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We adopt a field-theoretical approach to study the structure and thermodynamics of a spa-

tially confined fluid interacting with the Yukawa potential. We derive analytic expressions

for the pressure, the Helmholtz free energy, the correlation function, the density profile, and

the adsorption. Different simple analytic expressions of the density profile are compared with

the numerical estimation of the mean field results. Beyond the mean field approximation, we

show that fluctuations can contribute significantly to the properties of the system. Notably

they lead to a desorption phenomenon regardless of the sign of the interaction. As a conse-

quence, non monotonous density profile at the wall and adsorption curves as a function of

the density are found for some systems. This behaviour rationalizes the ionic depletion phe-

nomenon responsible for the anomalous behaviour of the electric capacitance as a function of

temperature. Particular attention is given to the contact theorem condition.

Keywords: Inhomogeneous systems; Yukawa potential; Classical field theory; Contact

theorem;

1. Introduction

Systems with a Yukawa-like potential of interaction are of considerable theoretical

interest. The simplicity of the potential allows for a description of thermodynamics

and structure of the Yukawa fluid. For hard spheres interacting with a Yukawa

tail analytical solutions exist in the mean spherical approximation [1]. Any finite

range interaction potential between point particles can be decomposed to a sum of

Yukawa potentials with arbitrary accuracy. Such decompositions have been used

for interaction potentials in simple liquids [2], colloid [3, 4] and other systems [5].
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The study on non-uniform systems of particles interacting with the Yukawa

potential remains well behind the research carried out on spatially uniform sys-

tems. One of the popular techniques of description of fluids near the surface is

the Henderson-Abraham-Barker approach [6]. In this approach the description of

a fluid near a surface reduces to that of a mixture of a fluid and of hard spheres

considered in the limit of infinite dilution and infinite hard sphere size. As a con-

sequence, the calculation of the fluid density profile reduces to the solution of the

Ornstein-Zernike integral equation for the fluid particle – wall distribution function

calculated from the known fluid particle distribution function in the bulk. Applica-

tion of this approach gave the possibility to evaluate the contribution of short-range

interactions to study the structural properties of spatially confined fluids. However

this approach in the simplest approximations like the mean spherical approxima-

tion does not take into account the contribution from the long range part of the

interactions. A better approach in this perspective is the use of inhomogeneous

integral equations which include in the convolution the density profile of fluid par-

ticles. For example, the application of a simple expression for the profile in the

form of step function provides the correct description of ionic fluids near a sur-

face. These results make use of the collective variables approach [7–9] to construct

cluster expansions for the pair and singlet distribution functions for a system of

point ions confined by a hard wall. In parallel, for the description of ionic systems

confined by wall, a density field theory has been developed [10–13] which also gave

the correct results for the description of the influence of ionic systems near a hard

wall.

These works, as well as computer simulations and numerical calculations of in-

tegral equations [14], have largely extended our understanding of surface effects

in systems confined by a hard wall and particularly in presence of electrostatic

interaction. The results for spatially non-uniform systems should satisfy certain

known exact relationships - sum rules. An important example is the so-called con-

tact theorem [15, 16]. It states for the neutral wall that the contact value of the

point particle density near a hard wall is determined by the pressure of the liquid

in the bulk volume. For a system of ions and charged wall there is an additional

contribution from the Maxwell pressure due to the force acting between charged

plates. The expressions found in the random phase approximation for the point

ion density profile, for instance, meet the requirements of the contact theorem [17].

They can be modified for non point ions by a simple change of the inverse Debye-

Hückel screening parameter κ to a new screening parameter Γ obtained in the

mean spherical description of homogeneous ionic systems [18]. Recently [19] the

collective variables technique was applied for the description of spatially confined

fluids with Yukawa potential of interaction. The principal difference between such

fluid with Yukawa interaction and an ionic fluid is connected with the electoneu-

trality condition for ionic systems which exludes some terms like Van der Waals
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contributions in the case of ions. Such contributions can play an important role in

the case of nonionic fluid. In [19], the contribution of such terms were taken into

account by construction in a simplified form.

In this paper, we extend our previous work [20, 21] concerning the density field

theory description of a Yukawa fluid to the case of such a fluid near a hard wall.

The present work focuses on the analytical research of thermodynamic and struc-

tural properties of a spatially non-uniform one-component system of particles with

the Yukawa potential of interaction. We obtain expressions for the Helmholtz free

energy, pair correlation function and density distribution for such a system. It will

be shown that for the latter, the contact theorem is valid. The results obtained in

this paper, similar to [19], are presented for point particles with Yukawa interac-

tions. We hope in the future to modify them for non point particles with Yukawa

interactions using the mean spherical approximation result for homogeneous fluids

[1, 22] in a similar way as it was done for non point ionic systems [23].

2. Model. Field theory formalism

We consider a fluid of particles interacting via a Yukawa potential given by

v(r12) = A
e−αr12

r12
. (1)

We denote r12 the vector between point 1 and point 2 and its length r12. A is

the amplitude of the interaction, and α is the inverse range. We are interested in

the behaviour of such a fluid in the vicinity of a hard wall. For this purpose we

study this system in a finite slab of volume V. The slab surface is S parallel to

the wall and the slab width is L. One wall is situated at z = 0 and the other wall

z = L where z is the coordinate perpendicular to the wall. Then we consider the

infinite width limit L → ∞. In this limit, we do not make a distinction between

the average density in the system ρt = N/V and the bulk density ρb that is far

from the interfaces, and use the latter when needed. For convenience, we use the

subscript b to denote the bulk value of the corresponding quantity.

