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Deformations of constant mean curvature 1/2 surfaces

in H
2 × R with vertical ends at infinity

Sébastien Cartier and Laurent Hauswirth

March 2, 2012

Abstract

We study constant mean curvature 1/2 surfaces in H
2 × R that admit a compactification of

the mean curvature operator. We show that a particular family of complete entire graphs over
H2 admits a structure of infinite dimensional manifold and deduce a result on the possible
behaviors at infinity. Deforming non degenerate constant mean curvature 1/2 annuli, we
provide a large class of (non rotational) examples and construct annuli (possibly embedded)
without axis, namely with two vertical, asymptotically rotational, non aligned ends.

Mathematics Subjet Classification: 53A10, 53C42.

1 Introduction

This paper concerns the theory of constant mean curvature (CMC for short) surfaces H = 1/2
in H

2 × R. The value H = 1/2 is critical in the sense that there is no compact CMC sphere for
H ≤ 1/2 while for H > 1/2 there are rotational compact examples. A half-space theorem in
H

2 ×R (see [6]) proves that for CMC H = 1/2, complete multigraphs are entire graphs over H
2.

Entire graphs are classified by I. Fernández and P. Mira [4] and their moduli space is modeled
on the set of quadratic holomorphic differential Q defined on the complex plane C or the unit
disk D. The link between Q and the geometry of the graph is not very well understood.

We first deal with complete conformal immersions of the disk D, properly immersed into
the half-space H

2 ×R+ (x3 ≥ 0), which are entire vertical graphs over H
2. We assume that the

third coordinate x3 → +∞ on any diverging sequence of points in D, which means the height
function is proper. Up to this date, the only simply connected example is a rotational example
called the hyperboloid S0. In the Poincaré disk model of H2 × R — see (2) below — with polar
coordinates (r, θ), a parametrization of S0 as a graph over H

2 is:

(r, θ) ∈ [0, 1) × S
1 7→

(
reiθ,

2√
1 − r2

)
∈ H

2 × R.

We describe a large family of examples endowed with a structure of infinite dimensional
smooth manifold. The manifold structure arises from a suitable compactification of the mean
curvature operator at infinity (Theorem 2.5) and is diffeomorphic to a codimension one subman-
ifold of C2,α(S1) × R (Theorem 3.9). This construction comes with a control of the asymptotic
behavior in terms of the horizontal (hyperbolic) distance from the hyperboloid S0, namely:

Theorem (Theorem 3.10). For any γ ∈ C2,α(S1) such that e−γ has unit L2(S1)-norm, there
exists a CMC-1/2 complete entire graph at asymptotic horizontal signed distance 2γ from S0.

These graphs are interesting, since any connected complete embedded CMC-1/2 surface in
H

2×R which is contained in the half-space H
2×R+ and has a proper height function is a vertical

entire graph. Indeed, apply Alexandrov reflection principle to such an immersion. There will be
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no first point of tangent contact between the surface and the symmetry part of the constructed
bigraph — i.e. the part of the bigraph which is not a part of the surface — since there is no
compact CMC-1/2 sphere in H

2 × R.

Then we study vertical annuli. In H
2 × R, R. Sa Earp and E. Toubiana [2] construct a one-

parameter family of CMC H = 1/2 annuli which are rotationally invariant around a vertical
geodesic. It is conjectured that for H > 1/2, CMC annuli which are cylindrically bounded
around a vertical geodesic are rotational examples.

Though annuli are not cylindrically bounded for H = 1/2, we prove that in a bounded
tubular neighborhood of a rotational example, there are annuli, eventually embedded, which
are asymptotic to different rotational examples with different axis:

Theorem (Theorem 4.9). There exist CMC-1/2 annuli in H
2 × R with vertical ends, that

are asymptotic — regarding the horizontal hyperbolic distance — to rotational examples with
different vertical axis.

It means that contrary to the case of embedded minimal surfaces in R
3 with finite total

curvature and horizontal ends [7], the notion of axis is not relevant in general for CMC-1/2
annuli with vertical ends in H

2 × R.

