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Abstract23

Persistence of an infectious agent in a population is an important issue in epi-

demiology. It is assumed that spatially fragmenting a population of hosts in-

creases the probability of persistence of an infectious agent and that movement

of hosts between the patches is vital for that. The influence of migration on

persistence is however often studied in mean-field models, whereas in reality the

actual distance travelled can be limited and influence the movement dynam-

ics. We use a stochastic model, where within- and between-patch dynamics are

coupled and movement is modelled explicitly, to show that explicit considera-

tion of movement distance makes the relation between persistence of infectious

agents and the metapopulation structure of its hosts less straightforward than

previously thought. We show that the probability of persistence is largest at

an intermediate movement distance of the host and that spatially fragmenting

a population of hosts is not necessarily beneficial for persistence.

Key words: stochastic model, migration, movement distance, patch24

neighbourhood, lattice25

Introduction26

Once an infectious disease invades a population, it can go extinct immediately,27

fade out after an epidemic or persist in the population. In homogeneously mixing28

populations, infectious agents tend to die out when the host population size is29
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below a critical community size (Bartlett, 1957; Grenfell & Harwood, 1997),30

related to the demographic processes that regulate the inflow of new susceptible31

hosts in the population (Anderson & May, 1992). However, populations are32

often structured in space and then the situation becomes much more subtle.33

Examples are humans living in cities and towns (Hall et al., 2007), cattle on34

farms (Le Menach et al., 2005; Kao et al., 2007) or wildlife populations, for35

example the water voles in the U.K. (Telfer et al., 2001), the badgers in the36

U.K. (Rogers et al., 1998) or the great gerbils in Kazakhstan (Davis et al.,37

2007a). These populations live in a set of spatially separated patches of suitable38

habitat, connected to each other by migration of the individuals (e.g. travel of39

humans between cities, purchasing and selling of cattle and juvenile migration of40

wildlife). Each patch moreover, has its own dynamics influenced by the incoming41

and outgoing migrants and by the local conditions. Such a population is called42

a (spatial) metapopulation (Hanski, 1999; Leibold et al., 2004). The patch size43

measured is the size of the inhabiting population of interest and ranges from44

very large (e.g. cities, farms), to very small (for example wildlife often lives in45

small (family)groups).46

The structure of such metapopulations for a given species is distinct from sin-47

gle homogeneously mixing populations, resulting in differences in dynamics and48

persistence of the species itself, and other species it interacts with. For exam-49

ple, infectious disease agents both influence and are influenced by the structure50

and migration of their host (Grenfell & Harwood, 1997). Hanski (1999) showed51

that, if the total population size is below the critical community size, then spa-52

tially fragmenting this population has a positive influence on the ability of an53

infectious agent to persist and that notably movement of hosts between patches54

is crucial. The latter aspect has received substantial attention in the literature55

(e.g. Swinton et al., 1998; Keeling, 2000; Park et al., 2002; Hagenaars et al.,56

2004; Lindholm & Britton, 2007).57

However, there is a much broader range of aspects that influence and con-58

trol persistence in a metapopulation (Swinton et al., 1998): (i) demographic59

aspects: birth and death; (ii) epidemic aspects: length of infectious period and60
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the specifics of the transmission process; (iii) spatial aspects: movement distance61

of the host and frequency of migration or length of stay in patches. Notably the62

interaction between these aspects appears to be important, and is not well un-63

derstood. Indeed, seemingly new phenomena arise from analysis of real systems64

(Davis et al., 2007b, 2008). In this theoretical paper we aim to contribute to65

this debate and explore the question: how does the interaction between all the66

aspects mentioned shape persistence of an infectious disease agent in a spatially67

structured host population with movement modelled explicitly?68

For studying persistence in a metapopulation often a mean-field approxima-69

tion is used (Gog et al., 2002; McCallum & Dobson, 2002; Jesse et al., 2008),70

but here we introduce a (preferred) movement distance of the host: hosts are71

only allowed to migrate to patches within this movement distance. The set of72

patches that can be reached by individual hosts migrating out of a given patch73

within one time step is seen as the neighbourhood of that patch. The effect of74

the neighbourhood of a patch on persistence has been studied both in an eco-75

logical setting (Durrett & Levin, 1994; Hanski & Ovaskainen, 2000; Vuilleumier76

et al., 2007) and in an epidemiological context (Levin & Durrett, 1996; Rhodes77

& Anderson, 1996).78

Keeling (2000) pointed out that there are two ways of coupling between79

subpopulations. The first is based on movement rate of individuals between80

subpopulations, which is the coupling we use in the present paper. The second81

is by using a parameter that describes how much the global average affects82

the dynamics of a subpopulation. Keeling used the latter way of coupling and83

concluded that persistence is maximized at intermediate levels of coupling (in84

the second interpretation), but expects the qualitative behaviour of both ways85

of coupling to be similar. In this paper we show that using a movement rate and86