In a series of papers on ionic fluids [10–13, 24], we show that it is possible to

describe these systems using a field theoretical approach. The Hamiltonian of the

system is given by

βH[ρ] =

∫

ρ(r1)
(

ln
[

ρ(r1)Λ
3
]

− 1
)

dr1 +
βA

2

∫

e−αr12

r12
ρ(r1)ρ(r2)dr1dr2 (2)

where ρ(r) is the density and β = 1/(kBT ) is the inverse temperature. We adopt

the canonical ensemble approach. We fix the number of particles. Thus we have

the condition:
∫

ρ(r)dr = N . To verify this condition in a formally unconstrained
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calculus we introduce the Lagrange multiplier λ such that

δβH

δρ

∣

∣

∣

∣

ρb

= λ. (3)

It introduces the overall constraint on the number of particles. The partition func-

tion is

Ξ =

∫

Dρ e−βH[ρ] (4)

where
∫

Dρ is the functional integral over all possible density distributions such

that the total number of particles is N . The logarithm of the partition function

gives the Helmholtz free energy

βF = − ln Ξ. (5)

For convenience we also introduce dimensionless quantities. We define the inverse

length

B =
√

4πβ|A|ρb (6)

Note that the amplitude of potential can be positive or negative thus we take the

absolute value of it. We will see further that for the negative attractive potentials

there is a condition as shown in [19] to assure the stability of the system. From

now on we introduce dimensionless lengths noted with a tilde ˜ using B−1 as a unit

of length. For instance a length r̃ is defined r̃ = Br. The inverse range of Yukawa

potential in these units is α̃ = α/B and the dimensionless density ρ̃ = ρ/B3. For

convenience it is also practical to introduce density normalised with respect to its

bulk value ρ̂ = ρ̃/ρ̃b. The length 1/B plays the role of the inverse Debye length,

which in our previous papers has been used to define dimensionless quantities in

the case of charged systems [10–13, 24]. This way we can use analogies between

the present calculations for the Yukawa potential and the charged systems. This

would not be possible if we adopted the alternative choice taken in [19] where the

range of the potential 1/α was used to define reduced quantities. This quantity is

obviously diverging in the Coulomb systems because the interaction is long ranged

(α → 0). In the formalism of statistical field theory we show [25, 26] that the

entropic logarithmic term in the Hamiltonian does play an important role. The

ionic density is selected as the field rather than a fictitious imaginary fluctuating

potential [27–32]. In dimensionless quantities the Hamiltonian is

βH[ρ] =

∫

ρ̃(r̃1)
(

ln
[

ρ̃(r̃1)Λ̃
3
]

− 1
)

dr̃1 +
1

8πρ̃b

∫

e−α̃r̃12

r̃12
ρ̃(r̃1)ρ̃(r̃2)dr̃1dr̃2 (7)
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3. Mean field approximation.

3.1. Mean field equations

To obtain the thermodynamic properties of the system we need to calculate the

partition function. The lowest order approximation of the partition function eq. (4)

is the saddle point approximation for the functional integral which is also a mean

field approximation MFA from the physical point of view. In the canonical for-

malism, it corresponds to fixing the Lagrange paramater λ such that the following

relation is true for the average bulk particle density:

δβH

δρ

∣

∣

∣

∣

ρb

= λ. (8)

The MFA quantities will be indexed MF. In reduced units eq. (8) reads

ln[ρ̂(r̃1)] + Ṽ (r̃1) − Ṽb = 0 (9)

where focusing on the inhomogeneous quantities we have substracted the bulk value

and introduced the MFA potential Ṽ defined as

Ṽ (r̃1) =
ε

4π

∫

ρ̂(r̃2)
e−α̃r̃12

r̃12
dr̃2 (10)

where ε denotes the sign of the interaction (i.e. ε = 1 if A > 0 and ε = −1

otherwise). The bulk value of this quantity is

Ṽb =
ε

α̃2
. (11)

Taking the gradient of eq. (9), we have

∇̃ρ̂(r̃1)

ρ̂(r̃1)
− Ẽ(r̃1) = 0, (12)

where ∇̃ is the gradient operator in terms of dimensionless distances and where we

define an equivalent of the electric field by

Ẽ(r̃1) ≡ −∇̃Ṽ (r̃1). (13)

Owing to the properties of the Yukawa potential we have

(∆̃ − α̃2)Ṽ (r̃1) = −ερ̂(r̃1). (14)

Using the translational invariance parallel to the wall, the functions depend only

on z̃1 and replacing eq. (14) in eq. (12) we finally obtain

d

dz̃1

[

ρ̂(z̃1) − ε
1

2
Ẽ2(z̃1) + ε

α̃2

2
Ṽ 2(z̃1)

]

= 0. (15)
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To simplify results we give expressions of the inhomogeneous quantities with respect

to the first wall situated at z̃ = 0. We are not interested in the second wall at z̃ = L̃

in the large L̃ limit. However, when needed the dependence over the entire slab

is detailed, for instance when applying the periodic boundary conditions we need

to write the functions for the whole slab. Also we present final results in terms of

both dimensionless and dimensioned quantities.

3.2. Pressure invariant of MFA equations

Eq. (15) tells us that the quantity in brackets is constant and therefore it can be

evaluated for instance in the bulk as

1 + ε
α̃2

2
Ṽ 2

b = 1 +
ε

2α̃2
, (16)

where we use the fact that in the bulk ρ̂ is 1 and Ẽ vanishes. This quantity is the

pressure within MFA:

βP = ρb

(

1 +
ε

2α̃2

)

= ρb

(

1 +
2πβAρb

α2

)

. (17)

This expression is the mean field approximation which corresponds to the Van

der Waals contribution. Outside the system, where there are no particles, we have

another invariant which is simply (1/2)Ẽ2(z̃)− (α̃2/2)Ṽ 2(z̃), its value far from the

interface is zero and therefore also at the interface. From the continuity of the

potential and of its derivative due to eq. (14), we have that this is also true just at

the wall inside the system z̃ = 0+ thus

ρ̂(0+) − ε

2

(

Ẽ2(0+) − α̃2Ṽ 2(0+)
)

= ρ̂(0+). (18)

As this quantity is constant we obtain the so-called contact theorem

βP

ρb
= ρ̂(0+). (19)

We should like to emphasize two aspects. First, it is worth noting that in this

approximation we obtain the contact theorem as a consequence of the existence of

an invariant of the differential equations which corresponds to the pressure. The

approximation in [19] also verifies the contact theorem, but it is somehow by con-

struction. Indeed, the profile is written as the integral of the potential in the system.

