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Abstract

In 1996 Arquès & Michel [(1996) J. Theor. Biol. 182, 45-58] discovered the

existence of a common circular code in eukaryote and prokaryote genomes.

Since then, circular code theory has provoked great interest and underwent a

rapid development. In this paper we discuss some theoretical issues related

to the synchronization properties of coding sequences and circular codes with

particular emphasis on the problem of retrieval and maintenance of the read-

ing frame. Motivated by the theoretical discussion, we adopt a rigorous sta-

tistical approach in order to try to answer to different questions. First, we in-

vestigate the covering capability of the whole class of 216 self-complementary,

C3 maximal codes with respect to a large set of coding sequences. The re-

sults indicate that, on average, the code proposed by Arquès & Michel has

the best covering capability but, still, there exists a great variability among

sequences. Second, we focus on such code and explore the role played by the

proportion of the bases by means of a hierarchy of permutation tests. The

results show the existence of a sort of optimization mechanism such that
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coding sequences are tailored as to maximize or minimize the coverage of

circular codes on specific reading frames. Such optimization clearly relates

the function of circular codes with reading frame synchronization.

Keywords: Comma-free codes, Circular codes, Reading frame

synchronization, Statistical analysis, Protein synthesis accuracy

1. INTRODUCTION

All the steps of genetic information processing that characterizes nor-

mal functioning of living organisms share an astonishing level of accuracy

that pervades all the biochemical processes involved. DNA replication, RNA

transcription and mRNA editing, protein translation, represent outstanding

examples of such capabilities. In particular, protein translation accuracy de-

pends mainly on the synthesis process performed at the level of the active

site A of the ribosome and the correct charging of tRNA’s with their cog-

nate amino acid. But if the ribosome complex is able to maintain high levels

of translation accuracy, as is experimentally observed, the mRNA template

has to carry sufficient information for ensuring a correct decoding behaviour.

Thus, the mRNA base sequence needs to include (explicitly or implicitly)

appropriate information regarding: punctuation signs, direction of transla-

tion, synchronism with the normal reading frame and faithful assignation of

codons to cognate amino acids. In fact, different organizational structures

of mRNA sequences have been associated to these functions and the abil-

ity of the genetic code of carrying different levels of information along gene

sequences has been recently remarked (Itzkovitz and Alon, 2007).

In some cases, codon translation has been shown to be context depen-
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dent; this indicates that linear reading of codons does not suffice for ensuring

faithful translation of amino acids and punctuation signs. It is well known

that this is particularly true for start and stop signals for which the presence

of specific sequences of bases are needed in order to confirm the function of

the punctuation codons. This is the case, for example, of the Shine-Delgarno

sequence situated some bases up-stream to the start codon site in prokary-

otes. The need for sophisticated biochemical methods of mRNA information

reading for translation accuracy has been put in terms of error correction of

synthesis start signals (May, 2002). Also, in order to ensure a correct amino

acid translation different reading hypotheses have been proposed; these in-

clude the use of intron information (Fordsyke, 1981) and non-linear decoding

of di-nucleotides as a proof-reading mechanism (Gonzalez, 2008b,a).

Another important factor related to the accuracy of protein translation is

the maintenance of the correct reading frame. This capability of the transla-

tion machinery has been associated to base periodicity and to the existence

of circular codes in coding sequences. In particular, base periodicity has been

identified on the purine/pyrimidine alphabet at the gene and gene population

levels by (Shepherd, 1981; Fickett, 1982; Michel, 1986). After these pioneer-

ing works, several researchers, studied these results on the other 2-letter

alphabets (strong/weak, etc.) and the 4-letter alphabet (Arquès and Michel,

1996). Normal reading frame synchronism has been related to the presence

of circular codes in the structure of protein coding sequences (Michel, 2008;

Trifonov, 1987). Such codes also explain the purine/pyrimidine periodicity

Arquès and Michel (1996).

In Farabough and Björk (1999) it is shown experimentally that the ac-
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curacy in amino acid translation is related to the accuracy of frame main-

tenance. This fact is remarkable because it indicates a complex interaction

between the two informational levels similarly to what happens in error de-

tection/correction codes developed for transmitting digital information in

technological applications.

In this paper we study the organizational structure of mRNA information

in relation to the property of frame detection and maintenance by using

circular codes properties. In section 2 we present a theoretical discussion on

code theory in theoretical biology with particular emphasis on comma-free

codes and on circular codes. The theoretical issues arisen from the discussion

are studied in Section 3 by adopting a rigorous statistical approach. In

particular, we aim at i) quantifying the fitness of an arbitrary circular code

with respect to a single sequence or an ensemble of coding sequences ii)

investigating the existence of some sort of optimization mechanism that links

circular codes to coding sequences. These task are accomplished by setting

up a series of tests based on appropriate resampling techniques. In Section

4 we discuss the results and outline the conclusions.

The main results point to the existence of an optimization mechanism

such that coding sequences maximize or minimize the coverage of circular

codes on specific reading frames. Also, the two levels of information re-

garding amino acid recognition and frame maintenance, are indeed indepen-

dent. This means that a coding sequence can carry the information ensuring

frame synchronization independently from the information regarding accu-

rate amino acid translation. Of course, the synthesis mechanism, actuated

by the ribosome, can take profit simultaneously of both kinds of information
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in a synergic process for ensuring overall protein translation accuracy. The

results also shows that the roles of bases according to their relative position

along codons are differentiated: frame maintenance seems to be mainly as-

sociated with the first two bases, while amino acid translation accuracy is

mainly related to the third base.