in addition a movement distance indeed results in persistence being maximized87

at intermediate levels of coupling.88

Here, we take a much broader view by regarding an epidemiological model89

with demography, explicit modelling of movement (distance and frequency of90

movement) and coupling of between- and within-patch dynamics. Among other91
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results, we show that there can be an optimum for persistence at intermediate92

neighbourhood size. We explore the reasons behind this and how persistence93

of an infectious agent is influenced by the demographic, epidemic and spatial94

parameters. Moreover, we show that, in contrast to what was generally believed,95

a metapopulation is not necessarily more beneficial for the persistence of an96

infectious agent compared to a single homogeneously mixing population.97

Methods98

Model99

The model describes a host population divided into subpopulations, each inhab-100

iting a patch with suitable habitat (details in Jesse et al., 2008). In contrast to101

Jesse et al. (2008) we now consider a spatially explicit metapopulation, where102

patches are structured in space, in our case on a regular square lattice.At least103

initially there are no unoccupied patches and the patches are identical in the104

sense that all parameter values are the same for all subpopulations. An overview105

of the parameters and their default values used in the numerically studied cases106

is given in Table 1.107

In each patch there is homogeneously mixing and SIR-type dynamics oc-108

curs, with hosts being in one of the three following states: susceptible (S),109

infectious (I) or recovered/immune to the infection (R). The infectious disease110

is transmitted directly and hosts do not lose immunity, but eventually die and111

are replaced by susceptibles. Births are locally density dependent, meaning that112

they depend on the number of hosts present in that patch.113

Parameter Value Definition
P 100 number of patches
K 10 carrying capacity
b 0.2 birth rate per week
μ 0.01 natural mortality rate per week
m [0, 1] movement rate per week
β 10 transmission rate per week
γ 0.5 recovery rate per week

Table 1: Definition and default values of the model parameters for numerically studied cases.
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Random variable Distribution Parameter Definition

B(Nx, t) Poisson max
[
0; bNx(t)(1− Nx(t)

K
)
]

# births
D(Zx, t) Binomial μ # deaths

Inf(Sx, t) Binomial 1 − exp(−βIx(t)
Nx(t)

) # infecteds

Rec(Ix, t) Binomial γ # recovereds
Mout(Zx, t) Binomial m # emigrants
Min,Z(x, t) Multinomial 1/P # immigrants

Table 2: The random variables with their distribution and parameters. The state is given
explicitly or by Z with Z ∈ {S, I, R}.

The model is stochastic and discrete in time, one time step denotes one114

week, where Sx(t), Ix(t) and Rx(t) denote the number of hosts per infectious115

state in patch x at time t. The total number of hosts in patch x at time t is116

given by Nx(t). Events occur successively in the interval [t, t+1) in the order of117

birth, death, infection, recovery and migration. Of course, ordering the events118

is artificial, but it is necessary in a discrete model so that in the bookkeeping119

individual-level events, such as dying or recovering, are taken into account in a120

consistent way. The complete set of stochastic difference equations is given by:121

Sx(t + 1) = Sx(t) − D(Sx, t) − Inf (Sx, t) + B(Nx, t) − Mout(Sx, t) + Min,S(x, t)

Ix(t + 1) = Ix(t) −D(Ix, t) + Inf (Sx, t) − Rec(Ix, t) −Mout(Ix, t) + Min,I(x, t)

Rx(t + 1) = Rx(t) − D(Rx, t) + Rec(Ix, t) − Mout(Rx, t) + Min,R(x, t)

The random variables and their distributions (Table 2) are calculated with122

the number of hosts at that point in the time interval, using the order of the123

events; for example, the number of newly infected hosts at time interval [t, t+1)124

depends on the number of infectious hosts at time t − 1 minus the number of125

infectious hosts that died at time t.126

Structure127

Above we described the dynamics within each patch, but these patches are con-128

nected to each other via migration of the hosts, which we also model explicitly.129

Where in Jesse et al. (2008) a mean-field approximation was used, here a finite130

spatially explicit structure is looked at. The patches to which a host can mi-131

grate, are given by the adjacency matrix A. This adjacency matrix describes132
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the connections between the patches of the metapopulation: if Aij = 1 it is133

possible to move from patch i to patch j, otherwise Aij = 0. We view the134

metapopulation of patches as being arranged spatially in a finite regular lattice135

where a node is a patch and where an edge indicates a connection in the above136

sense. The network is non-directed, which means that if movement is possible137

from patch i to patch j, then it is also possible from patch j to patch i, i.e.138