Notations

Let D =
{
z ∈ C

∣∣|z| < 1
}

be the open unit disk, D =
{
z ∈ C

∣∣|z| ≤ 1
}

its closure and (r, θ) the
polar coordinates on D. We use two standard models of H2 ×R, which are the Minkowski model:

H
2 × R =

({
(x0, . . . , x3) ∈ R

4
∣∣∣x2

1 + x2
2 − x2

0 = −1
}
, ds2

L = dx2
1 + dx2

2 + dx2
3 − dx2

0

)
, (1)

where H
2 ×R is seen as a subspace of the 4-dimensional Minkowski space L

4, and the Poincaré
disk model:

H
2 × R =

(
{(w, x3) ∈ D × R} , ds2

P + dx2
3 =

4

(1 − |w|2)2
|dw|2 + dx2

3

)
. (2)

In the Poincaré disk model (2), the hyperbolic radius ρH(w) of a point w is:

ρH(w) = 2 argtanh |w| = log

(
1 + |w|
1 − |w|

)
,

and we will need the following formula in the proof of Proposition 2.2:

cosh
ρH(w)

2
=

1√
1 − |w|2

.

We call vertical graphs (resp. vertical annuli) in H
2 × R, immersions which are complete

graphs (resp. bi-graphs) over an open subset of the slice H
2 ≡ H

2 × {0}.

For any R ∈ [0, 1), we denote ΩR ⊂ D the exterior domain ΩR = {R ≤ r < 1}. We consider
the set of admissible domains D = {ΩR|0 ≤ R < 1}. The boundary at infinity ∂∞H

2 of H2 is
identified with S

1.

Given Ω ∈ D, the spaces Ck,α(Ω) and Ck,α0 (Ω), with k ≥ 0 and 0 < α < 1, are respectively
the usual Hölder space and the subspace of functions that are zero on the exterior boundary
{r = 1}. Finally, we consider the spaces L2(·) endowed with the natural scalar product denoted
〈·, ·〉L2(·) and Hilbert norm | · |L2(·).
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2 The mean curvature operator

Consider a surface S parametrized by an immersion X : D → H
2 × R with complete induced

metric g. By compactification of S, we mean a conformal change g of metric such that g extends
to a metric on D.

The process is sensible to the parametrization. For instance, consider the hyperboloid S0.
It is a vertical graph over H

2 parametrized by:

(r, θ) ∈ D 7→
(
reiθ,

2√
1 − r2

)
∈ H

2 × R,

in the Poincaré disk model (2), with induced metric:

g =
4

(1 − r2)3

(
2 − r2 0

0 1 − r2

)
.

But g cannot be conformally extended to the boundary {r = 1} of D, since the terms of g have
different rates of explosion when r → 1. The resulting metric would degenerate for r = 1.

To ensure the extension of the induced metric, we use a conformal parametrization S0,
namely the immersion:

X0 : (r, θ) ∈ D 7→
(
F (r, θ),

2√
1 − |F (r, θ)|2

)
=

(
F (r, θ), 2

1 + r2

1 − r2

)
∈ H

2 × R,

where F : D → H
2 is the C1-diffeomorphism defined in the Poincaré disk model (2) by:

F (r, θ) =
2r

1 + r2
eiθ

and in the Minkowski model (1) by:

F (r, θ) =
(

coshχ(r, θ), sinhχ(r, θ) cos θ, sinhχ(r, θ) sin θ
)

with χ(r, θ) = 2 log

(
1 + r

1 − r

)
.

Definition 2.1. A surface in H
2 × R is said to admit graph coordinates at infinity, if there

exist an admissible domain Ω ⊂ D and a function h : Ω → R such that the surface can be
parametrized as the immersion X : (r, θ) ∈ Ω 7→

(
F (r, θ), h(r, θ)

)
∈ H

2 × R on Ω.
When defined, we call such a parametrization graph coordinates at infinity.

In the sequel, we use graph coordinates at infinity to compactify surfaces and quantify their
asymptotic behaviour. Surfaces are thus considered as compact surfaces and we can apply the
method first developped by B. White in [10].

2.1 The family E
Let E be the set of immersed surfaces in H

2 ×R, which admit — up to a symmetry with respect
to the slice H

2 × {0} — graph coordinates at infinity written as:

Xη : (r, θ) ∈ Ω 7→
(
F (r, θ), 2eη(r,θ) 1 + r2

1 − r2

)
∈ H

2 × R, (3)

for some admissible domain Ω ∈ D and η ∈ C2,α(Ω). Elements of E have vertical ends [3] i.e.
topological annuli with no asymptotic point at finite height — in other words topological annuli
properly embedded in (H2 ∪ ∂∞H

2) × R.
The hyperboloid S0 itself is in E with Ω = D and η ≡ 0. And so are the rotational examples

of E. Toubiana and R. Sa Earp studied in Section 4, owing the asymptotic development (9).