2. SYNCHRONIZABLE CODES

2.1. Comma-free codes

A typical problem encountered in the transmission of a message composed

by words made up of strings of symbols taken from an alphabet is that of

synchronization. In order to ensure a faithful decoding of words we need

not only a faithful decoding of symbols but also an accurate signalling and

decoding of start and end points of words. This allows to group the alphabet

signs as to form admissible words. In common written language this last

task is implemented by using a separation sign (the blank character) between

adjacent words. For example the following message:

SOME ANTS ARE MIGRANTS

is easily interpreted by identifying any word of the message as the string

between successive blanks. Now, if we eliminate the blanks the message

reads,

SOMEANTSAREMIGRANTS

Now, the semantic interpretation of the message is ambiguous because it can

be decoded in at least another different way, i.e.,

SO MEAN TSAR EMIGRANTS
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All the words decoded in this last way are valid words of the English language

and all the alphabet symbols have been correctly decoded; still, this alterna-

tive decoding is erroneous. The bug resides in the identification of start and

end points of the words, indeed, a frame decoding error. The blank symbol

is used for separating adjacent words but any other symbol not used in word

composition, that is, other than letters of the alphabet, can do the job as well;

since commas are used for separating parts of a sentence, comma is a symbol

that is naturally used for the former scope; for this reason, a code that can be

decoded without the need of separation symbols is said a comma free code.

Moreover, if in a digital communication system all the transmitted words

have the same length (as is the case, for example, of bytes of fixed length in

binary computer systems), the problem of word separation becomes a prob-

lem of synchronization. Since the decoding operation in binary messages is

implemented at a constant symbol rate, say t symbols/second, the time for

decoding words of constant length n is constant and equal to the time needed

to decode n symbols, i.e., nt seconds. Thus, a correct decoding of words is

achieved by starting the decoding process exactly in synchrony with the start

of a word and resetting for decoding a new word periodically after nt seconds.

As the inverse of a time should be interpreted as a frequency, the problem is

equivalent to keeping at the same time the word decoding frequency at 1/(nt)

and the symbol decoding frequency at 1/t. Now, maintaining two frequen-

cies in a fixed rational ratio, i.e., (1/nt) /(1/t) = 1/n, represents a problem

of frequency synchronization; in this spirit, we call the general problem of

word frame decoding, a synchronization problem. Frequency synchronization

allows to achieve accurately the word length; of course, we need also phase
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accuracy for localizing correctly the starting points and reading the words in

their correct frame. Consider the following example:

THE OWL WAS HOT (correct reading frame)

T HEO WLW ASH OT (frame-shift +1 reading)

In this example we see a sequence of words of three letters. Thus, the word

decoding frequency needs to be 1/3 of the symbol decoding frequency. By

ensuring a frequency synchronization at this value (1/3) we achieve a cor-

rect length reading of words. But if we use a wrong starting point (phase

shift) the words are decoded incorrectly. This is shown in the second line

of the example where a frame-shift of 1 symbol (+1 frame-shift) has been

introduced. Observe that now most of the words have no sense so that we

can argue that an error has been introduced. This is the main idea behind

comma free codes: a frame-shift reading produces non-allowed words.

If the synchronization is ensured only at the beginning of one specific

message, any perturbation along the decoding process can break the synchro-

nization and, thus, the correct decoding of the reading frame; for this reasons,

man made digital communication systems implement means for monitoring

(continuously or intermittently) the quality of frequency and phase synchro-

nization and possibly restore them in case of errors. Coding regions of DNA

are very similar to digital computer messages where the alphabet symbols are

the four bases (A,T,C,G) and individual words are formed by strings of three

symbols forming an mRNA codon. The meaning of the words in coding se-

quences of DNA correspond to the coded amino acids which are sequentially
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assembled as to form the proteins in the ribosome complex; this is the so

called translation or protein synthesis step in the central dogma of molecular

biology. Remarkably, the decoding frequency of this process can attain more

than 20 amino acids per second in E. coli at 37 ◦C (Bremer and Dennis,

2008). As in the transmission of any digital message, a faithful protein

synthesis needs appropriate means for ensuring synchronization of the de-

coding process with the correct reading frame of codons. Such ability is

called reading frame maintenance; in this context frequency synchronization

is not important because a correct word length reading is ensured by the

stereo-chemical properties of the ribosome; instead, the correctness of the

starting point is fundamental because once a frame-shift decoding is started

it continues producing wrong amino acids until a wrong (out-of-frame) stop

codon is encountered and the synthesis is stopped. A loss of frame mainte-

nance (or frame-shift) produces a completely erroneous translation because

the genetic code is compact (any sequence of three bases represent an amino-

acid) and frame-shift reading errors usually lead to non-equivalent codons,

that is, codons that represent different amino acids (as it can be deduced by

inspection of the genetic code).

