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surfaces in H? x R with vertical ends at infinity

Sébastien Cartier and Laurent Hauswirth
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Abstract

We study constant mean curvature 1/2 surfaces in H? x R that admit
a compactification of the mean curvature operator. We show that a
particular family of complete entire graphs over H? admits a structure
of infinite dimensional manifold with local control on the behaviors at
infinity. These graphs also appear to have a half-space property and
we deduce a uniqueness result at infinity. Deforming non degenerate
constant mean curvature 1/2 annuli, we provide a large class of (non
rotational) examples and construct (possibly embedded) annuli without
axis, i.e. with two vertical, asymptotically rotational, non aligned ends.

Mathematics Subject Classification: 53A10, 53C42.

1 Introduction

This paper concerns the theory of constant mean curvature (CMC' for short)
surfaces H = 1/2 in H2 x R. The value H = 1/2 is critical in the sense
that there is no compact CMC sphere for H < 1/2 while for H > 1/2 there
are rotational compact examples. A half-space theorem in H? x R (see [8])
proves that for CMC H = 1/2, complete multigraphs are entire graphs over
H?. Entire graphs are classified by 1. Ferndndez and P. Mira [5] and their
moduli space is modeled on the set of quadratic holomorphic differential )
defined on the complex plane C or the unit disk D. The link between @ and
the geometry of the graph is not very well understood.

We first deal with complete conformal immersions of the disk D, properly
immersed into the half-space H? x R, (x3 > 0), which are entire vertical
graphs over H?. We assume that the third coordinate x3 — 400 on any
diverging sequence of points in D, which means the height function is proper.



Up to this date, the only simply connected example is a rotational example
called the hyperboloid Sy. In the Poincaré disk model of H? x R — see (2))
below — with polar coordinates (r,6), a parametrization of Sy as a graph
over H? is:

2
Vv1—r?

We describe a family of examples endowed with a structure of infinite
dimensional smooth manifold. The manifold structure arises from a suitable
compactification of the mean curvature operator at infinity (Theorem [2Z5])
and is diffeomorphic to a codimension one submanifold of C%%(S!) x R (The-
orem [3.10). This construction comes with a control of the asymptotic be-
havior in terms of the horizontal (hyperbolic) distance from the hyperboloid
So, namely:

(r,0) € [0,1) x S* (rew, ) € H? x R.

Theorem (Theorem B1). For any smally € C>*(S') such that e~ has unit
L?(SY)-norm, there exists a CMC-1/2 complete entire graph at asymptotic
horizontal signed distance 2y from Sy.

These graphs are interesting, since any connected complete embedded
CMC-1/2 surface in H? x R which is contained in the half-space H? x R
and has a proper height function is a vertical entire graph. Indeed, apply
Alexandrov reflection principle to such an immersion. There will be no first
point of tangent contact between the surface and the symmetry part of the
constructed bigraph — i.e. the part of the bigraph which is not a part of
the surface — since there is no compact CMC-1/2 sphere in H? x R.

We also prove a half-space property for these entire graphs:

Theorem (Theorem [2). Let ¥ be a CMC-1/2 surface which is properly
immersed in H? x R and lies on one side of a CMC-1/2 entire graph S
in the aforementioned family. Then X coincides with S up to a wvertical
translation.

We use this result to show an asymptotic rigidity in our family of CMC-1/2
entire graphs (Theorem [£3]). Namely, if two graphs in the family are at the
same asymptotic horizontal signed distance from the hyperboloid Sy, they
coincide up to a vertical translation.

In H? x R, R. Sa Earp and E. Toubiana [3] construct a one-parameter
family of CMC H = 1/2 annuli which are rotationally invariant around
a vertical geodesic. Recently, L. Mazet has shown [9] that for H > 1/2,



CMC annuli which are cylindrically bounded around a vertical geodesic are
rotational examples.

Though annuli are not cylindrically bounded for H = 1/2, we prove that
in a bounded tubular neighborhood of a rotational example, there are annuli,
eventually embedded, which are asymptotic to different rotational examples
with different axis:

Theorem (Theorem 5.9). There exist CMC-1/2 annuli in H? x R with ver-
tical ends, that are asymptotic — regarding the horizontal hyperbolic dis-
tance — to rotational examples with different vertical axis.

It means that contrary to the case of embedded minimal surfaces in R?
with finite total curvature and horizontal ends [11], the notion of azis is not
relevant in general for CMC-1/2 annuli with vertical ends in H? x R.

Notations

Let D = {z € C||z] <1} be the open unit disk, D = {z € C|z| <1} its
closure and (r, ) the polar coordinates on . We use two standard models
of H? x R, which are the Minkowski model:

Hsz:({(l‘o,...,ZEg)ER4‘$%—|—3}%—3)%:_1}7
ds? :dx%—i—d:c%—i—dxg—dx%), (1)

where H? x R is seen as a subspace of the 4-dimensional Minkowski space
L%, and the Poincaré disk model:

H? xR = ({(w,mg)G]D)x]R},

4

2 2 _
dsp +dxz = A= wp?

|dw|? + dxg). (2)

The vector field associated to the third coordinate is denoted es. In the
Poincaré disk model (2)), the hyperbolic radius pg(w) of a point w is:

1+]wl)
L—Jwl/)’

pu(w) = 2argtanh |w| = log <

and we will need the following formula in the proof of Proposition

p Pa(w) _ 1

2 T—[w*

COS



We call vertical graphs (resp. vertical annuli) in H? x R, immersions which
are complete graphs (resp. bi-graphs) over an open subset of the slice H? =
H? x {0}.

Given surfaces S, 5" in H? x R admitting parametrizations in the Poincaré
disk model respectively:

(f(t,0)e? t) and (f'(t,0)e”,1),

the hyperbolic horizontal signed distance dy(S,S)(t,0) between S and S’
at height ¢ and in the direction 6 is the difference of their hyperbolic radii
in the slice H? x {t} and direction 6:

du (S, S")(t,0) = pu(S")(t,0) — pu(S)(t,0)
= 2 (argtanh f'(t,0) — argtanh f(¢,0)).

When it exists, the asymptotic hyperbolic horizontal signed distance between
S and S’ in the direction € is the limit . 1121 du(S,S")(t,0).
— 00

For any R € [0,1), let Qr C D be the domain Qr = {R <r < 1}. We
consider the set of admissible domains D = {Qr|0 < R < 1}. The boundary
at infinity O,oH? of H? is identified with S!.

Given Q € D, the spaces C**(Q) and Cg’a(ﬁ), with £ > 0and 0 < a < 1,
are respectively the usual Holder space and the subspace of functions that
are zero on the exterior boundary {r = 1}. Finally, we consider the spaces
L?(-) endowed with the natural scalar product denoted (-,-)72(. and Hilbert
norm |- |72,

2 The mean curvature operator

Consider a surface S parametrized by an immersion X : D — H? x R with
complete induced metric g. By compactification of S, we mean a conformal
change g of metric such that § extends to a metric on D.

The process is sensible to the parametrization. For instance, consider
the hyperboloid Sp. It is a vertical graph over H? parametrized by:

(r,0) e D — (rew, ) € H? x R,

2
V1—r2

in the Poincaré disk model (2)), with induced metric:

4 2—r2 0
g_(l—r2)3 0 1—7r2)"

4



But g cannot be conformally extended to the boundary {r = 1} of D, since
the terms of g have different rates of explosion when r — 1. The resulting
metric would degenerate for r = 1.