Aij = Aji.139

Of particular interest is the movement distance of the hosts, measured as

path length in the lattice. For movement distance d, a host can migrate along

at maximum d edges in the regular lattice of patches. The host can, with equal

probability, migrate to all patches that can be reached within this number of

edges. This movement distance can be seen as the capacity of the host to migrate

to patches at that distance. When the movement distance equals 1, hosts can

only migrate to their nearest neighbours and when the movement distance is

large enough, hosts can move to every patch. The matrix M gives the patches

to which a host can move within a movement distance d and has entries such

that, for i �= j:

Mij =

⎧⎨
⎩

1 if patch i and j are connected, i.e. (
∑

d Ad)ij > 0

0 otherwise
,

and Mii = 0, preventing hosts from migrating back immediately to the patch140

they just left (i.e. no loops of length 1 are allowed). The matrix M is calculated141

by means of
∑

d Ad, where Ad
ij gives the number of paths of length d from patch142

i to patch j.143

Simulations144

The model is stochastic and hence there can be large variation between runs of145

the model, even though the set of parameter values is identical. The stochastic146

difference equations were simulated for a range of parameter values. The pro-147

gram is written in R (package 2.10.1, www.cran.r-project.org). At time t = 1 one148

infectious host is introduced into one patch in an otherwise completely suscepti-149

ble metapopulation. For the results the location of this (index) patch, where the150
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first infectious host is introduced, does not matter. This coincides with findings151

of Pautasso & Jeger (2008), when they studied a model with SI-type dynamics152

on a directed network, where each node represents an individual.153

After introduction of this one infectious host in the metapopulation, there154

are four possible situations: the infectious agent may (i) not spread at all in155

the initial patch, (ii) spread in the initial patch, but not between patches (iii)156

spread within and between patches and then fade out or (iv) spread within and157

between patches and (quasi)persist in the metapopulation (Jesse et al., 2008).158

Here, we are interested in the fourth case, persistence in the metapopulation.159

We defined the infectious agent to be persistent in a simulation if it is still160

present in the population after twice the expected life span of the host. The161

expected life span of a host is 1/μ, therefore the simulations were run for 2/μ162

time steps. The choice of twice the expected life span is arbitrary, but within163

this number of time steps the infectious agent has survived two generations of164

hosts, and has spread between the patches.165

The results obtained are from 1000 simulations. This number of simulations166

per datapoint was chosen such that variation between several runs of 1000 sim-167

ulations for the same set of parameter values is small. Therefore, increasing the168

number of simulations smoothens the graphs depicting our results, but does not169

alter or add to conclusions we draw.170

The default parameter values are shown in Table 1. The default death rate171

equals 0.01, meaning that the life span of a host is on average 100 weeks, i.e. a172

host lives around two years. And the default recovery rate equals 0.5, so that173

a host is infectious for on average two weeks. The metapopulation consists of174

100 patches, all with carrying capacity 10. This carrying capacity is chosen175

such that persistence of the infectious agent in a single patch is not possible.176

In a single homogeneously mixing population of size 1500 around 90% of the177

simulations will result in a persisting infection for the default parameter values.178

The metapopulation is arranged on a square 10 × 10 lattice, with reflective179

boundaries. These boundaries can be considered as natural boundaries such as180
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water or mountains, which cannot be crossed by the host.181

Results and Conclusions182

In this section we will first present the influence of the spatial aspects on persis-183

tence of infectious agents in the metapopulation. Then the demographical and184

epidemiological aspects will be presented.185

Spatial aspect186

In Figure 1a, the influence of the spatial aspects on persistence of the infectious187

agent are explored. In this figure, contour lines show the fractions of simulations188

with persisting infection as functions of the migration rate and the movement189

distance of the host. Fixing the movement distance and then increasing the190

migration rate resulted in a higher fraction of simulations with persisting in-191

fection. A higher migration rate means that hosts spend a shorter time in one192

patch and thus change patches more frequently. By changing patches more fre-193

quently, hosts increase the number of contacts with other hosts and therefore194

have a higher probability of finding sufficient susceptible hosts to infect while195

they are still infectious.196

Fixing the migration rate and increasing the movement distance shows a197

maximum in the fraction of simulations with persisting infection at intermediate198

movement distance. This result is also shown in Figure 1b for four different199

migration rates. Clearly there is a peak at intermediate movement distance,200

except for relatively low migration rates (a migration rate of 0.2 means that a201