The problem of synchronization (or reading frame location and main-

tenance) in mRNA translation has been identified from the beginning of

molecular genetics. Crick et al. (1957) proposed an ingenious solution for

the problems of both amino acid coding through codons and frame mainte-

nance. They proposed an ancestral genetic code with the property of being

comma-free and non degenerate. In doing so, Crick et al. (1957) introduced

the comma free codes for the first time, an interesting example of communi-
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cation theory problems generated by a biological insight. Indeed, these codes

have provoked a great interest from the mathematical point of view of coding

theory (see e.g. Golomb et al., 1958). The main idea of comma-free codes

is to use a subset of available words in such a way that a concatenation of

valid words in the correct reading frame produces inadmissible words when

it is read out of frame. In this sense, comma free codes are error-correcting

codes. A classic example is represented by the comma free code imple-

mented in a two symbol alphabet, i.e., the R,Y alphabet (R=Purine=A,G;

Y=Pyrimidine=T,C). This alphabet has been proposed as a primeval alpha-

bet related to the origin of the genetic code. If we consider the set formed

by the two codons {RRY, RYY} they can be concatenated in the following

ways:

RRYRRY

RRYRYY

RYYRYY

RYYRRY

If we allow any possible reading frame, the newly generated codons are:

RYR, YRR, YRY, and YYR. Notice that all of them are not allowed codons,

hence, the original set, {RRY, RYY} represents a comma-free code for words

of three-letters over an alphabet of the two symbols, R,Y. If this code is used

for coding amino acids, there are two valid words out of 8 (23) that have

the property of automatic frame retrieval (there are no valid words in the

out of frame reading). However, the price to be paid is the high redundancy
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which amounts to 3/4 of the total quantity of information (2/8 = 1/4 is the

proportion of valid words). Furthermore, despite the great interest arisen,

these kind of codes have not been found in current mRNA protein coding

sequences but could have existed in primitive genes on a purine/pyrimidine

alphabet.

2.2. Circular codes

Another class of codes that allows frame retrieving with less redundancy,

is represented by the so called circular codes. These codes have the property

of synchronizability, that is, they allow to retrieve the correct reading frame

by using an appropriate window of mRNA bases. Circular codes obey less

restrictive rules than comma-free ones. As shown before, comma-free codes

are based on a kind of zip coding; only some codons have a sense and these

are always placed in the correct reading frame. In fact, when such codes are

built on three letter words over an alphabet of four they should have at most

20 meaningful codons out of the 64 possible. Circular codes, instead, are

characterized by less redundancy. They possess the circular property, i.e.,

any word written on a circle (the last letter becoming the first in a torus like

fashion) can be decomposed in at most 1 way in words of the circular code.

Suppose that a given codon belongs to a specific circular code; due to the

circular property, the same code cannot contain any circular permutation of

this codon. This is because the concatenation of a given codon with itself

generates all its circular permutations if read in an out-of-frame situation.

For instance, if the codon ATC belongs to a given code then its circular per-

mutations – TCA, and CAT, which can be generated by reading out-of-frame

the concatenation of the codon with itself ATCATCATC – need to be ex-

10



cluded from such code. Now, since the identical codons, AAA, TTT, CCC,

GGG, coincide with their circular permutations, these codons are immedi-

ately excluded from any circular code. If we eliminate these codons from the

64 possible ones, we are left with 60 codons that can be grouped in 20 sets

of three codons each. These sets are built by a codon together with its two

circular permutations. In this way we can form an arbitrary circular code by

choosing a number of codons from the 20 sets.

A circular code that contains exactly 20 codons is called a maximal cir-

cular code. The total quantity of maximal circular codes is 320. Thus, the

probability of generating by chance a particular maximal circular code is

3−20 ≈ 2.9 × 10−10. For this reason, it is remarkable that specific maximal

circular codes (and also more restrictive versions of them) have been actually

found in genes. In fact, by studying the probability of occurrence of codons

in the reading frames Arquès and Michel (1996) have identified a particular

maximal circular code. The codons that form such code, called the X0 code,

have a preferential frequency of occurrence in the normal reading frame;

moreover, the authors assert that X0 is a common code for both Eukaryotes

and Prokaryote organisms. The code X0 exhibits many interesting symmetry

properties; for example, the first circular permutation of X0, called X1, is

found preferentially in the +1 out-of-frame condition; also, the second cir-

cular permutation, X2, is found in the +2 (or-1) out-of-frame condition. X1

and X2 are also maximal circular codes. This property of X0 is called the C3

property. Moreover, the X0 code has also a peculiar characteristic regarding

its symmetry under the complementary transformation, i.e., when the bases

of a codon are changed by their complementary ones (A↔T, and C↔G), and
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the codon is read in the reverse direction. The X0 code is invariant under

this transformation, or, in other words, the X0 code is self-complementary.

Other maximal circular codes have been found in different life domains

(bacteria, archea, and mitochondria)(Arquès and Michel, 1997; Frey and Michel,

2003, 2006), but these codes do not have the self-complementary property.

However, no biochemical mechanism linked to the functional use of cir-

cular codes has been reported so far. For this reason, tentative explana-

tions for the existence of circular codes have been proposed. For example,

Koch and Lehman (1997) noted that the distribution of bases occurrence in

the different codon positions can generate in a natural way some circular

codes. Assuming that these frequencies are related by a self-complementary

symmetry, the generated codes share also such property. From these as-

sumptions, as shown by Lacan and Michel (2001), it is possible to generate

88 maximal, C3 and self-complementary circular codes. However, in the same

article the authors proved that the common Eukaryote-Prokaryote X0 code

cannot be generated in this way.