At the wall, we only have half the integral of the potential which corresponds im-

mediately to the Van der Waals approximation. However, this approximation of

the profile is as we shall see a rather crude approximation. The second aspect we

note is that the validity of the contact theorem can by linearity be generalized to

a sum of Yukawa type potentials and thus be applied to a variety of potentials

which can be presented as a superposition of Yukawa potentials. Thus in the mean
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field approximation systems of particles interacting with these potentials verify the

contact theorem.

3.3. Density profiles

From equations (12) - (14), we obtain a set of differential equations

∂ρ̂(z̃)

∂z̃
= ρ̂(z̃)Ẽ(z̃) (20)

∂Ṽ (z̃)

∂z̃
= −Ẽ(z̃) (21)

∂Ẽ(z̃)

∂z̃
= ερ̂(z̃) − α̃2Ṽ (z̃). (22)

These relations are first order differential equations which have been solved starting

from the linear solution in the bulk, back integrating towards the wall [33–35]. The

boundary condition is set from the fact that the final point is obtained when we have

the contact theorem. To start the integration process we feed the solver starting

far from the wall with the linear equations solution derived from

∂ρ̂(z̃)

∂z̃
= Ẽ(z̃) (23)

∂Ṽ (z̃)

∂z̃
= −Ẽ(z̃) (24)

∂Ẽ(z̃)

∂z̃
= ερ̂(z̃) − α̃2Ṽ (z̃), (25)

where we use ρ̂b = 1. Deriving the third equation and introducing the first one, we

find

Ẽ′′(z̃) = (ε + α̃2)Ẽ(z̃) (26)

which can be solved with the boundary condition that Ẽ vanishes in the bulk.

Setting the contact value of the density to be the pressure, we find that the solutions

are























ρ̂(z̃) = 1 +
ε

2α̃2
e−

√
α̃2+εz̃

Ṽ (z̃) = Ṽb −
ε

2α̃2
e−

√
α̃2+εz̃

Ẽ(z̃) = −ε

√
α̃2 + ε

2α̃2
e−

√
α̃2+εz̃

. (27)

We can verify that for the linear solution we have, as expected, the condition

required by the contact theorem that (1/2)Ẽ2(0+) − (α̃2/2)Ṽ 2(0+) = 0. As men-

tionned earlier, we only give the expressions related to the first wall at z̃ = 0 similar

expressions can be derived for z̃ = L̃.

Here, we also see that we have solutions only if α̃2 + ε > 0. This is always true for
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repulsive potentials, whereas for attractive potentials we must have α̃ > 1. Using

the reduced quantities used in [19], where the reduced density is ρ∗ = ρ/α3 and

the reduced temperature T ∗ = kBT/αA, we have

α̃ =

√

T ∗

4πρ∗
. (28)

We will now present a series of results for different values of ρ∗ and T ∗. For

the sake of comparison we take the values used in [19]. They include both small

and large values of α̃. We compare the approximation in [19] and denote it by l0

subscript

ρ̂l0(α̃z̃) = 1 +
ε

2α̃2
e−α̃z̃. (29)

The linear mean field approximation eq. (27) denoted with subscript l1

ρ̂l1(α̃z̃) = 1 +
ε

2α̃2
e−

√
α̃2+εz̃. (30)

And finally the MFA denoted ρ̂MFA is computed numerically. Thus, the results for

the approximation given in [19], the linearised equations (27) and the exact solution

of the mean field equations (20)-(22) are shown in Figures 1-2. We note that for

repulsive potential between particles (T ∗ > 0 or ε > 0) we obtain an effective at-

traction of the particles with the surface and vice versa for the attractive potential

we have an effective repulsion with the surface. These trends are expected owing

to the contact theorem. Also due to the fact that the solutions are monotonous,

the adsorption coefficient is positive in the first case and negative in the second

case. Analysing more in detail the results, for ρ∗ = 0.0005 and |T ∗| = 0.1, param-

eters taken from [19], we observe that there is no notable difference between the

linearised profiles equations (29), (30) and the mean field equations (20)-(22). We

choose not to show the corresponding profiles which are featureless. In this case,

the parameter α̃ = 3.99 and we have that α̃2 ≫ 1. This condition is the reason

why all approximations predict similar profiles. On the contrary, for values of α̃ of

the order of 1, Figure 1, the linearised solution appears more accurate than the one

given in [19]. In Figure 2, we present two other cases with α̃ smaller or of the order

of one. For repulsive potentials we have a small value of α̃. The linear approxima-

tion and the approximation of ref. [19] are different from the mean field equations.