host moves once every 5 weeks). The default infectious period is two weeks, so202

at low migration rates the host spends, on average, most of its entire infectious203

period within one patch. Since the patch size is too low for persistence, there is204

only a very small fraction of simulations showing persistence.205

Effect of movement distance on patch level206

As already shown, varying only the movement distance already results in dis-207

similarities between the fraction of simulations with persisting infection. In208
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order to understand where these dissimilarities come from, we focus on the dif-209

ferences that occur on patch level. Because the infectious hosts are the key for210

persistence of the infectious agent in the metapopulation, we focused on some211

properties of patches with respect to infectious hosts that might be influenced212

by the movement distance:213

i) the total number of time steps (not necessarily consecutive) that a patch214

contains at least one infectious host;215

ii) the number of times that a patch gets infected, i.e. how often are there216

transitions from no infectious host in a patch to at least one infectious host217

in that patch;218

iii) the total number of infectious hosts per patch, i.e. the sum of the number219

of infectious hosts at each time step in a patch;220

iv) the number of consecutive time steps a patch contains an infectious host.221

Only simulations with persisting infection were taken into account when calcu-222

lating the above measures. The results are presented as box-and-whisker-plots223

in Figure 2.224

It is immediately clear that the medians for movement distance 6 and 14 are225

approximately the same for all four measures, but that the range differs: the226

variation between patches for intermediate movement distance is larger than227

for large movement distance. Movement distance 14 corresponds to a situation228

where the patches are almost fully connected and the system starts behaving229

like one single homogeneously mixing population.230

On average a patch contains 35 out of the 200 time steps (17.5% of the time)231

at least one infectious host for low movement distance (Fig. 2a). The average232

number for the other movement distances is slightly higher. The number of233

transitions from no infectious hosts in a patch to at least one is the lowest234

for the low movement distance (median 15 times, Fig. 2b). This might be235

due to (infectious) hosts returning more often back to a patch they visited236

just a few time steps ago (fewer patches to choose from). On average the237
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total number of infectious hosts per patch is about 1.5 times larger for low238

movement distance (median of 120) than for the other two movement distances239

(Fig. 2c). Because the number of infected patches at each time step is equal240

for all movement distances, the number of infectious hosts in each patch must241

be higher for low movement distance than for the other movement distances.242

Again, this is probably caused by hosts returning more often to a patch they just243

visited at low maximum movement distances. Finally in Figure 2d the median244

number of consecutive time steps a patch is inhabited by infectious hosts is245

shown. Basically, this is just the total number of time steps a patch is infected246

divided by the number of transitions from having no infectious host in a patch247

to having at least one. Here, the low movement distance shows that a patch248

contains at least one infectious host for a longer uninterrupted number of time249

steps.250

With the four measures we looked at, we can conclude that at low movement251

distance, patches are on average longer infected and contain over the whole time252

period more infectious hosts than at large movement distance. This implies that253

the infectious agent remains within the same area at low movement distance254

until that area runs too low on available susceptible hosts. At large movement255

distance on the other hand, the infectious agent is more scattered throughout the256

whole metapopulation, patches get (re)infected more often, but it is for a short257

period of time and with only a few infectious hosts. Hence, at low movement258

distance the spreading of the infectious agent occurs more locally and gradually259

becomes more global when the movement distance increases.260

Demographical and epidemiological aspects261

As mentioned earlier, persistence of an infectious agent is also influenced by262

demographical and epidemiological aspects. The fraction of simulations with263

persisting infection is therefore studied as function of each of the four parameters264

controlling these aspects: birth rate, death rate, transmission rate and recovery265

rate. The fraction is shown in Figure 3 for three different movement distances,266

namely 2, 6 and 14, and for a single homogeneously mixing population.267
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This single homogeneously mixing population consists of one patch with a268

carrying capacity K of 1000 hosts; the total size of the metapopulation and the269

single population are therefore equal. Moreover, this figure shows how a change270

in a relevant parameter influences the fraction of simulations with persisting271

infection. For all parameters, the fraction of simulations with persisting infection272

is the highest for intermediate movement distance, corresponding to the previous273

result that there is a maximum in the fraction of simulations with persisting274

infection at this movement distance.275

The natural death rate (i.e. not related to the infection) determines the276

life span of a host and influences also, because of the density-dependent birth277

rate, the population turnover: a lower death rate implies a longer life span and278

therefore a slower population turnover; i.e. a slower inflow of new susceptible279

hosts. The life span is used to define when an infectious agent is persistent280

in our set up, so varying the death rate means that the number of time steps281

before an infectious agent is called persistent varies as well. Increasing the death282

rate, i.e. increasing population turnover, has a positive effect on the fraction283

of simulations with persisting infection (Fig. 3a). At a low death rate, while284

the speed by which the infectious agent spreads through the whole population285

remains equal, it takes longer for new susceptible hosts to arise. This time gap is286

more difficult to bridge in a single homogeneously mixing population, where all287

susceptible hosts are immediately available for contact to the infectious agent.288