To ensure the extension of the induced metric, we use a conformal parametriza-
tion Sy, namely the immersion X? : D — H? x R defined by:

2 14 r?
XO(T', 9) = <F(’f’, 9), W) = <F(7‘79)72m> )

where F' : D — H? is the C'-diffeomorphism defined in the Poincaré disk
model (2)) by:
2r
eZ
14172

F(r,0) =
and in the Minkowski model (II) by:
F(r,0) = (cosh x(r,0),sinh x(r,6) cos 8, sinh x(r, §) sin )

with  x(r,0) = 2log (i +T) .

Definition 2.1. A surface in H? x R is said to admit graph coordinates at
infinity, if there exist an admissible domain 2 C D and a function h : Q2 — R
such that a part of the surface can be parametrized as the immersion X :
(r,0) € Qs (F(r,0),h(r,0)) € H> x R on Q.

When defined, we call such a parametrization graph coordinates at infinity.

In the sequel, we use graph coordinates at infinity to compactify surfaces
and quantify their asymptotic behavior. Surfaces are thus considered as
compact surfaces with boundary and we can apply the method first developed
by B. White in [14].

2.1 The family &£

Let € be the set of immersed surfaces in H? x R, which admit — up to a

symmetry with respect to the slice H? x {0} — graph coordinates at infinity
written as:

1 2

X":(r,0) € Q— <F(T, 9),2677(“9)1i

2
- r2> € H? x R, (3)
for some admissible domain © € D and 7 € C>*(Q2). Elements of £ have
vertical ends [4] i.e. topological annuli with no asymptotic point at finite
height — i.e. topological annuli properly embedded in (H? U 05 H?) x R.



The hyperboloid Sy itself is in £ with 2 = D and n = 0. And so are
the rotational examples of E. Toubiana and R. Sa Earp studied in Section [l
owing the asymptotic development (ITI).

We highlight two properties of the family £. The first is that it contains
normal deformations of the hyperboloid Sy. Namely:

Proposition 2.2. A normal graph S = expg,(CN) over Sy, where N is the
upward pointing normal to So and ¢ € C>*(D), is in €. In other words, there
exist Q@ € D and n € C>*(Q) such that the end of S admits graph coordinates

at infinity as in (3.
Furthermore, the asymptotic value of n is linked with the asymptotic hori-
zontal (hyperbolic) distance between S and Sp:

1
1o = 5¢lop,
Proof. We use the Minkowski model () of H? x R, where the map F reads:
F(r,0) = (cosh x(r,0),sinh x(r,0) cos 0, sinh x(r, §) sin )

1
with  x(r,6) = 2log (1 +:) .

A computation shows the unit normal N to Sy is:

2
N = —rrrz (sinhxaixo —Fcosh)(coseaile + coshxsin@%)
-2 0
1 —|-7’2 8%37

in the canonical basis of L*. Hence, S is parametrized by the immersion:

2 2
<cosh (X — %62) ,sinh (X — 1 —:Cr?) cos 0,

. 2r( . 1+72  1—172
smh(x—m)smeﬂl_ﬂ—i- T2C>.

We want to find new coordinates (7, ) on an admissible domain verifying:

X(7,0) = x(r,0) — %C(r, 6), cosf =cosf and sinf =sin,



to have graph coordinates at infinity on S as in ([3). Taking 6 = 0, compute:

) 2r 4 2 1—r2
e (Xr0 = 600) = = - <1+rz<+r<r>
4
1 =72 +0(1).

If r is sufficiently close to 1, the map r +— x—2r(/(14-r2) is strictly increasing
(uniformly in @), which ensures existence and uniqueness of 7.

To compute the asymptotic horizontal distance, consider a horizontal
slice H? x {t} intersecting S and Sp. The hyperbolic radii of S and Sy at
height ¢ and in the direction € respectively denoted pg(S)(t, 0) and pm(So)(t, 6)
verify:

2e” pu(9)(t,0)
R —— VU PHP )L, )
t T 7] 2¢e" cosh 5
and t= # — 2COSh pH(SO)(t7 0)

VI [F]? 2
and we deduce:

te " 1
pu(S)(t,0) = 2argcosh —5 = 2logt —2n+ O (t_)

t 1
and  pg(Sy)(t,0) = 2argcosh 5= 2logt+ O (t_2 .

Therefore, the hyperbolic horizontal signed distance d (.S, So)(t, 0) between
S and Sy at height ¢ and in the direction 0 is:

i (S..50) £:6) = pia(S0)(1,6) — pas(5)(t.6) =20+ O (5 ).

which establishes the equality (|sp = 2n|gp at infinity. Indeed, (|gp is the
normal signed distance between S and Sy at infinity, and also the horizontal
distance at infinity, since N is asymptotically horizontal. O

Proposition emphasizes the fact that the relevant information at in-
finity is the asymptotic horizontal distance from the hyperboloid. And as
suggested by (I]) in Section [, the asymptotic horizontal distance is also rele-
vant for deformed annuli, since the rotational examples are at finite constant
asymptotic horizontal distance from each other.



Therefore a general principle in our purpose is to fix a convenient sur-
face, the model surface, and to construct deformations of the model surface
prescribing the asymptotic horizontal distance from the model surface. It
is also the supporting idea of the compactification of the mean curvature
operator (Theorem [2.0)).

A second interesting property of £ is the following:

Proposition 2.3. The image of any element of £ under the action of any
isometry of H? x R is still an element of E.

Proof. Consider a surface S € £ with graph coordinates at infinity (F,h)
defined on € D, and denote by (F,h’) the graph coordinates at infinity of
its image S’ under an isometry 1 of H? x R. Using parametrization (3)), we
know that in the Poincaré disk model (2):
2e" _
h=———— with € C*(Q).
T n (€)

It is sufficient to examine the cases when 1 is either an isometry of H? fixing
the coordinate xg or a vertical translation. If ¢ is a vertical translation of
to € R, we have:

2¢" N1 — 2 1
W= 20 4 ty=2exp <7]+10g <1+toe— ! ))

V1= 2 1+r2) ) JTI—[FP

eventually after a restriction to a domain ' € D for which hlg > —ty.
If ¢ reduces to an isometry of H? preserving the orientation of H?, there
exist wy € D and §y € R such that:

P(w) =

1 +wow

w + Wy ei50

If ¢/ = F~ 1oy~ 'oF, then:

W= hoy = 9emoY’ B (eﬁoﬁ/ |1 —wgF| ) 2

VI—[ToF2 V1—=lwol? ) /1—[F?
_ / |1_w_0F| 2
_exp<now +log<\/1_|w0|2>> NiSTag

and S’ € £. Changing F in F, gives the result when 1) reduces to an isometry
of H? reversing the orientation. U

Remark 2.4. The value 7|gp is invariant under vertical translations.



2.2 Compactification of the mean curvature

From now on, to ease the notations, we denote with indices 1,2 quantities
related to coordinates r, 6 respectively. Consider an admissible domain €
D and a function a € C*>¥(Q). The model surface is the immersion X¢,
written as in (3]).

Theorem 2.5. For any deformation X%T¢ of the model surface X®, with
€ € C>*(Q), the respective mean curvatures H(a + &) and H(a) verify the
following:

9(a)|(H(a+ &) — H(a)) = > Ai(r,0,a, DE)&;j + B(r,0,a,, DE),  (4)
2
where |g(a)| is the determinant of the metric induced by X, A;; and B are
CO functions on Q which are real-analytic in their variables, and A = (Aij)
is a coercive matriz on ).