In the other case when the potential is negative, the value of α̃ close to one is bound

by the condition α̃ > 1 and we have taken a value of the temperature so that α̃ is

close to its limiting value. Again the linear approximation and the approximation

of ref. [19] are different from the mean field equations. However, in all cases, the

linearised equations represent a simple and better approximation, although in the

first case they over estimate the solution of MFA whereas they underestimate in

the other. From eq. (28), we can note that the limit of large α̃ corresponds to large

Page 8 of 24

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

November 29, 2010 16:18 Molecular Physics papercor

Yukawa 9

0 1 2 3 4 5 6
1

1.1

1.2

1.3

P
S
fra

g

α̃z̃

ρ̂

ρ̂l0

ρ̂l1

ρ̂MFA

0 2 4 6 8 10 12
0.6

0.7

0.8

0.9

1

P
S
fra

g

α̃z̃

ρ̂

ρ̂l0

ρ̂l1

ρ̂MFA

Figure 1. Mean field profiles in three different approximations for ρ∗ = 0.005, T ∗ = 0.1 on the left and

T ∗ = −0.1 on the right. The parameter α̃ = 1.26. In full line (black), we have the numerical solution of

eq. (20)-(22), in dotted line (red), the linearised equations (27) and in dashed line (green), the approxima-

tion used in [19] eq. (29).
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Figure 2. Identical quantities as shown in Figure 1 for ρ∗ = 0.005, T ∗ = 0.01 on the left and T ∗ = −1/15

on the right with α̃ = 0.399 and α̃ = 1.03 respectively.

temperature or small density limits and in this regime all approximations are accu-

rate. On the contrary, the linear approximation and the simple approximations of

ref. [19] part from the mean field solution when the reduced temperature becomes

small or the reduced density large. In these cases, it is worth solving the exact

equations. As shown next in these domains the fluctuations also start becoming

important.

4. Fluctuation and correlation effects on density profiles at the wall

In the previous Section, we have considered the mean field equations, where fluc-

tuations are neglected. Here, we take them into account and therefore we have to

expand the Hamiltonian.

4.1. Expansion of the Hamiltonian

Let us expand the Hamiltonian with respect to the bulk density of the system

ρ̃(r) = ρ̃b + dρ̃(r). However, as the density fluctuates around the bulk density,
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it is convenient to introduce the normalised density fluctuation δρ(r) = dρ̃(r)/ρ̃b.

The expansion of the Hamiltonian is

βH[ρ] = βH[ρb] +

∫

δρ(r̃1)
δβH

δ(δρ̃(r̃1))

∣

∣

∣

∣

ρb

dr̃1 (31)

+
1

2

∫

δρ(r̃1)δρ(r̃2)
δ2βH

δ(δρ̃(r̃1))δ(δρ̃(r̃2))

∣

∣

∣

∣

ρb

dr̃1dr̃2

+
1

3!

∫

δρ(r̃1)δρ(r̃2)δρ(r̃3)
δ3βH

δ(δρ̃(r̃1))δ(δρ̃(r̃2))δ(δρ̃(r̃3))

∣

∣

∣

∣

ρb

dr̃1dr̃2dr̃3 + · · · .

In the canonical formalism fluctuations preserve the number of particles. There-

fore
∫

δρ(r̃)dr̃ = 0. The first term is simply the Hamiltonian functional from equa-

tion (2) for the bulk density in dimensionless units:

βH[ρb] = Ṽ ρ̃b

[

(

ln[ρ̃bΛ̃
3] − 1

)

+
Ṽb

2

]

. (32)

The linear term is

δβH

δ(δρ(r))

∣

∣

∣

∣

ρb

= ln(ρ̃bΛ̃
3)

∫

δρ(r1)dr̃1 + Ṽ (z1) − Ṽb

=
−e−α̃z̃1

2α̃2
, (33)

where we have used the fact that the integral of the density fluctuations vanishes

in the canonical formalism and the mean potential eq. (10) in the vicinity of the

wall is

Ṽ (z̃1) =
1

2α̃2

(

2 − eα̃z̃1

)

. (34)

The quadratic term is

ρ̃

2

∫

δρ(r̃1)δρ(r̃2)

[

δ̃(r̃1 − r̃2) +
e−α̃r̃12

4πr̃12

]

dr̃1dr̃2. (35)

The first term comes from the expansion of the logarithmic term in the Hamil-

tonian. More generally, we have shown in [26] that these terms coming from the

logarithm can be written for n ≥ 2

(−1)n
(n − 2)!

n!

∫

δρn(r̃1)dr̃1. (36)

Page 10 of 24

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

November 29, 2010 16:18 Molecular Physics papercor

Yukawa 11

Finally, we summarize the first terms in the expansion of the Hamiltonian

βH[ρ] = ρ̃

[

Ṽ
(

ln(ρ̃Λ̃3) − 1 +
Ṽb

2

)

+
1

2

∫

δρ2(r̃1)dr̃1 (37)

+
1

2

∫

δρ(r̃1)
e−α̃r̃12

r̃12
δρ(r̃2)dr̃1dr̃2

+

∫

δρ(r̃1)(Ṽ (z̃1) − Ṽb) −
1

3!

∫

δρ3(r̃1)dr̃1 + · · ·
]

.

Note that we perform the expansion around a constant density ρ̃b and not the

mean field profile which is inhomogeneous and known numerically only. In the

Hamiltonian, the quadratic term is used to calculate the gaussian integrals and the

linear and higher than quadratic terms are treated as coupling terms which are

calculated perturbatively expanding the exponential. It is the linear term, in the

expansion of the exponential treated as a perturbation, which allows to include the

interaction with the wall in a non trivial way with terms of higher levels than a

linear approximation.

4.2. The diagonal basis for the quadratic Hamiltonian operator

To calculate the functional integral using the gaussian integrals, it is necessary

to have the quadratic term in a diagonal form. In the slab we expand the func-

tions in the bases of eigenfunctions of the Yukawa potential operator, see [10] and

appendix A

δρ(r̃1) =
∑

K̃,µ̃>0

eiK̃R̃1φK̃,µ̃(z̃1)ρK̃,µ̃ (38)

where R̃1 is vector component of r̃1 parallel to the wall, K̃ and µ̃ are the wave

vectors in the directions parallel and orthogonal to the wall and the functions φ

given in appendix A are

φK̃,µ̃(z̃) =
1

√

L̃(α̃2 + K̃2 + µ̃2)

(

(
√

α̃2 + K̃2 + iµ̃)eiµ̃z̃ − (
√

α̃2 + K̃2 − iµ̃)e−iµ̃z̃
)

(39)

As shown in appendix B, the Hamiltonian in this basis is

βH = ρ̃b

[

Ṽ
(

ln(ρ̃Λ̃3) − 1 +
ṽ0

2

)

+
S̃

2

∑

K̃,µ̃>0

(

1 +
1

α̃2 + K̃2 + µ̃2

)

ρ
K̃,µ̃ρ

K̃′,µ̃′ (40)

+

∫

δρ(r̃1)(ṽ(z1) − ṽ0)dr̃1 −
1

3!