Therefore, a low death rate is more beneficial for persistence in a metapopulation289

than in a single homogeneously mixing population.290

The birth rate in this model is density dependent; a high birth rate implies291

that each subpopulation is around carrying capacity and dead hosts are replaced292

by susceptible new-borns quickly. Hence, increasing the birth rate also increases293

the fraction of simulations with persisting infection (Fig. 3b). At low birth rate,294

a single homogeneously mixing population is more beneficial for the infectious295

agent, because the few susceptible hosts that are born per unit of time are found296

quickly, while in the metapopulation an infectious host needs time to find the297

susceptible hosts left. When the birth rate is large, susceptible hosts arise faster298
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and are immediately available for contact with infectious hosts in case of a single299

homogeneously mixing population. This could mean that the infectious agent300

‘burns through’ the available susceptibles too fast to allow persistence. It is301

then advantageous for the infectious agent to be in the metapopulation: not all302

susceptible hosts are immediately available for contact, allowing the infectious303

agent to persist in the population for a longer time (i.e. the risk of fade out is304

spread).305

In Figure 3c the fraction of simulations with persisting infection is shown for306

various transmission rates. For low transmission rates the fraction of simulations307

with persisting infection is higher in a metapopulation than in a single homoge-308

neously mixing population, but the opposite holds at high transmission rates.309

In a single homogeneously mixing population an infectious host has immediate310

access to all susceptible hosts. At high transmission rate, this availability of all311

susceptibles in a single homogeneously mixing population is beneficial for the312

infectious agent, because even when there are only a few susceptibles left, there313

is a high probability that they will be contacted. In a metapopulation on the314

other hand, an infectious host needs time to travel to patches where the few315

susceptibles remain, and before successful contact has been made this infectious316

host may have died or recovered. At low transmission rate, the above situations317

are reversed.318

The recovery rate determines the infectious period of a host and Figure 3d319

shows that the fraction of simulations with persisting infection as a function of320

recovery rate is hardly influenced by the movement distance of the host. When321

the recovery rate is large, the infectious period is short and, on average, fewer322

infectious hosts leave the patch during the infectious period, making it more323

difficult for the infectious agent to spread to other patches. The movement324

distance does not have a large influence on this, because the ability to spread is325

here, in the first instance, mostly determined by the chance to leave the patch326

at all.327

Furthermore, a short infectious period results in a population of many re-328

covered hosts. In Figure 3d, the fraction of simulations with persisting infection329
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coincides for both the single homogeneously mixing population and a metapop-330

ulation where hosts have an intermediate movement distance. However, this331

fraction is very much influenced by the migration rate of the host (not shown).332

Persistence of the infectious agent is more difficult at low migration rate, because333

the infectious host does not change patches frequently enough to sustain the in-334

fectious agent. A high migration rate in a metapopulation performs slightly335

better than a single homogeneously mixing population, because running out of336

susceptible hosts happens faster in a single population than in a metapopulation.337

Finally, both the shape of the lattice and the number of patches do not338

qualitatively change the results (not shown). Reshaping the lattice, for example339

into 4 × 25 with the same total population size as the 10 × 10 case, still gives340

a peak at the same intermediate movement distance of 6. Interestingly, the341

mean distance of one patch to any other patch is for the 4 × 25 lattice 9.2342

steps and for the 10 × 10 lattice 6.6. Increasing the number of patches to, for343

example, a 12× 12 lattice also gives a peak at intermediate movement distance.344

The latter peak occurs at a slightly higher movement distance compared to the345

above cases, however, the 12× 12 case is not directly comparable, because both346

the total population size and the mean distance from one patch to any other347

is larger. Thus the size of the lattice does not appear to essentially change the348

results.349

Balance350

Persistence of an infectious agent in a metapopulation results from a balance351

between the spatial, demographical and epidemiological components. We stud-352

ied the components in isolation above, but now look at their combined effect353

(Fig. 4).354

Each panel in this figure shows curves leading to the same fraction of simu-355

lations with persisting infection (‘isopersistence level’) as function of the death356

and the transmission rate. The isopersistence levels are shown for low, interme-357

diate and high movement distance in a metapopulation and for a single homo-358

geneously mixing population and for the four parameter combinations low/high359

14



migration rate and low/high birth rate. For all four subfigures the default re-360

covery rate is used, because Figure 3d showed that for the various movement361

distances differences in the fraction of simulations with persisting infection are362

not strongly affected by the recovery rate. In order to compare situations we363

used in Figure 4a,c an isopersistence level of 0.3 and in Figure 4b,d a level of364

