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A new approach is presented to evaluate the velocity of …eld-driven domain walls by means of ab-initio parameters. This approach makes intensive use of multi-scaling by means of (a) mapping of domain wall formation energies obtained in terms of a fully relativistic method onto a Landau-Ginzburg-type expression, and (b) applying the Landau-Lifshitz-Gilbert equation to evaluate the time needed to move domain walls. In comparison with the "classical" expression for the domain wall velocity originally proposed by Landau and Lifshitz, according to which the velocity increases with increasing width of the domain wall, three di¤erent types of magnetic alloys, namely permalloy (Ni85Fe15), CoxNi1 x and CoxPd1 x are analyzed. It is shown that the Landau-Lifshitz expression for the velocity seems to be valid whenever the slopes of the exchange and the anisotropy energy with respect to the concentration are either both increasing or both decreasing.

Current-driven domain wall (DW) motions seem to raise a lot of interest because of their possible use in completely new types of storage media [1][2][3][4][5][6][7]. For their theoretical description and modelling presently almost exclusively only micromagnetic approaches [5,[7][8][9] are applied, which usually rely on a (macroscopic) Landau-Lifshitz-Gilbert (LLG) equation with an additional phenomenological spin-torque term [7,9] that contains a so-called non-adiabaticity parameter , supposed to describe the alignment of the spins of the charge carriers with those of the wall within a classical view. Since -like all other quantities in micromagnetic schemes -inherently is introduced parametrically, a materials-speci…c description of DW motions seems to be quite likely out of reach, even if all parameters are "borrowed" from experiment. Interestingly enough, it turned out that while according to the "classical" Landau-Lifshitz expression [21] - [START_REF] Schryer | [END_REF] for the velocity of …eld-driven DW of length L, v(L), increases with L, a micromagnetic simulation of v(L) for current-driven DW's predicted independence of L [8].

Although presently available ab initio spin dynamics [10][11][12] and new multi-scale approaches [13][14][15][16][17][18][19][20] suggest that also quantum mechanical schemes are within reach, the di¢ culty to be encountered is that non-collinear magnetic structures require to include (at least) spin-orbit e¤ects, which for domain walls because of their size is no easy task. Furthermore, since quantum mechanically well-de…ned spin torques and spin currents [24] are not likely to be available computationally in the near future on a level to be used for DW's, in the meantime a multi-scale approach is proposed for the description of DW motions in which the free energy is …rst evaluated fully relativistically on an ab-initio level and then -in the spirit of spin dynamics [10][11][12] -mapped onto the internal …eld in the LLG equation.

Several applications will demonstrate that indeed materials-speci…c DW velocities can be evaluated without assuming parameters beyond those inherent to density functional theory, i.e., beyond a standard parametrization of the density functional. A comparison with the Landau-Lifshitz expression for the velocity [21][START_REF] Malozemo¤ | Applied Solid State Science[END_REF][START_REF] Schryer | [END_REF] will give further insight into the use of the suggested multi-scale approach.

THEORETICAL DESCRIPTION

Formation energy of domain walls

Suppose that C 0 and C d denote the following magnetic con…gurations in a system with only two-dimensional translational symmetry ("layered system"),

C 0 (L) = fñ l = z; ñk = z; ñr = z; k = 1; Lg ; (1) C d (L) = fñ l = z; ñk ; ñr = z; k = 1; Lg ; (2) 
where ñl and ñr refer to the orientations of the magnetization in the "left" and the "right" domain, the ñk those in the atomic planes forming the wall, and z is parallel to the surface normal. In C d the orientation of the magnetization in the individual atomic planes changes continuously from z to z, 2) and (3) a simple sinusoidal wall pro…le is assumed. Clearly enough the use of any other, perhaps more realistic set fD( k )g is straightforward. For a given value of L the domain wall formation energy is then given by

ñk = D( k )z ; ñk = D( k )z ; k = k=L ; (3) 
E(L) = E(C d (L)) E(C 0 (L)) ; (4) 
where, when adopting the magnetic force theorem, E(C d (L)) and E(C 0 (L)) refer to grand-canonical potentials at T = 0. If c p denotes the respective concentrations of constituents A and B in layer p of a substitutionally statistically disordered alloy, then in terms of the (inhomogeneous) Coherent Potential Approximation (CPA) for layered systems [START_REF] Weinberger | Magnetic Anisotropies in Nanstructured Matter[END_REF][START_REF] Zabloudil | Electron Scattering in Solid Matter[END_REF] E(L) is given by

