
n→∞

{∣∣∣∣ Mn+1

mR ZRn +mr Zrn
− (1− α)

∣∣∣∣ < Z−ρ
n

}
a.s.

and this gives the desired result.

Proof of Result 4.2

It suffices to consider the case α < 0.5, αmR = 1 < αmr (thus τ = αmr) because the other case follows
in the same way. Further, let P (A∞,∞) be positive, for otherwise there is nothing to verify. Lemma 1
ensures the existence of a nonnegative and finite random variable W such that

lim
n→∞

ZRn + Zrn
τn

= lim
n→∞

Zrn
τn

= W and lim
n→∞

ZRn

τn
= 0 a.s.

Now consider Aρ := {lim infn→∞ ρ−n Zn > 0}∩A∞,∞ for ρ ∈ (1, τ ] and observe that lim infn→∞ Z−1
n Zn+1 >

1 a.s. on this event. If P (Aρ) > 0, then Lemma 3 implies that

0 <

∞∏
k=1

(
α Mk

(1− α)Fk
∨ α

1− α

)
< ∞ a.s. on Aρ. (11)

Rewrite YR
n from Lemma 2 in the form

YR
n = I{Fn>0}

[
n∏

k=1

(
α Mk

(1 − α)Fk
∨ α

1− α

)]
ZRn

(αmR)n
, n ≥ 0,

in order to infer from this lemma in combination with (11) that

lim
n→∞

ZRn

(αmR)n
= lim

n→∞ZRn < ∞ a.s. on Aρ,

which is a contradiction because ZRn must a.s. tend to infinity on A∞,∞. Consequently, P (Aρ) = 0 for
each ρ ∈ (1, τ ], in particular W = 0 a.s. on A∞,∞.

7.4 Proof of Result 5.1

Again, we start by proving a number of preparative lemmata. The first one shows that in the event of
survival of both genotypes the growth rate of the number of x-couples over one generation is ultimately
greater than unity for each x ∈ {R, r}.

Lemma 4 If α ≤ 0.5 and min{αmR, αmr} > 1 or α > 0.5 and min{(1− α)mR, (1− α)mr} > 1, then

lim inf
n→∞

ZRn+1

ZRn
> 1 and lim inf

n→∞
Zrn+1

Zrn
> 1 a.s. on A∞,∞.

Proof. Let η1, η2 > 1 and An = {ZRn+1 > η1 ZRn, Zrn+1 > η2 Zrn} for n ≥ 0. It is enough to prove
that, for some η1, η2,

P
(
lim inf
n→∞ An

)
≥ P (A∞,∞), (12)

because lim infn→∞An ⊆ A∞,∞ and the previous inequality implies that lim infn→∞An = A∞,∞ a.s. To
this end, we define for each N ≥ 1 the stopping time T (N) = min{n : ZRn ∧Zrn ≥ N}, where T (N) = ∞
if ZRn ∧Zrn < N for all n ≥ 0. Obviously

A∞,∞ ⊆ {T (N) < ∞} (13)
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for each N , and

{T (N) = k} = {ZRk ≥ N, Zrk ≥ N, ZRn ∧Zrn < N, n = 0, . . . , k − 1}, k ≥ 1.

Since (ZRn, Zrn)n≥0 forms a homogeneous Markov chain, then

P

( ∞⋂
n=k

An

∣∣∣∣∣T (N) = k

)
= P

( ∞⋂
n=k

An

∣∣∣∣∣ZRk ≥ N, Zrk ≥ N

)
≥ inf

i,j≥N
P(i,j)

( ∞⋂
n=0

An

)

and therefore, by applying (13), one deduces that for every N

P
(
lim inf
n→∞ An

)
≥

∞∑
k=0

P

( ∞⋂
n=k

An

∣∣∣∣∣T (N) = k

)
P (T (N) = k)

≥ inf
i,j≥N

P(i,j)

( ∞⋂
n=0

An

)
P (A∞,∞).

Hence, to obtain (12), it suffices to prove the existence of η1, η2 > 1 such that

lim
i,j→∞

P(i,j)

( ∞⋃
n=0

Ac
n

)
= 0.