0.6. These levels are chosen with use of Figure 3d, where for migration rate 0.4365

the fraction of simulations with persisting infection is around 0.3 at the peak366

and for migration rate 0.8 around 0.6.367

At low birth rate the total population size is smaller than at high birth rate,368

because in the latter situation the population is close to carrying capacity. For369

low birth rates both the panels with low and high migration rates (Fig. 4a-b)370

show that in a single homogeneously mixing population the isopersistence level371

is achieved at much lower transmission and death rates than in a metapopula-372

tion. In that situation, a single homogeneously mixing population is thus more373

beneficial for the infectious agent than a metapopulation, because at a low birth374

rate susceptible hosts are not replenished at the same rate as at a high birth375

rate; it takes more time before new susceptible hosts arise. When they do arise376

it is more difficult for an infectious host in a metapopulation to successfully meet377

this susceptible host, because the infectious host first has to move to a patch378

with sufficient susceptible individuals within its infectious period. In a single379

homogeneously mixing population the new susceptible hosts are immediately380

available for contact.381

At high birth and low migration rate (Fig. 4c), the isopersistence level for382

the single homogeneously mixing population and the intermediate movement383

distance almost coincide. At high transmission rate the isopersistence levels of384

all situations coincide, because infectious hosts then have successful contacts385

with more susceptible hosts per unit of time.386

At both high birth and high migration rate (Fig. 4d), the differences between387

the four cases are very small, especially at a large transmission rate all movement388

distances coincide more or less with the single homogeneous mixing population.389

All panels in this figure show the same pattern as described in previous390
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sections: persistence of an infectious agent in a metapopulation is easier accom-391

plished at intermediate movement distance of the host.392

Discussion393

In this paper we showed that persistence of an infectious agent in a metapopu-394

lation results from of a balance between spatial, demographical and epidemio-395

logical parameters. We showed on lattices a robust non-linear relation between396

the fraction of simulations with persisting infection and movement distance of397

hosts, with this fraction being largest at an intermediate movement distance of398

the host. Furthermore we showed that dividing a single homogeneously mixing399

population into several smaller populations that are connected to each other, is400

not necessarily beneficial for the persistence of the infectious agent.401

The insight we obtain is based on simulations only. While an important402

part of relevant parameter space has been explored, there is considerable addi-403

tional value in providing analytical proof of the observed qualitative phenom-404

ena, to obtain robustness of results and deeper understanding. There have been405

many approaches in the literature where authors have focussed on analytical406

results concerning infectious disease in spatial metapopulations, and even more407

concerning single-species populations, predator-prey systems, and notably host-408

parasitoid systems. Mostly these studies concentrate on stability analysis of the409

trivial equilibrium (i.e. invasion problems, see Jansen & Lloyd, 2000, and refer-410

ences given there) or on providing analytical expressions for the expected time411

to extinction from a quasi-steady state (see N̊asell, 1999; Hagenaars et al., 2004;412

Lindholm & Britton, 2007, and the references given there), as persistence in413

stochastic models is always temporary (Hanski, 1998; Lloyd-Smith et al., 2005).414

In discrete-time models it is not possible to determine the quasi-stationary415

distribution and other measures have to be used; for example, persistence time416

(Rhodes & Anderson, 1996) or a certain number of time steps the infectious dis-417

ease is present in the metapopulation (Swinton et al., 1998; Vuilleumier et al.,418

2007; Jesse et al., 2008; Courcoul & Ezanno, 2010). We focus on persistence419

(long-term quasi-stability), i.e. we look at the fraction of realisations of the420
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stochastic process persisting for a time beyond a certain minimum (set arbitrar-421

ily by twice the average life span of the host species). We noticed that increasing422

this minimum did not qualitatively change the results. However, taking twice423

the life span of the host as measure for persistence for hosts with very short life424

spans, may lead to a time scale that is too short to speak of persistence.425

In our system we merged a stochastic description with discrete spatial struc-426

ture, with on top of that non-uniform dispersal (due to a maximum movement427

distance for hosts). This combination did not allow us to obtain analytical re-428