E(L) = L X p=1 E p (L) = L X p=1 X =A;B c p (E p (C d (L)) E p (C o (L))) ; (5) 
E p (C i (L)) = Z F b n p ( ; C i (L))( F )d ; (6) 
where the n p ( ; C i (L)) are the components of the layerwise projected DOS corresponding to the magnetic con…guration C i (L), b denotes the bottom of the valence band, and F is the Fermi energy. Phenomenologically, by using a Ginzburg-Landau-type expansion, the domain wall formation energy E(L) is de…ned by [13,17] 

E(L) = A 0 A L + KL ; (7) 
where A 0 is the area of the two-dimensional unit cell, and A and K are proportional to the exchange and magnetic anisotropy energy, respectively. From the condition dE(L)=dL = 0 it follows immediately that the equilibrium domain wall width L 0 is given by L 0 = p A=K. The coe¢ cients A and B in Eq. ( 7) can easily be obtained by evaluating free energies E(L), see Eq. (5), at (at least) two di¤erent values of L. It should be noted that by using Eq. ( 7) a …rst multi-scale step is taken because a quantum mechanically de…ned quantity, namely the domain wall formation energy, is mapped without additional parameters on a phenomenological (macroscopic) quantity.

Domain wall motions

Clearly enough in the de…nition of magnetic con…gurations, see, e.g., Eq. (2), a domain wall is described "…xed" in coordinate space by an arbitrary choice of an origin in order to specify layer indices C d (L) = ff ñl = zg ; fD( 1 )z; D( 2 )z; : : : ; D( L )zg ; fñ r = zgg ; (8) l = 0; 1; 2; : : : 1; r = L + 1; L + 2; : : : ; 1 :

To shift such a domain wall by one ML, i.e., to "make it move", one has to switch from

C d (L) to C 0 d (L) C 0 d (L) = ff ñl = zg ; fz; D( 2 )z; : : : ; D( L )z; D( L+1 )z; D( L+1 )zg ; fñ r = zgg ; (9 
) l = 1; 0; 1; 2; : : : 1; r = L + 2; L + 3; : : : ; 1 ;

After the "move", i.e., being again in "equilibrium", of course the following condition has to apply,

E(C d (L)) E(C 0 d (L)) ; (10) 
which in turn implies that a simple re-indexing of layers will not describe a domain wall motion. Consider now a Taylor series expansion, 5) and (6), reformulated in Eq. ( 12) such that the layer-index is cast into multiples of the interlayer distance d ?

f (u) = P X n=1 f (n) (u 0 ) n! (u u 0 ) n ; f (n) = d (n) du n ; (11) 
f : fx k = kd ? g ! E k (L) fE(L; x k )g : (12) 
Now it is easy to see that in analogy to the approach suggested in Ref. [START_REF] Weinberger | [END_REF] in terms of Eq. ( 11) layer-resolved band energies shifted along the surface normal can be written as

E(L; u k ) = E(L; x k ) + a k (L)(u k x k ) + b k (L)(u k x k ) 2 + c k (L)(u k x k ) 3 : : : ; k = 1; L : (13) 
In order to move a domain wall by one monolayer u k has to ful…ll the condition

u k x k = d ? cos( ) ; (14) = k 1 k : (15) 
It should be noted that u k corresponds to the z-like component of a displacement operator in coordinate space of the type ũk = (0; 0; u k ). In fact in a "parent" (simple) lattice d ? refers to a translation, which in turn is followed by a rotation of the magnetization with respect to the di¤erence angle between the orientation of the magnetization in layers k and k 1, for details, see Ref. [START_REF] Weinberger | Magnetic Anisotropies in Nanstructured Matter[END_REF]. The error W (L) of this numerical procedure can easily be checked by evaluating the di¤erence between the band energy before and after the shift

W (L) = jE(C 0 d (L)) E(C d (L))j =E(C d (L)) (16) 
since according to Eq. ( 10) W (L) should be zero. Quite clearly the above outlined procedure can in principle be applied as often as necessary, i.e., a domain wall can easily be moved over a distance pd ? along the surface normal.

It is a scheme that frequently is used as "inbetween step" in molecular dynamics as a scaling procedure.