The authors implement an algorithm (the flower automaton) for gen-

erating all the 216 maximal self-complementary circular codes. Since the

proportion of bases in actual genomic sequences do not satisfy exactly the

self-complementary condition the issue on which codes can be obtained by re-

laxing the conditions established in Koch and Lehman (1997) remains open.

Moreover, recent works (Arquès and Michel, 1997; Frey and Michel, 2003,

2006) reveal the presence of many other circular codes in different organ-

isms; also, the existence of evolutionary mechanisms responsible of codon

variations from the archetypical common X0 circular code are hypothesized
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(Arquès et al., 1999; Ahmed et al., 2010). Moreover, Michel et al. (2008)

identify a relation between the comma-free codes and the circular codes

by constructing a hierarchy of these two classes of codes. All these results

prompt two fundamental questions: i) quantifying the fitness of an arbitrary

circular code with respect to a single sequence or an ensemble of coding

sequences ii) investigating the existence of some sort of optimization mech-

anism that links circular codes to coding sequences. In the next section, we

explore these issues by means of a rigorous statistical approach.

3. STATISTICAL ANALYSIS

In their approach Arquès and Michel (1996) (see also Michel (2008)) start

from a set of coding sequences and derive circular codes from the frequency

distribution of the codons in the three reading frames of such set. In par-

ticular, they find a common circular code, (AM code in the following) from

a large set of Eukaryote and Prokaryote coding sequences. Our approach is

complementary to theirs in that we look for the best codes among the whole

class of 216 C3 codes. To this aim, we define a measure (called covering capa-

bility) for describing the ability of a given circular code in covering a mRNA

sequence. Then, we study the covering capability of the whole class of max-

imal, C3, and self-complementary codes (denoted by C, in the following) in

a sample of coding sequences. Moreover, we explore the covering capability

of the 216 codes as a function of their distance from the AM code. We focus

on the best code in terms of mean covering capability and assess the signifi-

cance of the result by means of a bootstrap test. In addition, we analyse how

the covering capability of a code is linked to i) the organizational structure
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of a sequence ii) the proportion of bases in the three codon positions iii)

the reading frames. To this aim we implement a series of permutation tests.

Finally, we analyse in some detail the distribution of the covering capability

of some of the best codes. The 216 C3 codes used have been taken from the

lists in Michel et al. (2008).

We define the covering capability Cx,s of a circular code x ∈ C for a

sequence s, a parameter which describes the number of bases covered simul-

taneously by the code x0 in frame, x1 on the frame-shift +1 and x2 on the

frame-shift +2 conditions. Formally we have the following:

Definition 1. Let s = (c1, . . . , cn) be a sequence of codons where (s0, s1, s2)

denote the sequence s read in frame, with frame shift +1, with frame shift

+2, respectively. In terms of bases, the i-th codon of the r-th frame shift is

denoted by {cri} = (b3i+r−2, b3i+r−1, b3i+r). Define the coverage of the circular

code x = {x0, x1, x2} over s as:

Cx,s =
card

[⋃2

r=0

⋃n

i=1 I(c
r
i , xr)

]
3n

(1)

here, and in the following, card [A] is the cardinality of the set A. I(a, A) is

the function defined as:

I(a, A) =

⎧⎪⎨
⎪⎩
a if a ∈ A

∅ else

(2)

Notice also that xr, with r = 0, 1, 2, means x0, x1, x2.

As an example, let

s = (c1, . . . , c10) = ATGGATGCAGTTAAGAGTGAGGTTGCTCTG
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Figure 1: Scheme explaining the covering capability Cz,s of a circular code z formed by

10 codons, with respect to a sequence of codons s. The circular code is represented as z0,

while z1 is the first circular permutation of z0, and z2 is the second circular permutation

of z0. s0, s1 and s2 denote the sequence s read in frame, with frame shift +1, with frame

shift +2. The black letters in Cz,s are the bases of s covered simultaneusly by z0, z1, z2

circular codes. The dashed lines guide the eye between codons.
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be a sequence composed by 30 bases, see Fig. 1. Denote the sequence read

in frame as s0. Now take a (non-maximal) circular code z of 10 codons.

In the figure we report z0, i.e. the code z itself, z1, i.e., the first circular

permutation of z0, and z2, i.e., the second circular permutation of z0. We

see that out of the 10 codons of s0, there are 4 codons, GAT, CTG, GTT

(twice), which belong also to z0 (in black in the figure); hence, we say that

z0“covers” 12 bases of s0. The same procedure is repeated with the code z1

as to obtain the covered bases of s1. In this case, the number of the covered

bases of s1 is still 12. Lastly, we consider z2 and s2 and get 6 covered bases.

Taking into account the “union” of the coverages by z0, z1 and z2, we obtain

the total covered bases of the sequence s, represented in black in the last line

of Fig. 1, namely 20 bases. Finally, the covering capability (in percentage)

results Cz,s = 20/30× 100 = 66.7%.

In order to study the covering capability of the whole C class, we use a

data set consisting of 3408 nucleotide sequences obtained from genbank1 by

means of the R package seqinr 2(Charif and Lobry, 2007). In detail, we have

extracted all the coding sequences from the 13 classes of proteins reported

in Tab. 1, where the number of sequences analyzed for each class is listed.