sults, nor does the set-up allow for easy simplified models with only two patches,429

say, that might be amenable to direct analysis. We can, however, compare to430

studies where discrete space was studied analytically with different choices for431

dispersal. Rohani et al. (1996) conclude that, in predator-prey type interac-432

tion with uniform dispersal, the equilibrium becomes unstable, compared to a433

single homogeneous population, when there is a big difference in the dispersal434

between the two species. We have identical dispersal for our two ‘predator-prey435

species’ (infected and susceptible individuals, respectively). In our set-up we436

show, by simulation, differences in persistence, if dispersal is not uniform, but437

constrained. In the discussion of Rohani et al. (1996), it is argued that the438

equilibrium may destabilise when dispersal is not uniform. Similar equilibirum439

(in)stability results are discussed analytically by White & White (2005) studying440

coupled map lattices with integro-differential equations. They show in addition441

that destabilising influences of dispersal can only occur in “exploiter-victim”442

type of relationships.443

In a much simpler model, Funk et al. (2005) study the dynamics of virus par-444

ticles in a spatial metapopulation of host cells. This is basically a one-species445

system because only the virus particles disperse. The dispersal mechanism,446

however, is closer to ours, as dispersal is constrained to be to (eight) nearest447

neighbours only. The analytical results allow a large class of dispersal mech-448

anisms to be studied. One of their results is that if dispersal is too fast the449

infection cannot be maintained. Webb et al. (2007) show, for a host-parasite450

system, that highly local systems, i.e. where dispersal is limited, have reduced451
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persistence of the infectious agent. Both these observations (Funk et al., 2005;452

Webb et al., 2007) are, although from very different models, in broad agreement453

with our finding of an optimal persistence for intermediate dispersal frequency454

and distance. This is in contrast to results by Hagenaars et al. (2004) who study455

persistence (measured as time to extinction from a quasi steady state and as456

mean outbreak duration) in a spatial and stochastic SIR set-up similar to ours.457

Their analytical and simulation results show a rather more monotone rise in458

persistence as a function of increasing between-patch contacts. However, there459

is an important difference with our model: their model has no actual dispersal460

within the metapopulation, the only migration comes from outside the system,461

and is essentially a model with two levels of contacts (within-patch and with462

individuals in other patches) for individuals that are otherwise fixed in their463

patch. Together, the above comparisons to related studies lead us to expect464

that our observation of non-monotone persistence as a function of coupling cru-465

cially depends on the physical migration between patches of individuals of at466

least two types in an “exploiter-victim” relationship, with constraints on the467

distance over which individuals can migrate within a time step.468

An important characteristic of a metapopulation is that the infectious hosts469

have to move to find susceptible hosts. At low movement distance infectious470

hosts encounter a lower number of susceptible hosts than the average host,471

because the number of susceptible hosts is depleted by the presence of other472

infectious hosts. These infectious hosts are competing with each other over the473

available susceptibles and thereby reduce the potential for each one of them to474

transmit the infectious disease to a susceptible (Rhodes & Anderson, 2008). At475

a relatively high migration rate, i.e. with a short sojourn time per patch, a476

host can meet more others than at a low migration rate. An infectious host will477

therefore have a larger number of contacts with susceptible hosts, because they478

visit more patches during their infectious period. Compared to a single homo-479

geneously mixing population, hosts in metapopulations can have the advantage480

that they do not reach all susceptible hosts at the same time, which can improve481

the probability of survival of the infectious agent.482

18



As is also shown by Cross et al. (2005), the relation between migration483

and recovery is very important for the ability of an infectious agent to persist,484

because the infectious period determines the time an infectious host has to infect485

susceptible hosts. And the migration rate is an important determinant of the486

level of mixing.487

Regarding movement we studied a wide range of migration rates: from mi-488

grating almost never, to migrating every week. We also assumed that all indi-489

viduals experience the same migration rate. In reality there is a lot of difference490

in movement behaviour among species (Hawkes, 2009). Movement may, for ex-491

ample, be restricted to mainly juveniles leaving their nest to settle elsewhere or492

to foraging outside the own habitat patch. The first mechanism can be thought493

of at low migration rates, although there are no age-classes defined in the model.494