∫

δρ3(r̃1)dr̃1 + · · ·
]
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where δρ(r̃1) is given by eq. (38).

5. Helmholtz free energy.

The free energy can be computed calculating

βF

V = − ln

[
∫

Dρ e−βH[ρ]

]

. (41)

The free energy is

βF

V = ρb(ln(ρbΛ
3) − 1) +

ρbṼb

2
+

B3

(2π)2

∫ ∞

0
k̃2dk̃

[

ln

(

1 +
1

k̃2 + α̃2

)

− 1

k̃2 + α̃2

]

= ρb(ln(ρbΛ
3) − 1) +

ρbṼb

2
+

1

8π

[

εα̃ − 2

3

[

(ε + α̃2)3/2 − α̃3
]

]

B3. (42)

We calculate the pressure using

−βPV = βF − βµ̂N (43)

where µ̂ here is the chemical potential, its value is given by

βµ̂ =
∂βF/V

∂ρ

∣

∣

∣

∣

T,V
(44)

= ln(ρbΛ
3) + Ṽb +

1

8πρ̃b

[

εα̃ − ε
√

ε + α̃2
]

(45)

so that we obtain for the pressure

βP = ρb + ρb
B2

2α̃2
+

B3

12π

[

α̃2
√

ε + α̃2 − ε

2

√

α̃2 + ε − α̃3
]

. (46)

This expression is identical to that derived in [19]. As noted there, the second term

ρbB
2/(2α̃2) is absent for ionic systems due to electroneutrality and in the infinite

range limit α → 0 the pressure is the Debye limiting law

βP = ρb −
B3

24π
, (47)

where B plays the role of KD the inverse Debye length used for ionic systems.
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6. Correlation functions and density profile

6.1. Correlation functions

The expression of the correlation function is

〈δρ(r̃1)δρ(r̃2)〉 =
∑

K̃,µ̃>0

eiK̃R̃1φK̃,µ̃(z̃1)
∑

K̃′,µ̃′>0

eiK̃′R̃2φ†
K̃′,µ̃′

(z̃2) < ρ
K̃,µ̃ρ

K̃′,µ̃′ >(48)

where † stands for the complex conjugate quantity. The gaussian averages are

simple to calculate as in the diagonal basis they are

< ρ
K̃,µ̃ρ

K̃′,µ̃′ >=
1

ρ̃S̃
δ
K̃,K̃′δµ̃,µ̃′

(

α̃2 + K̃2 + µ̃2

1 + α̃2 + K̃2 + µ̃2

)

(49)

where the δ∗,∗ are Kronecker symbols. The correlation function is then

〈δρ(r1)δρ(r2)〉 =
1

(2π)2ρ̃b

∫

dK̃
∑

µ̃>0

φK̃,µ̃(z̃1) φ†
K̃,µ̃

(z̃2) eiK̃(R̃1−R̃2)

(

α̃2 + K̃2 + µ̃2

1 + α̃2 + K̃2 + µ̃2

)

(50)

Finally we obtain

〈δρ(r̃1)δρ(r̃2)〉 =
1

ρ̃b

(

δ̃(r̃12) −
1

4π

e−
√

1+α̃2r̃12

r̃12

)

(51)

− 1

ρ̃b

∫

K̃dK̃J0(K̃R̃12)
α̃+(K̃) − α̃−(K̃)

α̃+(K̃)(α̃+(K̃) + α̃−(K̃))
e−α̃+(K̃)(z̃1+z̃2)

(52)

where J0 is a Bessel function of the first kind [36], α̃+(K̃) =
√

ε + α̃2 + K̃2 and

α̃−(K̃) =
√

α̃2 + K̃2, the details of the calculation are given in Appendix C. The

first term is the contribution from the bulk correlation function whereas the second

term is purely inhomogeneous. With dimensions we have

〈ρ(r1)ρ(r2)〉 = ρ2
b 〈δρ(r̃1)δρ(r̃2)〉 (53)

= ρb

(

δ(r12) − βAρ
e−

√
1+α2r12

r12

)

−βAρ

∫

KdKJ0(KR12)
α+(K) − α−(K)

α+(K)(α+(K) + α−(K))
e−α+(K)(z1+z2).

The expression is identical to that of ref. [19] where in this work the correlation

function was calculated from the inhomogeneous integral equation theory in which

direct correlation function is equal to −βv(r) and the profile is considered as a step
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function. This integral equation is equivalent to the differential equation considered

in this paper and this is why results in both cases are the same.

6.2. Density profile

The inhomogeneous profile in the canonical framework is given by two contributions

which correspond to one particle irreducible diagrams in field theory [37–39]. Thus

the profile is

< δρ(r̃1) >=
ρ̃b

2α̃2

∫

< δρ(r̃1)δρ(r̃2) > e−α̃z̃2dr̃2

+
1

2
< δρ(r̃1)δρ(r̃1) > − 1

2
< δρ(r̃1)δρ(r̃1) >

∣

∣

∣

∣

b

(54)

where calculating the inhomogeneous profile we have substracted the homogeneous

bulk part.