This last union of sets can be rewritten as the union of the disjoint sets Bn defined by

B0 = Ac
0, Bn = Ac

n ∩An−1 ∩ · · · ∩A0 , n ≥ 1,

and we are thus going to prove the existence of η1, η2 > 1 such that

lim
i,j→∞

∞∑
n=0

P(i,j) (Bn) = 0.

For all n ≥ 1, the probability of Bn can be calculated as

P(i,j)(Bn) = E(i,j)[IAn−1∩···∩A0P (Ac
n|Gn)],

so that a convenient bound needs to be found for P (Ac
n|Gn). Given α = 0.5 and min{αmR, αmr} > 1, we

infer from (10) that there exist η1, η2 > 1 such that

P (Ac
n|Gn) ≤ C1

ZRn
+

C2

Zrn
+ C3e

−C4 ZRn + C5e
−C6 Zrn a.s. on {ZRn ∧Zrn > M},

for suitable positive constants C1, C2, C3, C4, C5, C6, and M . This inequality continues to hold under
α < 0.5 and min{αmR, αmr} > 1, as was shown in the proof of Result 6 in González et al. (2009).
Moreover, if α > 0.5 and min{(1 − α)mR, (1 − α)mr} > 1, it was also shown there that there exist
η1, η2 > 1 such that

P (Ac
n|Gn) ≤ C7

ZRn
+

C8

Zrn
+ fR(a)ZRn + fr(a)Zrn a.s. on {ZRn ∧Zrn > 0},

for suitable C7, C8 > 0, and 0 < a < 1, where fx(·) denotes the probability generating function of the
x-type reproduction law for x ∈ {R, r}. Having ZRn ≥ ηn

1 ZR0 and Zrn ≥ ηn
2 Zr0 on An−1∩· · ·∩A0, it thus

follows that, regardless of the value of α, there exist constants K1, K2, K3, K4 > 0 and 0 < a1, a2 < 1
such that

E(i,j)[IAn−1∩···∩A0P (Ac
n|Gn)] ≤ K1

iηn
1

+
K2

jηn
2

+ K3a
iηn

1
1 + K4a

jηn
2

2 ,

whence ∞∑
n=0

P(i,j) (Bn) ≤ K1

i

∞∑
n=0

η−n
1 +

K2

j

∞∑
n=0

η−n
2 + K3

∞∑
n=0

a
iηn

1
1 + K4

∞∑
n=0

a
jηn

2
2 .

14



Since η1, η2 > 1, the two first series are convergent and the accompanying factors converge to 0 as i and
j tend to ∞. By the dominated convergence theorem, the two other terms also tend to 0 as i and j tend
to ∞. This completes the proof.

Our second lemma describes, for each genotype, the asymptotic behaviour of the ratio between the
number of males, respectively females, and the number of couples in the previous generation given that
simultaneous survival occurs.

Lemma 5 If α ≤ 0.5 and min{αmR, αmr} > 1, or α > 0.5 and min{(1− α)mR, (1− α)mr} > 1, then for
each 0 < ρ < 1/2

MRn+1

ZRn
= (1− α)mR + O(ZR−ρ

n ),
Mrn+1

Zrn
= (1 − α)mr + O(Zr−ρ

n ),

FRn+1

ZRn
= αmR + O(ZR−ρ

n ) and
Frn+1

Zrn
= αmr + O(Zr−ρ

n ) a.s. on A∞,∞

as n →∞.

Proof. Since all four assertions are obtained in a similar manner, we confine ourselves to a proof of the
first. For n ≥ 0, define

An = {|MRn+1−(1− α)mR ZRn | ≥ ZR1−ρ
n }.

By an appeal to Chebyshev’s inequality and Lemma 4, we infer

∞∑
n=0

P (An|Gn) ≤
∞∑

n=0

V ar(MRn+1 |Gn)

ZR2(1−ρ)
n

≤ C

∞∑
n=0

1
ZR1−2ρ

n

< ∞ a.s. on A∞,∞

for some positive constant C. Hence, by the conditional Borel-Cantelli lemma,

A∞,∞ ⊆
{ ∞∑

n=0

P (An|Gn) <∞
}

= lim inf
n→∞

{∣∣∣∣MRn+1

ZRn
− (1− α)mR

∣∣∣∣ < ZR−ρ
n

}
a.s.

which is the desired conclusion.