Proof (See Appendix [B] for computation details). Denote o the pullback
metric F*ds2p, i.e. in matrix terms:

16 (1—r?)? 0
T 0 eRae)

Differential properties of a surface in H? x R with graph coordinates at
infinity (F,h) are the ones of the actual graph of h in D x R endowed with
the metric o + dz3. Following J. Spruck [IZ], the mean curvature H(a + &)
is:

H(a+¢) = ldivg

. (Vgh(a+§)

W(a+£)> with W(a+¢) = /1+ [Voh(a+ )P,

with quantities computed with respect to o. If (Ffj) denote the Christoffel
symbols associated to o, we have:

H(a+¢) = m%gij(a+£) <8ijh(a+£) — ;Ffj@kh(aJr&)) ;

where the non zero Christoffel symbols are:

2r 14 6r2 +r?
My =—-, If,=03=
U2 72717 (1 r2)(1 —r2)
1 2 1 2 4
and I‘%Zz—r( +79) (1 +6r° +7%)

(1—1r2)3



The induced metric g(a) reads:
2ra; 9 a? e -1 212
1+ 1+742(1—7* )+ <—+7 (1—r9)7],
(@) 8(1 + 72)%age?® [ 2r a
a) =
912 1—r23 |14+ 2

1672(1 + 12)?
and goo(a) = (1(_ 7’2)4)

16(1 + 72)2e20
gui(a) = Ta—r2r

I+ a2 (1 - T2)2] s
and the expression of W (a) is the following:

W(CL) _ (1 + 7’2)ea [1 n 2ra; (1 _ 7’2) + (CL_% " e—2a _ 1) (1— 7’2)2

1— 72 1+ 72 4 (1+41r2)2
) 1/2
B (1! (5)
4r2(1 + r2)2 "

The computation detailed in Appendix [l gives the expression () with the
desired regularity and:

A11 = 6_a+0(1—7‘2), A12 = A21 = 0(1—7'2) and A22 = €a+0(1—7‘2),
which shows that A is coercive on QU dD. O

The quantity \/g(a)(H(a + &) — H(a)), with £ € C>%(Q), can be called
a compactification of the mean curvature of X since it can be extended to
the exterior boundary {r = 1} of Q. It is strongly linked with the compacti-
fication of the induced metric g(a) by the following equality:

= (5 ) vou-m-

3 Moduli space of CMC-1/2 entire graphs

gla) +O(1 —r?).

1
l9(a)]

In this section, we are interested in the subset G C £ of CMC-1/2 complete
entire graphs contained in the half-space H? x R?% . Since elements of G are
simply connected, they can be globally parametrized in graph coordinates at
infinity over the whole disk D using (3)):

2r
1+r2

1472

.2 e and 7neC**D),

X" = (F, 2e" ) with  F(r,0) =

10



and the geometrically defined function n|gp : S! — R is the value at infinity
of the surface.

Consider a CMC-1/2 entire graph S € G, with graph coordinates at
infinity X¢, where a € C*%(D), and denote v* = algp the value at infinity.
A simple computation shows that the vertical component ¢® = (N%, e3) of
the upward pointing unit normal N® to X® can be expressed as:

e 1 — 72 e 1 —r?
b= — ith ¢ =— w 6
sy Witk =) ©)
where W (a) is given by (Bl) and ¢® = 1/W(a). Note that c* is a positive
function on D such that ¢%|gp = 1/2.

In the sequel, we make the following abuse of notation denoting H the

operator:
H:neC* (D)~ H(n) € D),

where H(n) is the mean curvature of X", and calling it the mean curvature
operator.

Lemma 3.1. The differential of the operator H at point a is:

Vi€ (D), DH(a) = 5L ().

where L is the Jacobi operator of X.

Proof. If X™ is a differentiable family in the parameter ¢ such that 7y = a,
it is a standard fact that:

d d 1 1472 dny

—_ H — L Xm Na =ZLl2 a,.a haiti2

dt |,—o (me) = < dt|, : > 2 ( YT TR2 A )
and the expression (@) of ¢ leads to the conclusion. (]

Using Theorem 2.5 we define the compactified mean curvature operator

to be:
H:£eC?*D)—/]g( ( (a4 2¢%€) —%) e c%(D). (7)

The compactified Jacobi operator is L = DH(0) : C>*(D) — C%%(D) and
using Lemma [3.1] we know that:

Z=/lg(a)|L.

11



Proposition 3.2 (Green identity). For any u,v € C>*(D), L satisfies the
following identity:

_ _ _ 2 a ov ou
_ — - oz
/ﬁ (uLv vLu) dA /0 e (u o v 87‘)

with dA the Lebesgque measure on D.

a9,

r=1

Proof. Let u,v € C>*(D). For any R € (0,1), L satisfies a Green identity on
{r <R}

/ (uLv — vLu)dA = <u@ - v@> ds,
{r<R} {r=r} \ Ov Ov

where dA and ds are the measures corresponding to the metric induced by
X% on {r < R} and {r = R} respectively, and where J - /Ov denotes the
co-normal derivative. Notice that:

dA = \/|g(a)| dA, ds = /go2(a)db

1 a ) X9
and V:m(g22(a)Xl g12( )XQ),

with dA the Lebesgue measure on R?. Taking the limit when R — 1, we
obtain:

0 a O
: 2 _ 2
}121311 ge2(a) v ¢ or 1
and the identity follows. O

Corollary 3.3. There is no solution u € C>*(D) to the equation:

Lu=0 on D
ulop =1

Proof. By contradiction, suppose such a u exist and apply Proposition
to p® and u:

_ —_ _ 2, ou Op?
— a _ a — —y a”"
0 /ﬁ (gp Lu —uLy )dA /0 e (gp 7 U o )

2 "
= / e~ 2" 4o,
0

do

r=1

12



since:

a a

_ 2re” 9
7:1—( 1+r2+0(1 7‘))

This is impossible. U

Oy
.

¢©%r=1 =0 and

r=1

Let Lo be the restriction of L to Cg’a(ﬁ) and K = ker Lg. Using the
standard inclusions Cg’a(ﬁ) c C%(D) c L?*(D), we denote by K+ the
orthogonal to K in C%*(D) for the natural scalar product of L*(D) and
K = K- n¢e* (D).

It is a standard fact that the restriction Lg is a Fredholm operator with
index zero (see for instance [7]). Namely K = Ryp® and Lo (Co* (D)) = K.

3.1 General deformations

Let g : C2%(S') — C%%(D) be the operator such that p, () is the harmonic
function on D (for the flat laplacian) with value v — v® on the boundary
OD. Denote IIx and ;. be the orthogonal projections on K and K-+
respectively. Following B. White [14], we show:

Lemma 3.4. Consider the map ® : C>*(S') x R x K- — K defined by:
O(7,A,0) = g1 o H(ua(y) + Ap" +0).

Then D3®(v%,0,0) : Kg- — K= is an isomorphism.

Proof. A direct computation gives D3®(v%,0,0) = Il;. o Lo K and we

know K= is the range of Ly, which means D3®(7%,0,0) : K5 — K= is an
isomorphism. O

Therefore, we can apply the implicit function theorem to ®, which states
that there exist an open neighborhood U, of (v%,0) in C>*(S') x R and a
unique smooth map o : U, — K3 such that:

V(v,A) € Uy, (v, A, 0(v,A)) =0.
Then we define the smooth maps &, : U, — C**(D), n, : U, — C>*(D) and
Kq : Uy = K by:
§a(1:A) = a(Y) + A" + (1, A), 1a(7,A) = a+2¢%a(7,A)
and  Kq(y,A) =g o H(E(7,N)).
If a surface in &, defined on D, admits X7 (A as graph coordinates at

infinity, we say that {v, A} are the data of the surface with respect to S or
to a.