The first contribution is related to the linear term in eq. (33), that is the interac-

tion with the wall which is seen here as an external potential acting on the density

via the correlation function. Its expression is

ρ̃b

2α̃2

∫

< δρ(r̃1)δρ(r̃2) > e−α̃z̃2dr̃2 =
1

α̃2

e−
√

ε+α̃2z̃1

1 +
√

1 + ε/α̃2
(55)

=
4πβAρ

α2

e−
√

εB2+α2z1

1 +
√

1 + εB2/α2
. (56)

Refer to appendix C.1 for the details of calculation. In field theory, this term is

a zero loop level contribution and is therefore comparable with a mean field term

contribution. Thus, we note that it is similar to the expression in [19] in the limit

α̃ >> 1 in this case

ρ̃b

2α̃2

∫

< δρ(r̃1)δρ(r̃2) > e−α̃z̃2dr̃2 ≈ 1

2α̃2
e−α̃z̃1 =

2πβAρ

α2
e−αz1 (57)

Unfortunately the approximation does not satisfy the contact theorem as its value

at the wall is 1/(α̃2(1 +
√

1 + εα̃2)) instead of 1/(2α̃2). The contact theorem is

reached only asymptotically when α̃ >> 1. For this reason, in the following, we

will replace this approximate mean field like approximation with the exact mean

field result derived in Section 3.3.

The second contribution to the profile is the one loop irreducible diagram written
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as

1

2
< δρ(r1)δρ(r1) >− 1

2
< δρ(r1)δρ(r1) >

∣

∣

∣

∣

b

= −η

∫

K̃dK̃
(α̃+(K̃) − α̃−(K̃))e−2α̃+(K̃)z̃1

α̃+(K̃)(α̃+(K̃) + α̃−(K̃))

= −βA

2

∫

KdK
(α+(K) − α−(K))e−2α+(K)z1

α+(K)(α+(K) + α−(K))
.

(58)

Note that the constant in front of the first form of the expression is η ≡ 1/(8πρ̃b) =

B3/(8πρ) which similar to what is obtained in the case of the Coulomb for the

first loop density profile correction. In terms of the reduced parameters we have

η =
√

πρ∗/(T ∗)3/2, we thus see that the corrections due to fluctuations become

significant when ρ∗ increases or T ∗ is small. These are also the limits where α̃ is not

much greater than 1 and the approximation in [19] and the linear approximation are

no longer accurate. We therefore present results for the profiles where we substitute

the linear type approximation of the mean field eq. (55) with the more accurate

solution of the mean field equations presented in Section 3.3.
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Figure 3. Density profiles for ρ∗ = 0.0005, T ∗ = 0.1 on the left and T ∗ = −0.1 on the right with

α̃ = 3.99. The curve in dashed line (green) is the mean field solution ρ̃MF A, in dotted line (red) we have

the contribution from the fluctuations ρ̃fluct and in full line (black) the combination of the two ρ̃total.
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Figure 4. Identical quantities as shown in Figure 1 for ρ∗ = 0.005, T ∗ = 0.1 on the left and T ∗ = −0.1

on the right with α̃ = 1.26.
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Figure 5. Identical quantities as shown in Figure 1 for ρ∗ = 0.005, T ∗ = 0.01 on the left and T ∗ = −1/15

on the right with α̃ = 0.399 and α̃ = 1.03.

In Figures 3-5, we present the density profiles for different values of reduced

parameters of density and temperature as used in [19]. We give the mean field

density profile ρ̃MFA, the contribution from fluctuations ρ̃fluct and the combination

of the two ρ̃total. In the figures, we observe that the mean field profile departs from

one with a sign which depends on the sign of the interaction. Whereas the density

profile associated to the fluctuations is always smaller than the bulk value. As a

result for repulsive potentials we can have a non monotonous profile. In this event

we can foresee that the sign of the adsorption it is not easy to assume the sign

of the adsorption. The contribution from the fluctuations is proportional to η and

becomes important when the reduced density is large and the reduced temperature

small. This is the case for the values of the parameters ρ∗ and T ∗ presented. It is

interesting to note that the term from the fluctuations can dominate even for

relatively small densities as long as the reduced temperature is small. In real units,

this corresponds to rather low temperature or rather high the amplitude of the

interaction. This effect amounts to a depletion of the density profile from the wall.

It has already been pointed out for ionic systems and shown to be the origin of

the anomalous behaviour of the electric capacitance with the temperature. In this

context, numerical simulations and the field theoretical approach [40, 41] have

shown that the anomalous capacitance behaviour can be seen for low value of the

reduced density.

6.3. Adsorption

We can also calculate the reduced adsorption defined

Γ∗ ≡ Γ

α2
=

1

α2

∫

dz (ρ(z) − ρb) (59)

= ρ∗α̃
∫

dz̃ (ρ̃(z) − 1). (60)
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according to the different approximations of the density profile. We first start with

the mean field like contributions presented in Section 3.3. The approximation from

reference [19] gives

Γl0

α2
= ε

ρ∗

2α̃2
. (61)

The linearised equations give

Γl1

α2
= ε

ρ∗

α̃2

(

1
√

1 + ε/α̃2

)(

1

1 +
√

1 + ε/α̃2

)

. (62)

The mean field contribution can only be determined numerically.

From the contribution to the density profile from the fluctuations eq. (58), we

calculate the corresponding adsorption contribution

Γfluct

α2
=

−1

32πα̃2

[

ε(2 ln 2 − 1) − 2ε ln

(

1 +
α̃√

α̃2 + ε

)

+ 2α̃(
√

α̃2 + ε − α̃)

]

(63)

The expression is identical to that given in ref. [19]. Note that this contribution is

always negative, irrespective of the sign of the interaction.
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Figure 6. Adsorption as a function of reduced density ρ∗ for different values of T ∗ = +1 on the left and

T ∗ = −1 on the right.