Such ensemble has been reduced by eliminating duplicate and short (< 120

base pairs) sequences. The final data set consists of 3248 sequences. For

each code x ∈ C we have obtained a distribution of covering capability whose

1http://www.ncbi.nlm.nih.gov/genbank/
2The query script is available upon request.

16



Table 1: Classes of proteins whose sequences have been analysed. The third and forth

columns report the number of sequences and the number of kilobases (kb) of each class,

respectively.

protein No. of seqs kb

1 albumin 142 101.5

2 alpha-globin 57 15.2

3 beta-globin 141 50.3

4 carboxypeptidase A 31 35.2

5 globulin 6 2.9

6 glycogen synthase 346 458.3

7 heat shock protein 70 1022 1148.1

8 insulin 45 9.9

9 lactate dehydrogenase 164 113.7

10 lysozyme 327 161.5

11 phosphoglycerate kinase 1077 1221.7

12 phosphorylase kinase 10 18.2

13 troponin C 40 17.6
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Figure 2: Histogram of the average covering capability Cx of the 216 circular codes. The

dashed line shows a gaussian kernel density estimate.

mean we call the average covering capability denoted by Cx and defined as:

Cx =
1

3248

3248∑
s=1

Cx,s

Figure 2 displays the histogram of the average covering capability Cx of the

216 circular codes. The dashed line represents a kernel density estimate. The

distribution appears bimodal, with one peak around 53.8% and a second one

around 63.8%. Such bimodality is representative of a cluster of 12 codes

whose average covering capability is around 66%. Moreover, the average

covering capability ranges from ≈ 35.53% up to ≈ 66.88% that corresponds

to the AM code. This result shows that also from this perspective, the AM

code is a special one, in that, on average, it performs better than the other

codes.

We can go further into the matter by computing Cx as a function of the set

distance between each C code and the AM code. If x and y belong to the class
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Figure 3: Distance from the Arquès and Michel code versus average covering capability

of each circular code. The 88 points framed with a square belong to the subset of Koch

and Lehmann codes.

C, then the distance δx,y between them is defined as δx,y = 20− card{x ∩ y}

(see also Ahmed et al., 2010). The result is reported in Fig. 3.

The Figure shows that codes having average covering capability similar

to the AM code are also close to it from the point of view of the distance

δAM,y. Note that the set distance δAM,y is always a multiple of 2 as the

codes are self-complementary. In particular, there are 6 codes at distance

2 from the AM code, that is, these codes differ from the AM code by 2

codons. Moreover, the greatest number of codes (42) are at distance 14

and at the greatest possible distance 20 there are 8 codes. As mentioned

before, CAM = 66.88%. Notice that there are 11 codes with average covering

capabilities greater than 65% (see dashed line in Fig. 3). Also, in the figure

we have framed the points belonging to the subset of Koch and Lehmann

codes (KL codes, in the following), formed by 88 codes taken from Table 3 of
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Lacan and Michel (2001). We see that 2 out of such 88 codes are at distance

2 from the AM code, and there are 3 codes with average covering capabilities

greater than 65%, i.e. very close to the AM code. Notice that, for any given

distance, the best code is of the non-KL type; on the contrary, the worst one

is always of KL type. We can make a coarse assessment of the probability of

the joint occurrence that by chance the best code is of non-KL type for all

the distances. At a given distance 2k with k = 1, . . . , 10 we have that the

event the best code is of KL type can be modelled as a Bernoulli variable with

parameter p2k = n∗2k/n2k where n2k is the overall number of codes at distance

2k and n∗2k is the number of codes of KL type at distance 2k. Hence, the joint

probability is given by
∏10

k=1(1− p2k) = 0.0035. This result assumes that the

variables are independent and that the codes are equally likely; still, we can

be quite confident of the unlikeliness that such an occurrence happened by

chance.

Consider now the circular code having the average covering capability

equal to 66.33%, which is the second highest after the AM code (call it c2 ).

Figure 4 shows the distributions of the covering capability of such two codes.

From the figure, we see that, for instance, the AM code, around its max-

imum, covers 598 sequences out of 3248 (i.e. 18.4%) with a covering ca-

pability between 62.5% and 67.5%. It appears that both distributions are

quite similar and bimodal in shape. The histograms are not clearly sepa-

rated, so at first sight, we are induced to think that the difference between

the average covering capabilities of the AM code and the one of c2, i.e.,

d = 66.88 − 66.33 = 0.55%, is not significant. Nevertheless, by means of a

rigorous statistical analysis, it turned out to be the opposite.
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Figure 4: Distributions of the covering capability of the Arquès and Michel code (continu-

ous line) and of a code c2 ∈ C with the second highest average covering capability (dashed

line).

Formally, the problem reduces to testing the null hypothesis H0, that the

populations from which the observed samples have been drawn have the same

mean or, equivalently, whether the difference of the mean values is zero. In

this context, there are two aspects which deserve some care. The first one

is that we are not legitimate to introduce the hypothesis of either normality

or homoscedasticity, on which “traditional” statistical methods rest. The

second aspect is that the samples under study are not independent; in other

words we are in presence of paired data. A well-known example of such a

situation is that of measuring on the same subject the effect (if any) of two

different pharmacological treatments. If both measurements are made on

the same subject, the variability between subjects is eliminated from the

comparison, so that small treatment effects can be detected, even though

the response of different subjects may be quite different. In our case, the

“subjects” are the coding sequences and the “treatments” are the circular
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codes.