13



Lemma 3.5. The maps n, and &, have the following properties:

1. £&(v*,0) =0 and n,(v*,0) = a.
2. (7, A) € Uas ma(7:A)]op = 7-
3. Dafa(7%,0): A € R i Ap® € ¢2(D).

Proof. Point 1 comes from the definition of ., and from the uniqueness in
the implicit function theorem. Point 2 is a direct computation:

Na(7, N)]op = alap + 2¢|on (1a (V) |op + A oD + o (7, A)|oD)
1
=7+ 25((7 —7%) = 1.

For Point 3, it is sufficient to show Dyo(y*,0) = 0. To do so we compute:

d _
== O (v, t,0(y*,t)) =g1 o Lo(¢® + Dac(v%,0) - 1)
t=0

= f(] (DQO'(’)/Q, 0) . 1)

0

Hence, Dyo(7%,0) -1 € K N Ky = {0}, which means Dya(y%,0) = 0. O

Remark 3.6. Consider S, S’ € G admitting respectively X X% as graph
coordinates at infinity and suppose there exist a surface in £ with data
{~v,A} and {7/, N} with respect to S and S’ respectively. Therefore, this
surface admits graph coordinates at infinity X7 and X7 (') — je.

Tla(’Ya )‘) = Na (’Y/; )\/) — and we get:

1 <na(% A) —ad
2c0

A=~ and N = —Iua/("y),(pa/> . (8

o [72m) 12(D)

The identity on values at infinity comes from Lemma Point 2, and the
expression of )\ is just the projection along 90“/.

Note that a converse to this decomposition is the subject of Theorem [4.3]
namely if X" admits data with respect to S, these data are {7/, \'} as
defined in (g]).

Lemma Point 2 also shows that the value at infinity of a surface
X1(1:A) does not depend on A, which means there exists a 1-parameter family
of surfaces admitting the same value at infinity. This family is nothing but
the vertical translations of Xa(7:A);

14



Proposition 3.7. Let (v,\) € U,. The surface X1aOA) egists for any
X € R and coincides with XN up to a vertical translation.

Proof. To ease the writing, denote a = Na(7,A), h(a) the height function of
X%ie.:
~1+472
h(a) = 2e*
@ =217
and m > 0 the minimum of h(a) on D. We know from Proposition 23 that

we can parametrize a vertical translate of X by some t € R, by graph
coordinates X% (®) defined on D if and only if ¢ > —m and in that case:

() =a+log |1+t gl_rz =a+1 <1+L>
a(t) =a+ log 117 =a + log )

We also know that a/(t)|sp = @|op, which implies jiq (7% ®) = (7). Writ-
ing:

d'(t) = a+2¢ (pa(7) + N (D" + o (1, X (1)) ),

we only have to show that N(¢) is a bijection in the variable ¢ from the
interval (—m,+00) of possible translations onto R. We have:

adt)—a d@t)—a a—a 1 t
= = 54 1 1 T~ a\ /» )‘ )
2c8 2ce + 2ce 9ca 08 ( + h(&)) +&a(nA)

and using (R)), the expression of \'(t) is

t
Nt =A+ ——— /('Dlog( N)
( ) 27T|90 |L2(]D) h(a

t 1
:)\+7/ 90“2halog(1+—~) since  — = p*h(a).
T (¢*)*h(a) o) = (a)

Compute:

>0

ax'(t) 1 / (¢*)*h(a)

dt 27T|<,0“|2L2(D) p t+ h(a)
i.e. N(¢) is a strictly increasing bijection from (—m, +o0) into R. Also:

L (t<0)
N < A

% /D(so“)%(a)] log (1 + %) — s —o0.

27{‘90 ’L2(]D)) l—=—m
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If M > 0 is the maximum of k(@) on the disk {0 <r < 1/2}, we get:

N (t) = b — / (©")?h(a) (1 T )
il gp a Og -
27r|90“|2L2(D) {o<r<1/2} h(a)
1 t
> A+ / N2h(a)| lo <1+—>—>—|—oo,
277’@“\%2@) {0§r§1/2}((’0 Jh(a) | log M) t—+oo
which ensures that \'(¢) is bijective from (—m, +o00) onto R. O

3.2 CMC-1/2 deformations

The values of the mean curvature of deformations X7 (") of S are deter-
mined by k,. Indeed, for (v, ) € U, we have ®(v, A, 0(v,)) =0 and:

F(éa(77 /\)) = 5(1(77 /\) + CI>(77 /\7 O-(’Va A)) = ’{a(/% >‘) (9)

In particular:

V(v,A) € Uy, H(na(y, ) = % < kq(7,A) =0.

Consider U, = r;1({0})NU,. Using Proposition[3.7], we can take U, = ', xR
with I'; a subset of C>%(S!). Furthermore, since the construction is local,
we can suppose I', connected.

Proposition 3.8. ', is a codimension 1 smooth submanifold of C>*(S').
The tangent space to T, at ¥ is the orthogonal space (=27} to e=" in
C%(SY) for the scalar product of L*(S') and T, is a subset of:

{"}/ S C2’Q(Sl) \’6_7‘L2(S1) = 1} .
Proof. We first show that x, is a submersion at (y%,0). Using (@), compute:
d d —
= =4 a aat = =5 H a aat
g, 0" =3 (£a(r",1))
= L(D26.(v",0) - 1) = Lo(¢") =0,

since ¢ € K. Remains to find v € C>*(S') such that Djr4(v%,0) -7 is not
identically zero. We can take v = 1. Indeed, using (@):

Doka(74,0) -1

d d
Dikg(v*,0)-1 = — oY +1,0) = —
1£a (7%, 0) " (v +1,0) = —

= L(D1&a(v",0) - 1) #0,

—0 H(éa(va +t, 0))
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using Corollary B3] with (D1&,(7%,0) - 1)|sp = 1 deduced from Lemma
Point 2. Since Dk, is continuous and non zero at (7%,0), there exists an
open neighborhood of (7%,0) in C*%(S!) x R on which , is a submersion.
Therefore, up to a restriction on I'y, we can suppose k, is a submersion on
I, x {0}, which implies T, is a submanifold of C%%(S') of codimension 1.

Consider a smooth path ~; in ', with 79 = v® and tangent vectors ;.
Note that similarly:

. d
0= D/{a(’ya,()) ) (/7070) = =

dt Ka(72,0) = L(D1&(7*,0) - o).

t=0

Denote v = D1£,(7%,0) - 4o € ker L. Knowing that:

o
or

— a .
=—e 7 and v|=1 =0,
r=1

(:Da‘rzl - 07

apply Proposition to % and v:
de

— a _ a — —y a”"
0 /@((‘0 Lv—wvLy )dA /0 e (gp o v o ) .

21
N /o oe= 27 d = 27 (30, €77 ) 1251, (10)

Thus (e=27")+ is the tangent space to I', at ¢, since it is of codimension 1.

The stated inclusion for I'; expresses the nullity of the vertical flux of an
entire graph. If v € T, is the value at infinity of a surface S’ € G, consider
the subset Vg, for R € (0,1), of H? x R inside the vertical cylinder C of
(euclidean) radius |F(R,-)| = 2R/(1 + R?) in the Poincaré disk model (2)),
delimited below by the slice H? = H? x {0} and above by the surface S’.
Since eg is a Killing vector field, using Stokes theorem we have:

0= dives = / (N“/,eg> + (—es, e3),
VR 532 DR

where S%, is the part of S’ inside Cg and Dpg the disk in H? of (euclidean)
radius |F(R,)| = 2R/(1 + R?).