Landau-Lifshitz-Gilbert equation

As already mentioned in the introduction, in order to estimate the time needed to move a domain wall of given width L at present only the below (layer-resolved) equation of motion is available

d mi (L; t) dt = mi (L; t) He (L; ũi ) + mi (L; t) mi (L; t) He (L; ũi ) + ~ i (L) ; i = 1; L ; (17) 
where the case ~ i (L) = 0 refers to the "classical" LLG equation, successfully used in ab-initio spin dynamics [10][11][12], while

~ i (L) = 1 + (1 + 2 ) j z (L) mi (L; t) mi (L; t) @ mi (L; t) @z (1 + 2 ) j z (L) mi (L; t) @ mi (L; t) @z (18) 
corresponds to a phenomenologically augmented LLG equation, which usually is termed "generalized" LLG equation. In Eq. ( 17) is the so-called Gilbert damping factor and the gyromagnetic ratio; in Eq. ( 18) the current density j z (L) is given by (P (L)g B =(2eM s )) j(L) with j(L) being the current density, P (L) the (non-relativistic) "spin" polarization, M s the saturation magnetization, and corresponds to the already mentioned non-adiabaticity parameter. [7] Since for the time being only He i (L; ũ),

He i (L; ũ) = @ E i (L; u) @ũ ; (19) 
H e i;x (L; u x ) = H e i;y (L; u y ) = 0 ; 8u ; (20) 
H e i;z (L; u) = d E i (L; u) du ; (21) 
where can be associated with quantum mechanically well-de…ned quantities [START_REF](L) j(L), the "spin-polarized current density", which is only quantum mechanically well-de…ned in the (non-relativistic) case of collinear magnetic structures[END_REF], in the following exclusively the "classical" LLG equation is applied, i.e., in Eq. ( 17) ~ i = 0; 8i. Furthermore, in order to evaluate the time needed to change the orientation of the magnetization by usually [10][11][12]24] only the relaxation term in the LLG equation needs to be considered,

E i (L; u) = E i (L; u) E i (L; u 0 ) ; (22) 
m 0 dn i x (L; t) dt = 0 ; (23) 
m 0 dn i y (L; t) dt = n i y (L; t)n i z (L; t)H e i;z (L; u) ; (24) 
m 0 dn z (L; t) dt = + n i y (L; t) 2 H e i;z (L; u) ; (25) 
where

ñi (L; t) = mi (L; t)=m 0 ; m 0 = X =A;B c i m i ; 8L; t : (26) 
In Eq. ( 26) the m i are the layer-and component-resolved magnetic moments and the c i the corresponding concentrations of species A and B. Since the magnitude of the magnetic moments is supposed to remain constant, Eq. ( 25) reduces to

n i y (L; t) 2 + n i z (L; t) 2 = 1 ;
dn i z (L; t) dt = 1 n i z (L; t) 2 [ m 0 H e i;z (L; u)] : (27) 
By using the …rst 4 expansion coe¢ cients in Eq. ( 13) the integration of Eq. ( 27) can now be performed using exactly the approach discussed in Ref. [START_REF] Weinberger | [END_REF].

In the case of the "generalized" LLG equation, see Eq. ( 18), i;z would be of the form

i;z = 1 + (L) (1 + 2 ) j z (L) @n i z (L; t) @z ;
from which one immediately can see that H ef f i;z and @n i z (L; t)=@z are of opposite sign with appearing in both terms of Eq. [START_REF] Weinberger | [END_REF]. It is important to note that by using Eq. ( 27) its implicitly assumed that during the motion of a domain wall its pro…le does not change. This restriction, however, can only be overcome by actually calculating directly for a given length L the n i z (L; t) as a function of t selfconsistently within Density Functional Theory, a procedure that up to now is only possible for small clusters of magnetic atoms on metallic surfaces, see, e.g., [11]. 

where (L) is the (minimal) time needed to move a domain wall of width L over the distance of one monolayer,

(L) = max f i (L)g ; (29) 
and d ? is the interlayer spacing (constant). In order to obtain L 0 in principle the domain wall formation energy E(L) is needed only at two di¤erent L. This suggests to …t (L) by a second order polynomial of the form y = ax + bx 2 in order to obtain (L 0 ). Furthermore, since the changes in the layer-resolved band energies are biggest at the very beginning (or end) of a domain wall, it turns out that when moving a domain wall to the right, see Eq. ( 14), (L 0 ) is determined by 1 (L 0 ), where 1 (L 0 ) refers to the very …rst atomic layer in the domain wall, namely to the largest layer-dependent shift time.

MULTI-SCALE PROCEDURES

Before going ahead with applications it seems to be useful to summarize all multi-scale procedures interduced up-to-now, see Table I.

step microscopic macroscopic seeked procedure 1 Eq. 5: E(L) =) Eq. 7: E(L) L0 "Ginzburg-Landau" 2 Eq. 22: E i (L; u) =) Eq. 19: Heff i (L; ũ) i(L) "Landau-Lifshitz-Gilbert" + (L0) computational …t TABLE I: Summary of all multi-scale procedures and computational …ts applied

APPLICATIONS

In this section three di¤erent systems are considered in order to illustrate the above approach and to investigate its relation to the "classical" Landau-Lifshitz expression [21] - [START_REF] Schryer | [END_REF] for the velocity,

v = M s r A K = M s L 0 ( 30 
)
in which any spin-torque action is neglected. Since in Eq. (30) v is proportional to the equilibrium width L 0 this implies that thicker domain walls move faster than thinner ones.