Because of the above mentioned issues, we exploited a nonparametric

bootstrap method (Efron and Tibshirani, 1993) for paired data. The proce-

dure consists of the following steps. We test the null hypothesis H0 : C̃AM =

C̃c2 againstH1 : C̃AM > C̃c2 , where C̃AM and C̃c2 denote the population means.

Let {ds} = {CAM,s − Cc2 ,s}, s = 1, . . . , 3248, be the observed sample of the

differences with mean d̄ = CAM −Cc2 = 66.88− 66.33 = 0.55%. A bootstrap

sample is obtained by randomly sampling 3248 times, with replacement, from

{ds}, this means to bootstrap the values CAM,s and Cc2 ,s (s = 1, . . . , 3248)

in pairs. As a result, any ds can be drawn more than once, or not at all.

Let {d∗s}1 the first bootstrap sample, that is the first sample formed by the

resampled values from {ds}. Compute the first bootstrap replication d̄∗1, as

the mean of {d∗s}1. Repeat the above computation a large number of times

B (e.g., B = 1000) to obtain B bootstrap replications d̄∗b , (b = 1, . . . , B).

As usual, we choose the level α such as 0.05 or 0.01 and reject H0 if the

proportion of the bootstrap replications less than 0 (i.e. the bootstrap p-

value card{d̄∗b < 0}/B) is lower than α. In the present case, the result of

the bootstrap test is unambiguous: the bootstrap p-value is 0 so that the

null hypothesis is rejected, that is, the average covering capabilities of the

AM code is greater than those of other codes. Notice that, both the AM

code and the c2 code do not belong to the KL subset. We have repeated the

above analysis for the best code of such subset and have found similar results.

In other words, also this latter code has i) a bimodal coverage distribution

similar to the two codes studied above; ii) an average covering capability

significantly lower than that of the AM code.
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In the following, we investigate in detail how the covering capability of the

AM code is related to the structural information of a sequence under differ-

ent randomization schemes (corresponding to different biological hypotheses)

and for different frames. Contrarily to the coverage analysis performed above,

this implies the study of the coverage of the AM code in terms of codons in

the three reading frames, separately. In practice, we implement a series of

permutation tests. The first scheme is produced by permuting without con-

straints the bases of the sequence (we denote this scheme by no constr.). In

this scheme, for example, a letter from the first base position can be swapped

with letters from the second or third base position; thus, only the global pro-

portions of bases are preserved. Moreover, we explore a set of constrained

permutation schemes that are associated to a hierarchy of hypotheses. In

particular, we introduce schemes that involve the permutation of the bases

in their position. In such a way, permuted sequences will have the same pro-

portion of bases as the original sequence in the corresponding position. For

instance, in the scheme denoted by (b1, ·, b3) the first and the third bases of

each codon are permuted (preserving their position) while the second bases

do not vary. The most structured situation is created by permuting only the

third bases of the sequence (·, ·, b3). In this scheme, besides the proportion

of bases, also the amino acid sequence is mostly preserved. Notice that the

schemes (b1, b2, b3) and no constr. are different in that in the former, letters

are permuted by keeping their codon position. The permutation framework is

similar to the bootstrap framework as the results of the two tests are asymp-

totically equivalent. In this context, however, permutation tests are preferred

as they allow to preserve the proportion of bases in permuted sequences so

23



that the hypotheses tested are biologically meaningful.

The main motivation of the inquiry is the following: there is a mecha-

nism that allows the synchronization of the frame by means of circular codes;

such mechanism is related to the covering capability of the codes. Now, the

hypothesis we are testing is Does the mechanism depend on the proportion

of bases in the three positions of the codons? Operationally, this translates

into the following system of hypotheses:

As far as the covering is concerned:

⎧⎪⎨
⎪⎩
H0 : the original sequence does not differ from permuted sequences

H1 : the original sequence does differ from permuted sequences

In other words, if H0 is true if we permute the sequence and preserve the

proportion of bases then the coverage obtained from the permuted series

will be the same of that derived from the original series. The procedure

is the following: for each sequence and for the AM code X0 together with

its circular permutations X1 and X2 i) choose a permutation scheme and

generate B randomly permuted sequences (e.g. B = 1000); ii) compute the

coverage of the AM code on the B permutations for the three frames as to

obtain the distribution of the coverage on the permutations. iii) perform

a right tail test: reject H0 if the coverage of the AM code on the original

sequence is greater than the 95-th percentile of the permutations distribution.

The results are reported in Tab. 2 where we show the percentage of rejections

of the tests over the 3248 sequences for each permutation scheme (rows), for

the three frames and for X0, X1, X2. For instance, consider the scheme

(b1, ·, ·) (only the first bases of the codons in the sequence are permuted); we
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see that for the sequences in frame and for X0, we reject H0 in the 44.2% of

the 3248 sequences; in other words, for 1436 sequences the coverage of the

X0 code of the sequences read in frame is significantly greater than those of

the permutations.