We use notations of Appendix[Bl If X® are the graph coordinates at infinity
of S’, we have Ag(a/)X“/ — 2H(a')N¥ = N, since H(a') = 1/2, and the
first integral writes:

/
(N eq) = A, uyh(a') dA = M) 4

st {r<R} {r=R} Ov
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Figure 1: Decomposition of the boundary of Vg

and we know that:

/ / 2
9 _ . gnl@) 0 _ gula) 9 and  h(d') = 2¢% Lr .
W \/ga(a') 1—1r2

VIg@)[or  /g(a’)] 96

Using the expressions of g12(a’), g22(a’) and |g(a’)| computed in Appendix[6]
we get:

Oh(a") 1 8r2

(1+7r%)a.

1
+ 4r

ov g22(a’) w(a’)(1 —r?)?

(1 - 7’2)‘| )
and since ds = \/gae2(a’) df, we obtain:

P L (1+12)a!
‘/S <N ,€3> = 7(1 — R2)2 ‘/0 m [1 + 747’ (1 — T2)]

R
167 R? _J(R.
- m"ﬁ‘%‘r (1— ’6 (R’)‘L2(Sl)) +O(1—R2).

do
r=R

The second is the area of Dg:

R L e 167 R?
/DR 77/0 \/|oldr 67?/0 a _T)gdr L

Making R — 1, we get |e™7|12(g1) = 1 and the inclusion for T',. O

A. E. Treibergs showed (see [13]) that given a C? curve — generalized to
continuous curves by H. I. Choi and A. E. Treibergs in [I] — 7 : S! — R,
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there exists a CMC-1/2 complete entire vertical graph in the 3-dimensional
Minkowski space which is asymptotically at signed distance v from the light
cone. Namely, it is the graph of a smooth function f : R? — R such that:

flx)=l|z|+~ <i) +e(z) with lim e(x) =0.

‘Z” |z| =400
Proposition 3.8 is indeed a C%> local version of this result in H? x R:

Theorem 3.9. Let v € C*>*(S'), small in the C>*-norm, be such that
\e_“/]Lz(Sl) = 1. Then there exists a surface in G with v as value at infinity.
In other words, there exists a CMC-1/2 complete entire vertical graph at
asymptotic horizontal signed distance v from the hyperboloid Sy.

Proof. If ~ is sufficiently small in the C*>® norm, then v € I’y and X9 ig
a CMC-1/2 entire graph admitting 7 as value at infinity. O

Another consequence of Proposition B.8] is the global structure of G:

Theorem 3.10. The family G can be endowed with a structure of infinite
dimensional smooth manifold.

Proof. Consider a surface S € G with graph coordinates at infinity X% and
V, C G the set of surfaces admitting data in U,. From uniqueness in the
implicit function theorem we know that the map:

7a: S €Vars (7,\) €Uy,

where {7, A} are the data of S’ with respect to a, is a bijection. To prove
that the couple (V,, 7,) form a smooth atlas, it only remains to show that the
transition maps are smooth. But identities (§) are precisely the transition
map from (V,,7,) to (Vu, 7y ), which concludes the proof. O

4 A half-space theorem

In [I0], B. Nelli and R. Sa Earp show a half-space theorem for the hyperboloid
So. We extend this result to the family G of CMC-1/2 entire graphs with
appropriate graph coordinates at infinity. The proof is based on the idea
of B. Daniel, W. H. Meeks and H. Rosenberg [2] in Heisenberg space. A
key-ingredient is to construct a family of surfaces with boundary. Our tool
to do this is the following:
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Lemma 4.1. Let E be a CMC-1/2 surface with boundary admitting graph
coordinates at infinity X% defined on an admissible domain Qr € D, with
R € (0,1) and a € C**(Qr). Denote v&, = alf—gy and 72, = alop. Then
for any (Yint, Yewt) i a neighborhood of (42, 72:) in (C>*(SY))?, there exists
a CMC-1/2 surface admitting graph coordinates at infinity X defined on
Qr such that a'|{,—gy = Vint and a'|op = Yeat-

Proof. Consider the map @ : (C2*(S1))2 x C3*(Qr) — C**(Qg) defined by:

CI)(’Yinta VYext> U) = F(,Ufa(’}’inta ’Ye:ct) + O’),

where H is the compactified mean curvature operator as defined in (7) and
te @ (CP2(SY))2 — C?2(QR) is the operator such that g (Yint, Vezt) is the
harmonic function on Qg with value (Yine — Y, Yeat —Voy) o0 the boundary
of Q R-

We know that F is strictly stable since the third coordinate ¢* of the up-
ward pointing normal is a positive Jacobi function (see [6]). Hence, D3® (7%, 7%, 0) :
Cg’a (Qr) — C%*(QR) is an isomorphism and we can apply the implicit func-
tion theorem as in Section B.Il There exist a neighborhood U of (0,0) in
(C%(S1))? and a smooth map o : U — C%*(Qp) such that:

v(’Yinta ’Ye:ct) € U; (I)(’Yinty Vext> U(’Yinta ’Ye:ct)) = 0.
We can take ¢’ = a + 2c* (Na (’Yint: ’Yext) + U(’Yinta ’Ye:ct))- U

We now can show the following half-space result:

Theorem 4.2. Let X be a CMC-1/2 surface which is properly immersed in
H? x R and lies on one side of a CMC-1/2 entire graph S € G admitting
graph coordinates at infinity X® with a € C>*(D). Then ¥ coincides with S
up to a vertical translation.

Proof. Without loss of generality, we suppose ¥ is above S. We denote
T¢: H? x R — H? x R the vertical translation by ¢ € R and:

co =inf {c € RIENT(S) # 0} .

If X NT(S) # 0 then by maximum principle, ¥ coincides with T (S).
From now on, suppose ¥ NT%(S) = () and — up to a vertical transla-
tion — ¢g = 0. In other words:

YNS=0 and Ve>0, XNTS) #0.
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We want to construct a CMC-1/2 surface with boundary intersecting ¥ in
an interior point. To do so, consider R € (0,1/2) and admissible domains
Qr,Qor € D. There exists § > 0 such that 3 intersects T¢(S) only inside
the exterior domain 2or X R for any 0 < ¢ < 24:

Ve <26, (T(S)NX) C Qar x R.

Denote E = T%(S) N (Qr x R). E is a CMC-1/2 surface with boundary.
We can apply Lemma 1] to deform E and construct a family (E (6))€>0 of
CMC-1/2 surfaces such that: -

e E(e) is at constant asymptotic horizontal signed distance —¢ from F;

o E(e) coincides with E on the interior boundary {|w| = R} xR of Qg x
R;

« E(0)=E.

Moreover, by the implicit function theorem applied in Lemma [Z1] we know
that the family F(e) is uniformly smooth. Hence, E(e) converges to E when
e — 0 and since E N Y # (), there exists 9 > 0 such that E(gy) N X # 0.
At infinity E(gg) is outside S, thus T¢(E(gp)) N = 0 for large ¢ < 0.
Consider:
c1 =sup {c < 0|T°(E(gp)) N =0} <0.