Our last lemma shows that, if simultaneous survival occurs and α 	= 0.5, then for each type, either the
number of females of a generation will eventually exceed the number of respective males, or vice versa,
depending on whether α is greater or less than 0.5.

Lemma 6

(i) If α < 0.5 and min{αmR, αmr} > 1, then

A∞,∞ = {FRn < MRn , Frn < Mrn eventually } a.s.

(ii) If α > 0.5 and min{(1− α)mR, (1− α)mr} > 1, then

A∞,∞ = {FRn > MRn , Frn > Mrn eventually } a.s.

Proof. We shall only prove (i) because assertion (ii) is obtained in the same manner. But if α < 0.5 and
min{αmR, αmr} > 1, then Lemma 5 gives

lim
n→∞

FRn

MRn
= lim

n→∞
Frn
Mrn

=
α

1− α
< 1 a.s. on A∞,∞

which completes the proof.
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Proof of Result 5.1

Again we confine ourselves to the case of R-couples. Since α > 0.5 and min{(1−α)mR, (1−α)mr} > 1, we
deduce with the help of Lemma 6 and using the definition of the model that A∞,∞ = {ZRn = MRn, Zrn =
Mrn eventually} a.s. As a consequence, Lemma 5 ensures that, as n →∞,

ZRn+1

ZRn
= (1− α)mR + O(ZR−ρ

n ) a.s. on A∞,∞ (14)

for each 0 < ρ < 1/2. Now observe that, for each N ≥ 1,

ZRN

((1− α)mR)N
= ZR0

N−1∏
n=0

ZRn+1

(1 − α)mR ZRn

to infer upon using (14), Lemma 4, and Theorem 7.28 in Stromberg (1981) that

0 <
∞∏

n=0

ZRn+1

(1 − α)mR ZRn
< ∞ a.s. on A∞,∞

and thus 0 < WR := limn→∞((1 − α)mR)n ZRn < ∞ a.s. on A∞,∞. Replacing ZRn with MRn, the same
result holds true, since

lim
n→∞

MRn

ZRn−1
= (1− α)mR a.s. on A∞,∞

by Lemma 5. All the remaining assertions are obtained in a similar manner.

7.5 Proof of Result 5.2

Here two auxiliary lemmata are needed. For positive integers iR, ir, j, k and x ∈ {R, r}, define

μx(iR, j, ir, k) :=
E[Zxn |MRn = iR, FRn = j, Mrn = ir, Frn = k ]

ix
.

Lemma 7 For each n ≥ 1 and x ∈ {R, r},

μx(MRn, FRn, Mrn, Frn) =

{
Fn / Mn, if Fn ≤ Mn

1, otherwise
a.s. on A∞,∞.

Proof. It suffices to note the following fact, valid for each x ∈ {R, r}. If Fn > Mn, then Zxn = Mxn,
while Fn ≤ Mn implies that the conditional law of Zxn given MRn, FRn, Mrn, Frn is hypergeometric with
parameters Fn, Mn, Mxn, thus E[Zxn |MRn, FRn, Mrn, Frn] = Fn

Mn
Mxn a.s.

The second lemma shows that, for each genotype, the asymptotic ratio between the number of couples
and males of a generation equals α/1 − α, when both genotypes survive. The reader should notice that
this result differs slightly from the corresponding assertion in Lemma 5 which compares the number of
couples of a generation to the number of males in the next generation.