Table 2: Percentages of rejections of the permutation tests over the 3248 sequences at

level 95%, right tail, for the three frames and for X0, X1, X2. Each row corresponds to a

different permutation scheme.

in frame frame shift +1 frame shift +2

bases X0 X1 X2 X0 X1 X2 X0 X1 X2

(b1, ·, ·) 44.2 11.5 3.4 13.2 12.1 21.1 15.3 15.3 11.0

(·, b2, ·) 39.4 7.9 6.6 17.8 18.0 17.6 9.0 4.5 29.2

(·, ·, b3) 34.8 11.8 10.2 9.8 15.8 10.5 8.7 7.4 17.8

(b1, b2, ·) 42.2 9.5 4.7 14.0 17.1 19.2 9.6 6.7 22.6

(b1, ·, b3) 41.8 9.6 4.6 13.8 17.1 19.0 9.7 6.6 22.4

(·, b2, b3) 42.0 9.5 4.4 14.0 17.0 19.2 9.8 6.8 22.4

(b1, b2, b3) 42.2 9.5 4.5 13.7 17.0 19.2 9.5 6.7 22.6

no constr. 81.2 8.4 8.2 8.7 79.6 10.4 7.5 8.1 80.8

The most striking results of Tab. 2 are the following. If we permute

without constraints on the base position (no constr. scheme) we reject H0 in

about 80% of the sequences when the coverage of X0 (X1, X2, respectively)

is computed upon in-frame (frame shift +1 and +2, respectively) sequences.

We refer to the combinations: code X0 – sequence in frame, code X1 –

sequence frame shift +1, code X2 – sequence frame shift +2, as the natural

combinations. This means that the coverage of the AM code in the natural
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combinations drops significantly when the sequences are permuted. This

finding suggests the presence of some sort of informational structure of the

sequences that the circular codes are able to capture. The next step is to

test the hypothesis that such structure is related to the proportion of bases

in their codon positions. This hypothesis is tested by means of the scheme

(b1, b2, b3). Clearly, the rejection percentage passes from 81.2 to 42.2 for the

coverage of the X0 code on the sequences read in frame. Interestingly, the

percentages drop from 80% to about 20% for the other two cases. Also, the

permutation of just one base is sufficient to cause the drop. Apart from

the natural combinations, the general trend indicates that, in practice, the

coverage of the codes on the original sequences is never greater than those of

permuted sequences in almost every scheme.

These results suggest that coding sequences might be optimized in a way

as to maximize the coverage in the natural positions. On the other hand,

with the previous analysis, nothing can be said on a possible minimization

process acting out of the natural positions. In other words, consider a coding

sequence read in frame; if such sequence is built as to maximize the number of

codons that belong to the code X0, then, is it also built in order to minimize

the number of codons that belong to X1 and X2? In order to answer to this

question we need to implement the tests on the left tail of the permutation

distributions. The procedure is the same of that described above with the

exception of point iii) that becomes iii′) perform a left tail test: reject H0

if the coverage of the AM code on the original sequence is smaller than the

5-th percentile of the permutations distribution. The results are reported

in Tab. 3. For instance, consider the scheme (b1, ·, ·) we see that for the
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sequences in frame and for X0, in 4.6% of the 3248 sequences the coverage

of the X0 code on the sequences read in frame is significantly smaller than

those of the permutations.

Table 3: Percentages of rejections of the permutation tests over the 3248 sequences at

level 95%, left tail, for the three frames and for X0, X1, X2. Each row corresponds to a

different permutation scheme.

in frame frame shift +1 frame shift +2

bases X0 X1 X2 X0 X1 X2 X0 X1 X2

(b1, ·, ·) 4.6 33.5 32.3 12.1 10.5 9.1 5.9 5.4 11.2

(·, b2, ·) 4.3 22.1 30.3 15.6 11.8 9.5 21.0 26.4 6.0

(·, ·, b3) 6.9 17.2 18.9 7.8 7.4 6.4 8.6 20.8 4.5

(b1, b2, ·) 6.2 28.2 35.0 14.3 11.3 8.7 12.5 22.6 7.5

(b1, ·, b3) 6.1 28.0 35.0 14.5 11.4 8.8 12.2 22.8 7.4

(·, b2, b3) 6.1 28.1 34.8 14.4 11.7 8.7 12.0 22.7 7.6

(b1, b2, b3) 6.2 27.6 35.0 14.3 11.5 8.9 11.9 22.9 7.5

no constr. 6.9 60.3 73.4 65.1 7.9 44.4 51.2 73.5 7.6

The results of Tab. 3 are somehow complementary to those of Tab. 2. In

fact, from the no constr. row we see that the percentages of rejection for non

natural combinations are high. This means that coding sequences in frame

are made as to minimize the proportion of codons that belong to the codes X1

and X2, with a higher percentage for X2. This result is correlated with the

unexpected code asymmetry between X1 and X2 observed in reading frames

(see Fig. 2 in Arquès et al., 1997). Also, frame shift +1 and +2 sequences

seem to minimize the proportion of codons that belong to the code X0 and X1
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respectively. In conclusion, the results suggest that the proportion of bases

in their codon positions is strictly connected to the organizational structure

of a sequence and can play a role in the frame synchronization process. In the

next section we review and discuss all the results in view of this perspective.

4. DISCUSSION AND CONCLUSIONS

In this paper we have analysed the capability of C3 (AM-like) codes in

describing circular properties of mRNA and DNA protein coding sequences.