We know that T (E(eg)) N'Y # 0 since the first intersection point cannot
be at infinity. And this intersection does not occur on the boundary of
T (E(gp)), since the boundary lies outside Qap x R. Therefore, the first
intersection point is point interior to 7' (E(g()) and by maximum principle
¥ coincides with T (E(gg)) over Qp, which is impossible. O

We can deduce from Theorem a uniqueness result at infinity for the
family G:

Theorem 4.3. Let S,5 be CMC-1/2 entire graphs in G admitting graph
coordinates at infinity X%, X respectively, with a,a’ € C%2(D). Suppose
there exist a surface ¥ admitting data (y,\) € Ty X R with respect to S and,
as in (8), denote:

N 1 <na(% A) —d

=— , —uf(’y),cp“/> ;
|90a |%2 (D) 2ct ¢ L2(D)

with X1(WN) the graph coordinates at infinity of 3. Suppose v € Ty, then S
admits data {v, \'} with respect to S’; in other words, n,(v,\) = N (7, N').
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Proof. We first make two remarks:

o If 3 admits data with respect to S’, then from (8) and the definition
of X above, we know that the data are precisely {v, \'}.

e To show that ¥ admits data with respect to S’, we only have to show
that a vertical translate T°(X) of X, with ¢ > 0, admits data with
respect to S’.

Consider graph coordinates at infinity X" for 7¢(X) with ¢ > 0. Suppose
there exist 79 € (0,1) such that the height functions of 7¢(X) and X"’ (")
verify h(n) > h(na (v, N')) for any (r,0) € [ro, 1) x St. We take:

co=c+ max_|h(ng(7,\)) = h(n)

[0,ro] xSt

)

so that T°(X) is above X"/ (xA) . Applying Theorem E2, we deduce that
T (%) is a vertical translate of X (¥A"),
Remains to show the existence of . We have:

Nt (1, X) = d + 26" [p1as (7) + XNo” + 0 (7, )]
and (v, N) = d + 2¢% [par () + N + ol,
by definition of ), which gives:

6_7711(77)‘) 1 — 742)

N —na (v, N) = 2¢ [0 — o7, X)] +log (1 EI G R g

eco (D)

We know 7 — 1y (v, \') is identically zero on dD and we remark that:

0 , 0 O , el
87"(77 Nar (7, A')) 81D>_2 87‘(0 [o a(’y,)\)}) o e
Taking:
c=2maxe” (1 + 22 (cal o —o(y A')]))
oD or ’ '
we get:

or
Thus, there exists 19 € (0, 1) such that n—n, (v, \') is strictly decreasing (in
r) on [rg, 1) x S!, which means 17—, (7, \’) > 0 on [rg, 1) x S! and concludes
the proof. O

0
—m—wwww < 1.
oD
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5 Deformations of CMC-1/2 annuli

R. Sa Earp and E. Toubiana showed in [3] that — up to a not necessarily
orientation preserving isometry of H? x R — a rotational CMC-1/2 vertical
annulus is a bigraph, symmetrical with respect to the slice H? x {0}. The
upper graph part of such an annulus admits graph coordinates at infinity
(F,hg), with 8 a positive real number, 3 # 1 and hg defined by:

h(r _/QIOg(FI) cosht — f3 VB—1
T | log | /2B cosht — 1 — 32 VB+1

We denote by Ag this annulus, which is embedded if 0 < 8 < 1 and only
immersed when 8 > 1.

dt where r >

-5

0 < 8 < 1: embedded annulus
B = 1: entire graph (the hyperboloid Sp)

B > 1: immersed annulus

0

Figure 2: Profile curves of rotational CMC-1/2 examples in the Poincaré
disk model (2)

We have the following asymptotic development as r — 1:

BB E
T VBI-7

which means that the restriction of (F,hg) to the exterior domain Qg is in
£ with constant value —log 8 at infinity. Therefore, the method developed
in Section [ should adapt to the study of deformations of these annuli.

hg(r) +0(1), (11)

For our purpose, we slightly change the notations. Fix g > 0 with
B # 1; the annulus Ag is now the model surface. To deform rotational
annuli, we need conformal coordinates to provide a compactification of the
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mean curvature. A conformal parametrization of the annulus Ag, written in
cylindrical coordinates, is the following:

X0:(5,0) € Q° (F(r(s),@),s(s)hg (r(s))) with Q° = (=T,T) x S,
(12)

T e(s) = sign(s),

_ 4 /1 dt
18 —1 Rg \/(t2 _ R%)(R/§2 _ t2)7

L P - m =) ad )= Ry

We also identify functions over Ag with functions over 08, The cylindrical
parametrization of a deformed annulus is the following immersion:

X":(s,0) € 0 (F(T‘(S),9),€(S)€n(s’0)h5(T(S))) with 7 e C2Y(QF).

The determinant of the first fundamental form is |g(n)|, the mean curva-
ture H(n) and the values at infinity are the couple (n(T,-),n(-T,)) €
(C2’O‘(Sl))2.

5.1 Non degeneracy of rotational annuli

As in Section Bl we need to understand the Jacobi functions in order to
control the deformations. Thus, we focus the study on annuli in £ that are
non degenerate in the following sense:

Definition 5.1. A surface in £ is said to be non degenerate if the only Jacobi
functions that are zero at infinity on each end of the surface (i.e. when r =1
in the graph coordinates at infinity of the ends) come from isometries of
H? x R.

A direct consequence of the proof of Proposition and the shape of the
ends is that if an annulus in £ is non degenerate, then the space of Jacobi
functions which are zero on the boundary is 1-dimensional, generated by the
vertical component of the unit normal.

Another fact is that, since the rank of the Jacobi operator is locally
constant, small deformations of a non degenerate annulus are still non de-
generate.

Therefore, the method used in Section Bl can be strictly transposed to the
study of deformations in a small neighborhood of a non degenerate example.

Proposition 5.2. The annulus Ag is non degenerate for any value of B (#
1).
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Proof. If L denotes the Jacobi operator of Ag, the compactified Jacobi opera-
tor L = 1/]g(0)[L of Ag can be written A+¢(s) in the conformal parametriza-
tion ([2), with A the flat laplacian and ¢ € C°([-T, T]). Moreover, Az being
symmetric with respect to H? x {0}, the function ¢ is even.

Since a Jacobi function is 2m-periodic in 6, using the Fourier decomposi-
tion, we reduce the problem to solving a family (D)) of Dirichlet problems
on C*([-T,T)) for n € N:

u’+ (q(s) —n ) =
. D
{ u(~1) = u(T) = (D)

We make two immediate observations:
 Considering a solution of (D)) for any n € N, its odd and even parts

are also solutions of (D). Hence, we only have to consider odd and
even solutions.

« The vertical component ¢ of the unit normal to Ag is an odd solution
of (Do) which does not vanish on (0, 7).

Let n € N. An odd solution of (Dgl) is proportional to ¢. Otherwise,
using Sturm comparison theorem with ¢ — n? < ¢, ¢ should vanish once in
(0,T). There is no even solution to (Dyl). Suppose such a function u exist.
Using Sturm comparison theorem, u vanishes nowhere in (—7,7), which
means n? is the first eigenvalue of the elliptic operator:

d2
12 +q(s),

and that the corresponding eigenspace is one dimensional equal to Ru. More-
over ¢ is an eigenfunction of this operator associated to the eigenvalue 0,
which implies n = 0 and ¢ = Au for some A € R. But ¢ is odd, which is a
contradiction. O

5.2 Deformations of annuli

Consider a (-deformable CMC-1/2 annulus A i.e. a surface such that:

o A admits X, with b € C> (m), as a cylindrical parametrization;

e A is non degenerate;
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o the values at infinity are the couple 7° = (7%,7%) = b|yqs satisfying
the condition: \ \
le™ " [Le(s1y = le™ "= |2 sy,

which expresses the conservation of the vertical flux along the annulus.