In Figures 6-8, we present the adsorption as the sum of the mean field contri-

bution and of the contribution from fluctuations as a function of ρ∗ for different

values of T ∗. In Figure 6, we can observe that for not too small values of T ∗ of the

order of one or even larger, the mean field solution dominates. However, the contri-

bution from fluctuations becomes increasingly important when T ∗ becomes small.

Clearly both contributions from the mean field and the fluctuations have the same

sign and add to each other when the potential is attractive. But the case when the

potential is repulsive is of interest because we have competition between the two

contributions. This is seen in Figure 7 and 8 for T ∗ = 0.1 and T ∗ = 1/20. In the

first example, we have a monotonous behaviour of the adsorption with the density,
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Figure 7. Adsorption as a function of reduced density ρ∗ for different values of T ∗ = 0.1 on the left and

T ∗ = −0.1 on the right.
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Figure 8. Adsorption as a function of reduced density ρ∗ for T ∗ = 1/20.

in the second case we can see that the adsorption changes sign. The two contri-

butions mostly compensate each other, however for the T ∗ = 1/20, the remaining

part can have positive or negative sign.

7. Conclusion

In this paper, we study the behaviour of a fluid with Yukawa interactions in the

vicinity of a wall. We calculate the pressure and Helmholtz free energy and present

expressions for the correlation function, the density profile and for the adsorption.

We compare different simple analytical expressions with the numerical estimation

of the MFA equations. For the MFA equations we find an invariant correspond-

ing to the pressure. We can demonstrate the validity of the contact theorem for

this approximation. One interesting aspect is that the mean field solution and the

contact theorem proof presented can be generalized to potentials which can be

expanded as sums of Yukawa potentials. We also present results beyond the mean

field approximation studying the effects of the fluctuations. The results beyond the

MFA show that the fluctuations decrease the density profile whatever the character

of the interaction - repulsive or attractive. This effect for the ionic density profiles
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is just the depletion from a neutral wall responsible for the anomalous capacity

behaviour as a function of the temperature [40, 41]. Here we have the opportunity

to show that it exists for both attractive and repulsive interactions. We are able to

study systems with a competition between the intuitive mean field effects and the

correction due to fluctuations. As a consequence certain systems can have negative

or positive adsorption depending on the value of the density for a given value of

the potential.
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Appendix A. Density distribution in the eigen functions of the Yukawa

potential

In a similar way to what has been presented in [42] for the Coulomb potential, due

to the translational invariance parallel to the wall, we expand the fluctuations of

the density as follows

δρ(r̃1) =
∑

K̃,µ̃

ρ
K̃,µ̃ eiK̃R̃1φK̃,µ̃(z̃1), (A1)

where the ρ
K̃,µ̃ are the amplitudes and the functions φ are eigenfunctions of the

Yukawa potential such that

∫

e−αr̃

r̃
δρ(r̃)dr̃ = λK̃,µ̃δρ(r̃). (A2)

Owing to the properties of the Yukawa potential, we have λK̃,µ̃ = 1/(α̃2 +K̃2 + µ̃2)

and eigenvalues which verify

tan

(

µ̃L̃

2

)

= − µ̃
√

α̃2 + K̃2
and tan

(

µ̃L̃

2

)

=

√

α̃2 + K̃2

µ̃
, (A3)

with µ̃ > 0. Using the fact that outside the slab we must have decaying functions,

the function should be written

φK̃,µ̃(z̃) =















A1e
√

α̃2+K̃2z̃ if z̃ < 0,

A2e
iµ̃z̃ + A3e

−iµ̃z̃ if 0 < z̃ < L̃,

A4e
−
√

α̃2+K̃2z̃ if z̃ > L̃.

(A4)

From the continuity of the functions at the walls and using periodic boundary

conditions, we finally obtain inside the slab

φK̃,µ̃(z̃) =
1

√

L̃(α̃2 + K̃2 + µ̃2)

(

(
√

α̃2 + K̃2 + iµ̃)eiµ̃z̃ − (
√

α̃2 + K̃2 − iµ̃)e−iµ̃z̃
)

,

(A5)

where we have used periodic boundary conditions and normalised the function in

the slab according to

∫ L̃

0
φK̃,µ̃(z̃)φ†

K̃,µ̃
(z̃)dz̃ = 1. (A6)

These functions represent a complete set of orthonormal functions.
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Appendix B. Diagonal terms

The quadratic terms can be written

1

2

∫

δρ2(r̃1)dr̃1 =

∫

dr̃1

∑

K̃,µ̃>0

eiK̃R̃1φK̃,µ̃(z̃1)ρK̃,µ̃

∑

K̃′,µ̃′>0

e−iK̃′R̃1φ†
K̃′,µ̃′

(z̃1)ρ
†
K̃′,µ̃′

= S̃
∑

K̃,µ̃>0

ρ
K̃,µ̃ρ†

K̃′,µ̃′
, (B1)

where S̃ is the dimensionless surface parallel to the walls and we have used the

normalisation condition eq. (A6).