The latter one at high migration rates, where individuals leave their own patch,495

visit another one and then return to their home patch again.496

This situation could be even more resembled when the probability to move to497

a certain patch depends on the distance of that patch with respect to the resident498

patch. We assumed random dispersal, within the movement distance, but it499

can also be argued that hosts may have a preference for nearby patches. The500

influence of a dispersal function, favouring nearby patches, on the persistence501

of the infectious agent should therefore be studied more carefully.502

In this paper we defined the movement distance by the number of edges503

crossed. Another option would have been using a radial movement distance,504

where individuals can move to all patches within a certain radius around their505

resident patch. However, using a radial movement distance instead, does not506

affect the results. Durrett & Levin (1994) also concluded that the qualitative507

behaviour is independent of the exact definition of movement distance when508

they studied interacting particle systems for various definitions of movement509

distance.510

There have been studies of the effect of the neighbourhood of a patch on the511

persistence of the infectious agent in a spatially structured population. In an512

ecological context Vuilleumier et al. (2007) and in an epidemiological context513
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Rhodes & Anderson (1996) concluded that increasing the movement distance514

maximises the probability of persistence. They considered patches as the unit515

of study and had many unoccupied patches in the population. Another study516

(Courcoul & Ezanno, 2010) did take within-patch dynamics into account, but517

they also considered indirect transmission. The probability of infection of a sus-518

ceptible host in a patch depended then not only on the available infectious hosts519

in the same patch, but also on the prevalence of the infection in neighbouring520

patches. Courcoul & Ezanno (2010) varied the number of neighbouring patches521

that influence the infection dynamics in a patch, but did not see a peak in the522

fraction of simulations with persisting infection at an intermediate number of523

neighbours. However, due to the different ways persistence can be defined, one524

should be cautious in comparing the various studies.525

The model used in this paper is as simple as possible. For example, it is not526

taken into account that infectious hosts might experience reduced mobility or527

death as a result of the infectious disease. Another assumption is continuous528

birth, as opposed to seasonal birth, where births occurs in a short period of529

a year, which is often the case in animal populations. Seasonal births reduces530

the probability of persistence of the infectious agent, because there are fewer531

infectious hosts between epidemics, which increases the probability of fade-out532

due to stochasticity (Grassly & Fraser, 2006). But, each year there is also a burst533

of new susceptible hosts into the population (Altizer et al., 2006), creating the534

possibility of a new epidemic. One of the next steps in exploring the balance535

of the various aspects (spatial, demographical and epidemiological) involved in536

the persistence of an infectious agent would be to include one or more of the537

above mentioned options.538
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Figure 1: In a) the contour lines mark the area where the combination of the migration rate
and the movement distance yield the same minimum fraction of simulations with persisting
infection. In b) the fraction of simulations with persisting infection is shown with migration
rate 0.2 (dotted line), 0.4 (dashed line), 0.6 (solid line) and 0.8 (dot-dashed line). The results
are taken from 1000 simulations and the default parameter values are P = 100, K = 10,
β = 10, γ = 0.5, b = 0.2 and μ = 0.01.
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Figure 2: A box-and-whisker-plot, where the thick line denotes the median, the box encloses
50% of the observations and the whiskers show the 2.5 and 97.5 percentile. Panel a) shows
the total number of time steps that a patch contains at least one infectious host is shown;
panel b) the number of times that a patch gets infected, i.e. the number of transitions from
no infectious host in a patch to at least one infectious host; panel c) the total number of
infectious hosts per patch and panel d) the number of consecutive time steps a patch contains
an infectious host. The results are from 1000 simulations with persisting infection, run till
t = 200. The default parameter values are P = 100, K = 10, β = 10, γ = 0.5, b = 0.2 and
μ = 0.01.

26



death rate

fr
ac

tio
n

0.005 0.01 0.015 0.02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

birth rate
fr

ac
tio

n

0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

transmission rate

fr
ac

tio
n

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

recovery rate

fr
ac

tio
n

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d)

Figure 3: The fraction of simulations with persisting infection for a range of values of four
demographical and epidemiological parameters. In each panel, the results (from 1000 simu-
lations) are shown for the movement distance 2 (dashed line), 6 (solid line) and 14 (dotted
line) and for a single homogeneously mixing population (grey line). A migration rate of 0.6
is used, and the default parameter values are P = 100, K = 10, β = 10, γ = 0.5, b = 0.2 and
μ = 0.01.
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Figure 4: Curves for parameter combinations leading to the same fraction of simulations with
persisting infection, where for panel a) and c) this fraction is 0.3 and for panels b) and d)
the fraction is 0.6. The results are for movement distance 2 (dashed line), 6 (solid line) and
14 (dotted line) and for a single homogeneously mixing population (grey line). As migration
rates 0.4 (panel a) and c)) and 0.8 (panel b) and d)) are used and birth rate 0.1 (panel a) and
b)) and 0.3 (panel c) and d)). The other parameters are set to the default values: P = 100,
K = 10 and γ = 0.5.
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