The work of AM identifies an unique code for Prokaryote and Eukaryote

coding sequences possessing particular symmetry properties. In particular

the AM code is self-complementary, that is, if a codon belongs to X0 then

also its complementary reversed version belong to X0. Moreover, the cir-

cular permutations of X0, that is, X1 and X2, are also maximal circular

codes (though not self-complementary). In relation with symmetry proper-

ties, Koch and Lehman (1997) proposed that the AM code should be a con-

sequence of a self-complementary relation regarding the frequency of bases

in the different codon positions (along the normal reading frame). The KL

model is based on the hypothesis of absence of correlation between succes-

sive bases in (protein) genes. Entropy methods, in particular, showed that

this hypothesis is not verifed in current genes (Lacan and Michel, 2001, e.g.).

Therefore, the observation of a KL code in genes might be incompatible with

a frequency dependence of bases in codon positions. In the framework of

coding theory Lacan and Michel (2001) showed that i) all the 216 codes can

be generated with a flower automaton algorithm and ii) the AM code, as

expected, does not belong to the KL class. However, it is not clear if this dif-
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ference in code building is significant at the functional biological level. The

matter is important because, if circular codes can be generated simply from

base proportions, then no particular organizational structure that relates a

sequence to the circular codes is needed. We have investigated the issue from

two different perspectives. In the first approach we have analyzed the cov-

ering capability of the entire class of 216 C3 codes. Also we have compared

systematically the covering capability of KL versus non-KL codes. In the

second approach we have studied how the covering capability of a circular

code is related to the dependence structure and to the proportion of bases

of a coding sequence. This is achieved by destroying the dependence of a

sequence in a controlled fashion by means of different permutation schemes.

Such schemes allow to preserve or destroy local and global proportions of

bases as to build proper statistical tests.

Our first result confirm the primacy of the AM code over the entire class

of 216 C3 codes. This has been substantiated by means of a bootstrap test.

However, by using a set distance we found codes of the KL type that are

very close to the AM code. Figure 3 shows the average covering capability

of the 216 C3 codes as a function of the distance from the AM code. Here,

KL codes have been identified with a square. A simple visual inspection

shows that the KL codes are interspersed over the entire set. However, for

any given distance, the best code is of the non-KL type; on the contrary,

the worst one is always of KL type. The probability that by chance the best

code if of non-KL type for all the distances is about 0.0035.

Even if the average covering capability of the AM code is significantly

higher than those those of other codes a look at the distribution of the cover-

29



ing over the set of sequences shows an interesting scenario. In fact, the AM

code, the second one in average covering capability, and the best code of KL

type, have similar distributions (see also Fig. 4). All of them are bimodal

with maxima placed around the same values, and all of them show similar

dispersion features. The dispersion of the distribution becomes an important

aspect of the discussion because it is intimately related to the validity of the

original hypothesis of the existence of a single common code. In fact, the

high variability of the covering capability, which can be as low as 35.5% for

the AM code, shows that some codes (including KL ones) perform better

than the AM code for specific sequences and/or classes of proteins.

In the second part of the analysis we have studied the connections be-

tween the organizational structure of a sequence, the covering capability of

the AM code, the proportion of bases and the reading frames. To this aim,

we have implemented a permutation test framework. The results show that

there is always a preferred frame for the AM code and its circular permu-

tations. A permutation that preserves the global proportions destroys the

covering in nearly 80% of the sequences. But what happens with the remain-

ing 20%? Probably, due to the high dispersion discussed above, the left tail

sequences are those that the AM code cannot cover well. Thus, the cover-

age is not destroyed because there is not coverage at all. If we implement

a similar permutation on the base positions but keep the base frequencies

(scheme (b1, b2, b3)) we obtain a drastic fall in the percentages (from 80 to

approximately 45%). This means that nearly half of the sequences lose their

circular properties also when the frequency distribution of the bases in their

position is maintained. This fact represents a clear evidence of the existence
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of an organizational level beyond the frequency distribution; still, it seems

that this property is not universal as it is present in only one half of the

sequences. In fact in approximately the 35% of the sequences preserving the

local proportions of bases is sufficient for maintaining the circular properties.

Of course, this analysis is put forward for the AM code and does not ensure

that other codes do not give different results. Again, this fact points to the

need of defining in biological terms the appropriateness of a given code for

describing a specific sequence.

Another interesting result is obtained by permuting only one letter at

a time. It can be observed that the most stable situation is represented

by permuting the third letters. This means that the circular coding is most

insensible to permutations in the third letter. Since the third letter represents

the true degree of freedom of the genetic code, it seems that synonymous

codons can be chosen relatively freely without destroying the circular coding

features of the entire sequence. In this way, the third letter might be used

for implementing error correction mechanisms that do not interfere with the

frame synchronization process.

In conclusion, the analysis presented contributes to shed light upon the

role played by circular codes in the processing of genetic information. At

the same time, new questions arise and more theoretical work is required.

A direction of future investigation is that of exploring the connections be-

tween circular codes and the theory associated to the mathematical model for

the genetic code presented in Gonzalez (2004, 2008b); Gonzalez et al. (2006,

2008, 2009). Preliminary studies seem to indicate a clear relation between

circular codes, global transformations and dichotomic classes.
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