In the following, the velocities of 90 and 180 degree domain walls [19] in permalloy Ni 85 Fe 15 (100) are investigated, and then two di¤erent magnetic substitutional alloys, namely Co x Ni 1 x (100) [18] and Co x Pd 1 x (111), [20] by varying the concentration of Co.

Permalloy (Ni85Fe15)

Fig. 1 illustrates the case of moving a 180 domain wall of equilibrium width L 0 in Ni 85 Fe 15 , see Eq. ( 8), one ML to the right. It is interesting to note (top of this …gure showing the original domain wall in terms of all layer-resolved band energies) that there is a rapid change in layer-resolved band energies only at the very beginning and the very end of the domain wall covering a region of about 10 Å thickness. Furthermore, an in-plane anisotropy can be seen in terms of the maximum in the middle of the domain wall exactly when the direction of the magnetization is perpendicular to z.

By using a Taylor expansion of order 5 a rather accurate shift by one ML is achieved, see the lower parts of Fig. 1, in which only the very beginning (middle entry) and the very end (bottom entry) of the original and the shifted domain wall are displayed. The lower parts of Fig. 1 prove that the domain wall was indeed shifted by d ? to the right. Considering that the individual layer-resolved band energies E i are already of the order of eV the remaining inaccuracies can hardly be removed, since both the layer-resolved energies [START_REF] Weinberger | Magnetic Anisotropies in Nanstructured Matter[END_REF][START_REF] Zabloudil | Electron Scattering in Solid Matter[END_REF] as well as the derivatives in Eq. ( 11) result from numerical procedures. Despite these inherent inaccuracies it turns out that the error de…ned in Eq. ( 16) amounts to only 0.0009 %.

In Fig. 2 the mentioned polynomial …t of (L) is illustrated together with the resulting domain wall velocities v(L). As can be seen this polynomial …t is indeed quite accurate. It seems therefore not necessary to evaluate the domain wall energy exactly at the equilibrium width as shown in Fig. 2 for the case of a 180 domain wall in Ni 85 Fe 15 .

In Table II a detailed analysis for the two types of domain walls in permalloy is given. From this table it can be seen that essentially only the exchange energy A is changing when going from a 90 domain wall to a 180 one [19]. From Table II it follows that the ratio w between the two velocities is 1.23, while in terms of Eq. ( 30), w ' L 0 (180)=L 0 (90), this ratio amounts to about 2. Quite obviously for permalloy (at least for Ni 85 Fe 15 ) this implies that as predicted by the Landau-Lifshitz relation thicker domain walls move indeed faster than thinner ones.

CoxNi1 x

In Co x Ni 1 x there seem to be two di¤erent regimes of changes in K(x) with respect to the concentration [19], see the insets in Fig. 3. As long as the sign of the slope of A(x) and K(x) with respect to x is the same, i.e., when 0:4 < x 0:8, a behavior as predicted by Eq. ( 30) is found. As is well-known for x > 0:8 structural changes start to set in (Co is hcp, while Co x Ni 1 x is fcc), so it seems that all considerations using a parent fcc lattice should be con…ned to about x 0:8. In the range of 0 x 0:3, however, K(x) increases rapidly with decreasing x while A(x) decreases, see Fig. 5. In this regime the "classical description" v(x; L 0 ) L 0 (x) in Eq. (30) seems to be of no great help.

CoxPd1 x

In Co x Pd 1 x there are quite a few concentration regimes in which K(x) changes rapidly [20], see the left column in Fig. 5. Only for small values of x the slopes of the concentration-dependent constants A(x) and K(x) have the same sign. This then is the (only) regime in which the velocity increases with the domain wall width, see Fig. 5. For all other concentrations of Co, v(x; L 0 ) is not proportional to L 0 (x), i.e., is not of Landau-Lifshitz type.