Lemma 8 If α ≤ 0.5 and min{αmR, αmr} > 1, then, as n →∞,

ZRn

MRn
=

α

1− α
+ O(ZR−ρ

n−1) and
Zrn
Mrn

=
α

1− α
+ O(Zr−ρ

n−1) a.s. on A∞,∞

for each 0 < ρ < 1/2.
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Proof. Again considering only the R-genotype, it is enough to prove that, as n →∞,

ZRn

MRn
= μR(MRn, FRn, Mrn, Frn) + O(ZR−ρ

n−1) a.s. on A∞,∞ (15)

and
μR(MRn, FRn, Mrn, Frn) =

α

1− α
+ O(ZR−ρ

n−1) a.s. on A∞,∞ (16)

for each 0 < ρ < 1/2. By Lemma 4, ZRn−1 < ZRn eventually a.s. on A∞,∞. Since ZRn ≤ MRn for all
n ≥ 0, (15) follows if we prove that

ZRn

MRn
= μR(MRn, FRn, Mrn, Frn) + O(MR−ρ

n ) a.s. on A∞,∞. (17)

To this end, we use Chebyshev’s inequality to infer

P (|ZRn−E[ZRn |Fn]| ≥ MR1−ρ
n |Fn) ≤ V ar(ZRn |Fn)

MR2(1−ρ)
n

a.s. on A∞,∞

for each 0 < ρ < 1/2 and n ≥ 0. Next observe that, a.s. on A∞,∞

V ar(ZRn |Fn) =

⎧⎨
⎩

0, if Fn > Mn,(
Fn

Mn
MRn

)(
Mrn
Mn

)(
Mn− Fn

Mn−1

)
, if Fn ≤ Mn,

giving V ar(ZRn |Fn) ≤ MRn a.s. on A∞,∞, because Mn− Fn ≤ Mn−1 on {Fn > 0} and Mrn ≤ Mn.
Hence, by invoking Lemma 4, one obtains

∞∑
n=0

P (|ZRn−E[ZRn |Fn]| ≥ MR1−ρ
n |Fn) ≤

∞∑
n=0

1
MR1−2ρ

n

≤
∞∑

n=0

1
ZR1−2ρ

n

< ∞ a.s. on A∞,∞.

This gives (17) by the conditional Borel-Cantelli lemma because the sets A∞,∞ ∩ {|ZRn−E[ZRn |Fn]| ≥
MR1−ρ

n } and

A∞,∞ ∩
{∣∣∣∣ ZRn

MRn
− μR(MRn, FRn, Mrn, Frn)

∣∣∣∣ ≥ MR−ρ
n

}
are a.s. equal.
It remains to prove (16). If α < 0.5 and min{αmR, αmr} > 1, then Lemmata 6 and 7 ensure that

A∞,∞ = A∞,∞ ∩ {Fn < Mn eventually} ⊆
{

μR(MRn, FRn, Mrn, Frn) =
Fn

Mn
eventually

}
a.s.

and this gives (16) by an appeal to Lemma 3 (with A = A∞,∞, which is allowed by Lemma 4). If α = 0.5
and min{αmR, αmr} > 1, then α/(1− α) = 1 and (16) follows even directly from Lemmata 3 and 7.

Proof of Result 5.2

Consider the assertion for the R-genotype. On A∞,∞, we can write

ZRn+1

ZRn
=

ZRn+1

MRn+1

MRn+1

ZRn

for all n ≥ 0 and then infer, by using Lemmata 5 and 8, that for each 0 < ρ < 1/2

ZRn+1

ZRn
=

(
α

1− α
+ O(ZR−ρ

n )
) (

(1− α)mR + O(ZR−ρ
n )
)

= αmR + O(ZR−ρ
n ) a.s. on A∞,∞ (18)
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as n →∞. Since, furthermore,
ZRN

(αmR)N
= ZR0

N−1∏
n=0

ZRn+1

αmR ZRn

for each N ≥ 0, a combination of (18), Lemma 4, and Theorem 7.28 in Stromberg (1981) allows us to
conclude

0 <

∞∏
n=0

ZRn+1

αmR ZRn
< ∞ a.s. on A∞,∞

and hence the first assertion of Result 5.2. From this and Lemma 5, one can deduce the same result for
MRn. All other assertions follow in a similar manner.

Since Result 5.3 is a direct consequence of Results 5.1 and 5.2, it requires no proof.
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