Again, the vertical component ¢ of the unit normal to A reads:

e—b

L i & 1
=¢ —  wi =
v ha(r) ¢ loas = 5>

and we use a similar definition to Section [3] for the compactified mean cur-
vature operator:

H:£el>(08) — /|g( < H(b+2cb¢) — 2> e CO(0B).

The compactified Jacobi operator is still L = DH(0), Lg is its restriction to
Cg’a (W) and K, K+, Kg- are defined as before. The non degeneracy hypoth-
esis on A means ker Ly = Reb.

Again, define py, : (C>*(SY))? — C>*(QP) to be the harmonic function
on Q8 with values v —4* on 9QF.

The compactified Jacobi operator satisfies a Green identity similar to
Proposition for entire graphs:

Proposition 5.3 (Green identity). For any u,v € CZ’O‘(W), the compacti-
fied Jacobi operator satisfies the following identity:

/ (uLv—vLu dA \/_/ e <u@— @)
Qs s 0s

A ()

with dA the Lebesgue measure on 08,

do
=T

a9,
s=—T

And we also have the equivalent of Corollary [3.3t

Corollary 5.4. There is no solution u € C2’°‘(m) to the equation:

ulgos = (1,-1)

As in Section ] let IIx and Iy . be the orthogonal projections on K
and K. Lemma [34] still holds:

{Zu:o on Q8
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Lemma 5.5. Consider the map ® : (C>*(SY))2 xR x Kg- — K= defined by:
(v, A\, 0) = gr o H(up(y) + A’ + o).
Then D3®(+°,0,0) : K- — K+ is an isomorphism.

We can apply again the implicit function theorem to ®, which states
that there exist an open neighborhood Uy of (7%,0) in (C**(S'))?2 x R and a
unique smooth map o : U, — Ky such that:

V(v,A) € Uy, ®(7,A,0(v,A) =0.

We define similarly the smooth maps &, : Uy — C2*(Q5), ny : Uy — C2*(QF)
and kp : U, = K by:

&1 A) = () + A"+ 0(1,A), (1, A) = b+ 2¢°,(v, A)
and  kp(y, A) = I o H(&(y, N)).

Also, if an annulus, defined on 7, admits X" as a parametrization, we
say that {v, A} are the data of the annulus with respect to A or to b.

Properties of & and n, are similar to those of &, and 7, in Section Bt

Lemma 5.6. The maps n, and &, have the following properties:
1. &(v*,0) =0 and ny(7°,0) = b.
2. ¥(7,A) € Up, mp(7, M)aqs = -
3. Da&y(70,0) : X € R = AP € C22(QF).

Consider A, A’ B-deformable annuli admitting respectively X?, X as
cylindrical parametrizations and suppose there exist an annulus with data
{7, A} and {7/, N} with respect to A and A’ respectively. Therefore, this
surface can be described as XY and X (A) and we get:

1 (v, \) — b /
7 =+ and /\':‘ ) < ol 5 b), —Mb’(7)7¢b> :
Yoz 09) ¢ L2(09)

Lemma Point 2 shows that the values at infinity are still independent
from the parameter A, and the meaning of the parameter A is the same as
in the case of entire graphs:

Proposition 5.7. Let (y,\) € Uy. The surface XN epists for any
X € R and coincides with XN up to a vertical translation.
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We are now interested in deformations XA of the annulus A that
are CMC-1/2, which means deformations such that (v, A) = 0. Consider
Uy =, ({0}) N Up. Again, using Proposition 5.7, we can take U, = I', x R
with T’y a connected subset of (C%(S'))2.

Proposition 5.8. The set I'y is a codimension 1 smooth submanifold of
(C%(SY)? which is a subset of:

{(r7-) € (€SN [l 2@y = le " |2en) } -

Proof. As in Proposition B8] if p is a submersion at (7%,0), then it is a
submersion in a neighborhood of (v,0) in (C%*(S!))? x R and, up to a re-
striction, T, is a smooth submanifold of (C*%(S!))? of codimension 1. Again
Dorip(72,0) = 0 since:

d _
’{b(/ybv t) = E H(gb(/ybv t))
t=0 t=0

dt
= L(D26(7",0) - 1) = Lo(¢") = 0,
with ¢® € K. Consider v = (1, —1) € (C>*(S"))? and compute:

kp(7" + t7,0) H(&(7" +t7,0))

 dtl—  dtl
= L(D1&(7",0) 7).

Lemma Point 2 implies (D1&(7%,0) - v)|op = (1,—1) and using Corol-
lary 5.4 we know that Diry(7%,0) - (1, —1) is not identically zero.

Consider a smooth path 7 = ((v1)s, (v-):) in Tp with 79 = 4" and
tangent vector at t ¥ = ((74), (7=);). Note that similarly:

Dikp(7°,0) -

0= Dry(?,0) - (30,0) = L] ky(30,0) = L(D1&(7,0) - (40,0)).

dt 4o
Denote v = D1£,(7°,0) - (40,0) € ker L. Knowing that:
ol s O L,
‘Pb|s:T = ‘;Db|s=—T =0, o =—e 7+, g¥ = e,
88 83
s=T s=—T

V]s=r = (7.—1—)0 and  v[=—7 = (7.—)07

apply Proposition 5.3 to ¢° and v:
27 . 2T,
0= [ To— oI dA= VG [ (e hdo = VB [ ()" db
Q 0 0
_ ; —2vb _ : —27b
=20/ ()0 e ™) = (0™ ) L, ) (13)
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For a fixed ¢, consider the reparametrized path 7., = vs;; and denote
b = ny(14,0). There exists € > 0 such that +, € Ty for any |s| < . Hence,
the path of surfaces X740 can be described by a path of data {v, X}
in Uy, |s| < e, with \) = 0 and tangent vector 7'y = % at s = 0. The
result (I0) applies to (v, \,) i.e.:

d _ _
= (|e (7+)t|%2(§1) —le (7*)t|%2(81))

= <(’7.+)t7 6_2(Py+)t> - <(’7.—)t’ 6_2(77)t> =0,

L2(S1) L2(St)
for any t, and thus:
_ _ _~b _~b
e Fagry = 1O Fagry = le T2y — 677 [Faer) = 0,
since the annulus A is S-deformable. O

The condition on the values at infinity defining I', is indeed the conser-
vation of the vertical flux in the deformed annuli.

5.3 Annuli with non aligned ends

For minimal surfaces in R?, one can define two Neether vector-invariants
associated to isometries, namely the flux — associated to translations — and
the torque — associated to rotations. In the case of a minimal catenoidal
end with growth o > 0 and vertical axis {x1 = u,zo = v}, the flux and the
torque are respectively (0,0,27a) and 27ra(v, —u,0). In other words, the
growth and the position of the axis of the end are determined by the vertical
component of the flux and horizontal components of the torque.

In H? x R, Noether invariants are constructed similarly but the torque
is not a vector anymore, since remain only rotations around vertical axis.
In the case of a vertical rotational end with parameter § > 0, the flux is
vertical with third component 5 and the torque is always zero, no matter
where the rotation axis is situated. The fact the position of the axis is no
longer caught by Noether invariants, indicates that the construction of CMC-
1/2 annuli with vertical ends should be more flexible regarding the relative
positions of the axis of the ends.