CONCLUSION

In the present paper an approach is introduced to evaluate by means of multi-scale schemes the velocity of domain wall motions in terms of ab-initio derived parameters. The phenomenological parts of the scheme are based on (a) the evaluation of equilibrium domain wall thicknesses L 0 (x) in terms of a Ginzburg-Landau-type expansion, see Eq. ( 7), [13] and (b) the Landau-Lifshitz-Gilbert equation to obtain shift times, see Eq. ( 27) [10][11][12], [START_REF] Weinberger | [END_REF]. Furthermore, a second order polynomial expansion is suggested in order to extrapolate these times to L 0 (x)., see also Table I. The microscopic parts consist of an evaluation of domain wall formation energies and their layer-wise contributions using a fully relativistic ab-initio approach, i.e., using the Dirac equation. The assumptions made were (a) that a domain wall pro…le was chosen which reproduces correctly the minimal domain wall energy, (b) that this pro…le does not change during the motion of domain wall, and (c) a particuar value for the Gilbert damping term, , has to be picked. The …rst assumption can easily be checked by varying the pro…le and evaluating the domain wall energy at L 0 . The second assumption can presently not be veri…ed, since in principle also the in ‡uence of the applied external …eld that causes a domain wall to move has to be taken into account [24]. Clearly also in micromagnetic schemes a value for has to be chosen. For permalloy a kind of Landau-Lifshitz behavior, see Eq. (30), is found, which is only partially the case in Co x Ni 1 x and hardly applies to Co x Pd 1 x . Taking all the evidence together, roughly two cases can be distinguished when varying the concentration x in a magnetic substitutional binary alloy, namely (1) v(x; L 0 ) is proportional to L 0 (x) (Landau-Lifshitz behavior) provided that A(x)= j A(x)j = K(x)= j K(x)j, and (2) v(x; L 0 ) seems to be proportional to K(x), whenever A(x)= j A(x)j = K(x)= j K(x)j, where A(x) = dA(x)=dx and K(x) = dK(x)=dx. In Ref. [7] for 1500 nm wide, 20 nm thick permalloy wires of length 80 m a velocity of about 40 -60 cm/s is reported for current densities j > 1.05 10 12 A/m 2 , while for j less than about 0.9 10 12 A/m 2 the velocity is about 10 cm/s. Considering that in the present calculations only the classical LLG equation (no spin torque term) is used and that a two-dimensional translational invariant system serves as a model for nanowires, in particular for low current densities, the values listed Table II, namely about 1 cm/s, for = 1, agree reasonably well with their experimental counterparts. This is true even if in Eq. ( 25) a value of of 0.1 or even less would be used, since v(x; L 0 ) scales directly with . Therefore, it seems that despite all assumption made (such as a domain pro…le that does not change during motion) in terms of the presented approach material-speci…c velocities can be evaluated based entirely on parameters obtained via an ab-initio fully relativistic approach. Finally, it should be noted that it would be extremely di¢ cult to …nd "reasonable" parameters to predict concentration-dependent domain wall motions using micormagnetic schemes. This work has been supported by the Deutsche Forschungsgemeinschaft in the framework of the project B3 of the SFB 668 and the Cluster of Excellence "Nanospintronics". 
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FIG. 1 :

 1 FIG.1:(colour online) Ni85Fe15. Top: Original (unshifted) layer-resolved band energies for L0 = 1038 ML: The middle and the bottom entries refer to the band energies corresponding to the "left" and "right" edge of the original domain wall (full line) and the one shifted by 1 ML (dashed line).

FIG. 2 :

 2 FIG. 2: (colour oneline) Ni85Fe15: Top row: …t of (L) by a second order polynomial. Bottom row: domain wall velocities. Displayed are the cases of a 90 (left column) and a 180 (right column) domain wall.

  VelocityThe velocity v(L) of the motion of a domain wall of width L can now easily be calculated, simply by making use of the relation v(L) = d ? (L) ;

FIG. 3 :

 3 FIG. 3: (colour online) CoxNi1 x. Equilibrium width L0(x) (top) and velocity v(x; L0) as indicated in the range of 0:4 < xCo 0:8. The insets show the exchange (top) and anisotropy energy (top) data from Ref. [19].

FIG. 4 :

 4 FIG. 4: (colour online) CoxNi1x:Equilibrium width L0(x) and velocity v(x; L0) for 0 x 0:3.

FIG. 5 :(

 5 FIG. 5: (colour online) CoxPd1x:Shift time (x; L0) width (top, right) and velocity v(x; L0) (bottom, right) versus the Co concentration. For comparison in the left colum the data for A(x), B(x) and L0(x) from Ref.[20] are displayed.

  

  

  

  

  

  

  

  

TABLE II :

 II Comparison between a 90 0 and a 180 0 domain wall in permalloy. The values for (L0) and v(L0) correspond to a Gilbert damping factor of 1.
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