The interaction quadratic term

1

4π

∫

δρ(r̃1)
e−α̃r̃12

r̃12
δρ(r̃2)dr̃1dr̃2 =

∫

dr̃1dr̃2

∑

K̃,µ̃>0,K̃′,µ̃′>0

eiK̃R̃1−iK̃′R̃2
e−α̃r̃12

r̃12

φK̃,µ̃(z̃1)φ
†
K̃′,µ̃′

(z̃2)ρK̃,µ̃ρ†
K̃′,µ̃′

. (B2)

We can change variables using dR̃1dR̃12 and integrating over R̃1 we obtain due

to the orthogonality of eiK̃R̃: the Kronecker symbol δ
K̃,K̃′ . Which can then be

summed over K̃′. We can integrate over R̃12 and we obtain an integral of the form

∫ L̃

0

e−
√

K̃2+α̃2|z̃1−z̃2|

2
√

K̃2 + α̃2
φK̃,µ̃(z̃2)dz̃2 =

1

α̃2 + K̃2 + µ̃2
φK̃,µ̃(z̃1), (B3)

where we have used the properties of the φK̃,µ̃ functions which are eigenfunctions

of the Yukawa potential. Finally we have

1

4π

∫

δρ(r̃1)
e−α̃r̃12

r̃12
δρ(r̃2)dr̃1dr̃2 =

∑

K̃,µ̃>0

1

α̃2 + K̃2 + µ̃2
ρ
K̃,µ̃ρ†

K̃′,µ̃′
. (B4)

Appendix C. Correlation function

From eq. (50), we introduce the following notations α̃+(K̃) =
√

ε + α̃2 + K̃2 and

α̃−(K̃) =
√

α̃2 + K̃2 so that

〈δρ(r̃1)δρ(r̃2)〉 =
1

(2π)2ρ̃b

∫

dK̃
∑

µ̃>0

φK̃,µ̃(z̃1)φ
†
K̃,µ̃

(z̃2)e
iK̃(R̃1−R̃2)

(

α̃2
−(K̃) + µ̃2

α̃2
+(K̃) + µ̃2

)

.

(C1)
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We need to compute

∑

µ̃>0

φK̃,µ̃(z̃1)φ
†
K̃′,µ̃′

(z̃2)

(

α̃2
−(K̃) + µ̃2

α̃2
+(K̃) + µ̃2

)

=
∑

µ̃>0

1

L̃

(

α̃2
−(K̃) + µ̃2

α̃2
+(K̃) + µ̃2

)

(C2)

[

(eiµ̃(z̃1−z̃2) + e−iµ̃(z̃1−z̃2))

−(α̃−(K̃) + iµ̃)2

α̃2
+(K̃)

eiµ̃(z̃1+z̃2)

−(α̃−(K̃) − iµ̃)2

α̃2
+(K̃)

e−iµ̃(z̃1+z̃2)

]

. (C3)

We introduce the continuous integral in the L̃ → ∞ limit where
∑

µ̃>0 →
L/(4π)

∫∞
−∞ dµ̃ where we have extended the integral over all reals, the contribution

from µ̃ = 0 vanishes as it is of zero measure and non singular for z̃1 6= z̃2. The

first two terms in the brackets depend on z̃1 − z̃2 and give the known homogeneous

contribution

1

ρ̃b

(

δ̃(r̃12) −
ε

4π

e−
√

ε+α̃2r̃12

r̃12

)

, (C4)

where we have separated (α̃2
−(K̃) + µ̃2)/(α̃2

+(K̃) + µ̃2) = 1 − ε/(α̃2
+(K̃) + µ̃2), the

term related to 1 giving the Dirac distribution. The inhomogeneous contribution

is

〈δρ(r̃1)δρ(r̃2)〉 =
1

(2π)2ρ̃

∫

dK̃
−1

4π

∫ ∞

−∞
dµ̃

[

(α̃−(K̃) + iµ̃)2eiµ̃(z̃1−z̃2) + (α̃−(K̃) − iµ̃)2e−iµ̃(z̃1−z̃2)
]

µ̃2 + α̃2
+(K̃)

. (C5)

For the integration over µ̃, we have two poles at ±iα̃+(K̃), we can perform contour

integrations with the semi-circles in the upper plane and the lower plane and we

obtain

〈δρ(r̃1)δρ(r̃2)〉 = − 1

ρ̃b

∫

K̃dK̃J0(K̃R̃12)
(α̃+(K̃) − α̃−(K̃))e−α̃+(K̃)(z̃1+z̃2)

α̃+(K̃)(α̃+(K̃) + α̃−(K̃))
,(C6)

where J0 is a Bessel function of the first kind [36], the result is identical to the one

obtained in [19].
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C.1. Density profile

To calculate the first term in the density profile, it is convenient to expand all

terms in the eiK̃R̃, φµ̃(z̃) basis. We first decompose e−α̃z̃ on this basis

e−α̃z̃ =
∑

K̃,µ̃>0

δ
K̃,0

4iµ̃α̃

(α̃2 + µ̃2)3/2
e−iK̃R̃ φ†

K̃,µ̃
(z̃). (C7)

Introducing this expression, we have

ρ̃b

2α̃2

∫

< δρ(r̃1)δρ(r̃2) > e−α̃z̃2dr̃2 =
ρ̃b

2α̃2

1

ρ̃bS̃

∫

dR̃2dz̃2

∑

K̃,µ̃>0

∑

K̃′,µ̃′>0

φ
K̃,µ̃(z̃1)(C8)

φ†
K̃,µ̃

(z̃2)φ
†
K̃′,µ̃′

(z̃2)e
−iK̃(R̃1−R̃2)δ

K̃′,0

4iµ̃′α̃

(α̃2 + µ̃′2)3/2
e−iK̃′R̃2

= − 1

2α̃2

∑

µ̃>0

4iµ̃α̃

(α̃2 + µ̃2)3/2

α̃2 + µ̃2

ε + α̃2 + µ̃2
. (C9)

Taking the limit L̃ → ∞, we can go from discrete summation to continous integral
∑

µ̃>0 → L/(4π)
∫∞
−∞ dµ̃. Performing contour integration in the upper and lower

complex plane according to the poles, we obtain

ρ̃b

2α̃2

∫

< δρ(r̃1)δρ(r̃2) > e−α̃z̃2dz̃2 =
1

α̃2

e−
√

ε+α̃2z̃1

1 +
√

1 + ε/α̃2
(C10)

=
4πβAρ

α2

e−
√

εB2+α2z1

1 +
√

1 + εB2/α2
. (C11)
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