Theorem 5.9. There exist CMC-1/2 annuli in H? x R with vertical ends,
that are asymptotic — regarding the horizontal hyperbolic distance — to
rotational examples with different vertical axis.
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Proof. Fix 8 > 0, 8 # 1. From Proposition[2.3] we know that, in the Poincaré
disk model (&), a horizontal translation of w, = e’ € D* changes the top
value at infinity of the rotational annulus Ag into:

- |1 — ei=0))
Ve(0) = log <ﬁ .

A direct computation shows:
|€_%|L2(S1) =1 and |’7€|C2,a(gl) <Ce with Ce€e Rj—

Thus, for e sufficiently small, we have ((v.,0),0) € Uy and the CMC-1/2

annulus X (0=:0.0) exists.

Moreover, the top end of X ((4,0),0) is asymptotic to the top end of the
image of Sy under the horizontal translation by w. — since it has the same
value at infinity — and is therefore asymptotically rotational. Similarly, the
bottom end of X (0=:0.0) is asymptotically rotational, being asymptotic to
the bottom end of Sy.

And finally, the ends of X ((=,0).0) are not aligned since the axis of the
top end is {w.} x R and the one of the bottom end is {0} x R. O

Remark 5.10. In the proof of Theorem [5.9] we see that the ends of the
constructed annulus are asymptotic to the same rotational example, up to
isometries. This is indeed a necessary condition since the ends have to
preserve the vertical flux, which is determined by the parameter § of the
rotational annulus — namely, the vertical flux of the annulus Ag is 27 (1—3).

6 Appendix: Compactification of the mean curva-
ture

Consider the product metric o + dr3 on D x R where:

2r

i0 2
1—1—7‘26 € H-,

o=F*ds%» and F:(r,0)cDw—

in the Poincaré disk model (2). To ease the notations, we use indices 1,2
for quantities respectively related to coordinates r, 6 on . In matrix terms,
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the metric is o = (0y;) with:

16 0 16r2(1 4 1r2)2
g = — g =0 = g =
11 a—r 12 21 y 022 1 —r2)

16r(1 +72)\
and |o| = <ﬁ>

The Christoffel symbols (Ffj) associated to o for the Levi-Civita connection
verify:

1
I = L5 0 Qi + Dy — ),
m

which means:

2r 14602+t
My =—->, Ii=T%=
=12 278 0?1 -2
1+7r2)(1+6r2 04
and I‘§2:—r( +r) 1+ 6+ 1)

(1—1r2)3 ’

the other terms being zero.
Fix Q € D. A surface in S € £ defined on ) with graph coordinates at
infinity:

1472
1—7r2’

(r,0) € Qs (F(r,0),h(n)) with neC*>*(Q) and h(n) = 2¢"

can be reparametrized as the actual graph of the function A(n) : 2 — R in
D x R endowed with metric o + dz3. As shown by J. Spruck [I2], the metric

g(n) = (9i(n)) induced by h(n) is given by:
gij(n) = oi; + 0;h(n)0;h(n),

and denoting 7; = 9;n, for ¢ = 1,2, we obtain:

16(1 + 72)2e?n 2rm 9 7 o e -1 2.2
=T C 1- I
911(77) (1 _T2)4 + 1 —1—7‘2( r ) + 4 + (1 +T2)2 ( r ) )

8(1+7r%)2me® [ 2r m 5
— Nq =
912(77) (1 — 7"2)3 [1 + r2 + 9 ( r )}
_16r3(1 4 r?)? n3e?n

1+

and g92(n) = a—r7)i
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The determinant |g(n)| of the induced metric is:

T 7"2 26 2
9(n)] = (%) w?(n)

with w(n) denoting:
¢ ) (1—r%)?

2rm 2 m
1 1-— S
+1—|—r2( T)+<4+(1+r2)2

w(n) =

) 1/2
2 (1 . 7,2)4
+ 4r2(1 + r2)2 '

In the metric o + dx3, the mean curvature H(n) of S can be expressed as

L div, <v”h(")> - Zg” <8wh - STk )

) =34 ()

with () = 1+\Vah(n)\3=(11+_7rrlew< ),

where the quantities are computed with respect to the metric ¢ on D, and

g~ () = (9" (m).
In order to ease the notations, denote:

Hij(n) = ( <awh ZF akh )

For Hy1(n), compute:
(n) = T101h(n))
1 M 9
1—
202 T g ept T

11
gw(g;;) mi,

+ R (1 —1%)?| +2W (n)

with Ry; = Ri1(r,n, Dn) defined on Q U 9D, identically zero if n = 0 and

real-analytic in its variables. For Hia(n):
Hiz(n) = g"(n) (912h(n) — Tr0sh(n))

g'(n)

W
= w3EZ; R12(1 - T2)4 + 2W(77) w(n) M2,
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again with Rio = Rja2(r,n, Dn) defined on QU dD, zero if n = 0 and real-
analytic in its variables. And for Has(n):
Has(n) = g% (n) (9ash(n) — Daa01h(n))

W(n)
w3(n)

4r? Jjp e -1 212 m m
N [l ST 6 T _at i
T ( 1 ey ) U ey

e” 1
(1472)2

1+6r2+ 7t N (5 — 1072 + 29r%)m
2(1 +r2)2 2r(1+1r?)3

(1-1?)

9% ()

) (1 — 7"2)3 + R22(1 — 7‘2)4

with Rogs = Raa(r,n, Dn) defined on Q U 9D, zero if n = 0 and real-analytic
in its variables. Hence, a Taylor expansion of the mean curvature H(n) is:

Hip) = ——~ (6" ()mr + 29" (mmiz + g2 ()22

w(n)
1 3rny 9 612 77%

1 1- ([
+2w3(n)[ +1+7‘2( T)+(1+7‘2)2 2

e —1 m n
Ll AR 7<_1
Ta )T a5

D)

R(1— 2\4
1+ r2)2 +Ra{l =),

with as before Ry = Ry (r,n, Dn) defined on QUOD, identically zero if n =0
and real-analytic in its variables.
The Taylor expansion of w=3(n) is the following:

1 3rm 2 2 2 -2 212
=1- 21— - (4 1)) (1-
w3(n) 1+7’2( ™) 2(1+7’2)(T771+(e ))( ™)
5T 0o 3(e7?-1) 243 24
_7(14—7’2)3 <2r771—72 (1 =79 4+ Ry(1 —r%)%,

with Ry, = Ry (r,n, Dn) defined on Q U JD, zero if n = 0 and real-analytic
in its variables. Finally, we obtain:

+ —— (9" ()1 + 29" )ma + g ()nez) + R(L—1)*, (14)
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with R = R(r,n, Dn) defined on U 9D, identically zero if n = 0 and real-
analytic in its variables.

Taking n = a + & with a,¢ € C*9(Q), the Taylor expansion (I4)) reads:

H(a+¢) = H(a) + \/ﬁ %Aij&" * ﬁB’
with Ay = ﬁmgu(” &)= w(a1+ £) 922(|Z<:>|€)
= e+ 0(1—12),
Ay — ﬁ\/@g”(a +&) = _w(al-l- £) 912(13(2)\5)
= 0(1—1?)
and Ay = mmﬁw@ - w(al—i- £) gll(\g(l_)!g)
= e +0(1 —1r?).

Moreover A;; = A;j(r,a,&, D) and B = B(r, a,§, DE) are defined on QU 0D
and real-analytic in their variables, the matrix A = (A;;) is coercive on
QU ID, and B is identically zero if £ = 0.
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