We highlight two properties of the family E . The first is that it contains normal deformations
of the hyperboloid S0. Namely:
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Proposition 2.2. A normal graph S = expS0
(ζN) over S0, where N is the upward pointing

normal to S0 and ζ ∈ C2,α(D), is in E. In other words, there exist Ω ∈ D and η ∈ C2,α(Ω) such
that the end of S admits graph coordinates at infinity as in (3).
Furthermore, the asymptotic value of η is linked with the asymptotic horizontal (hyperbolic)
distance between S and S0:

η|∂D =
1

2
ζ|∂D,

Proof. We use the Minkowski model (1) of H2 × R, where the map F reads:

F (r, θ) =
(

coshχ(r, θ), sinhχ(r, θ) cos θ, sinhχ(r, θ) sin θ
)

with χ(r, θ) = 2 log

(
1 + r

1 − r

)
.

A computation shows the unit normal N to S0 is:

N = − 2r

1 + r2

(
sinhχ

∂

∂x0
+ coshχ cos θ

∂

∂x1
+ coshχ sin θ

∂

∂x2

)
+

1 − r2

1 + r2

∂

∂x3
,

in the canonical basis of L4. Hence, S is parametrized by the immersion:
(

cosh

(
χ− 2rζ

1 + r2

)
, sinh

(
χ− 2rζ

1 + r2

)
cos θ, sinh

(
χ− 2rζ

1 + r2

)
sin θ, 2

1 + r2

1 − r2
+

1 − r2

1 + r2
ζ

)
.

We want to find new coordinates (r̃, θ̃) on an admissible domain verifying:

χ(r̃, θ̃) = χ(r, θ) − 2r

1 + r2
ζ(r, θ), cos θ̃ = cos θ and sin θ̃ = sin θ,

to have graph coordinates at infinity on S as in (3). Taking θ̃ = θ, compute:

∂

∂r

(
χ(r, θ) − 2r

1 + r2
ζ(r, θ)

)
=

4

1 − r2
− 2

1 + r2

(
1 − r2

1 + r2
ζ + rζr

)
=

4

1 − r2
+O(1 − r2).

If r is sufficiently close to 1, the map r 7→ χ − 2rζ/(1 + r2) is strictly increasing (uniformly in
θ), which ensures existence and uniqueness of r̃.

To compute the asymptotic horizontal distance, consider a horizontal slice H
2×{t} intersect-

ing S and S0. The hyperbolic radii of S and S0 at height t and in the direction θ respectively
denoted ρH(S)(t, θ) and ρH(S0)(t, θ) verify:

t =
2eη√

1 − |F |2
= 2eη cosh

ρH(S)(t, θ)

2
and t =

2√
1 − |F |2

= 2 cosh
ρH(S0)(t, θ)

2
,

and we deduce:

ρH(S)(t, θ) = 2 argcosh
te−η

2
= 2 log t− 2η +O

(
1

t2

)

and ρH(S0)(t, θ) = 2 argcosh
t

2
= 2 log t+O

(
1

t2

)
.

Therefore, the hyperbolic horizontal signed distance dH(S, S0)(t, θ) between S and S0 at height
t and in the direction θ is:

dH(S, S0)(t, θ) = ρH(S0)(t, θ) − ρH(S)(t, θ) = 2η +O

(
1

t2

)
,

which establishes the equality ζ|∂D = 2η|∂D at infinity. Indeed, ζ|∂D is the normal signed
distance between S and S0 at infinity, and also the horizontal distance at infinity, since N is
asymptotically horizontal. �
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Proposition 2.2 emphasizes the fact that the relevant information at infinity is the asymptotic
horizontal distance from the hyperboloid. And as suggested by (9) in Section 4, the asymptotic
horizontal distance is also relevant for deformed annuli, since the rotational examples are at
finite constant asymptotic horizontal distance from each other.

Therefore a general principle in our purpose is to fix a convenient surface, the model sur-
face, and to construct deformations of the model surface prescribing the asymptotic horizontal
distance from the model surface. It is also the supporting idea of the compactification of the
mean curvature operator (Theorem 2.5).

A second interesting property of E is the following:

Proposition 2.3. The image of any element of E under the action of any isometry of H2 × R

is still an element of E.

Proof. Consider a surface S ∈ E with graph coordinates at infinity (F, h) defined on Ω ∈ D,
and denote by (F, h′) the graph coordinates at infinity of its image S′ under an isometry ψ of
H

2 × R. Using parametrization (3), we know that in the Poincaré disk model (2):

h =
2eη√

1 − |F |2
with η ∈ C2,α(Ω).

It is sufficient to examine the cases when ψ is either an isometry of H2 fixing the coordinate x3

or a vertical translation. If ψ is a vertical translation of t0 ∈ R, we have:

h′ =
2eη√

1 − |F |2
+ t0 = 2 exp

(
η + log

(
1 + t0

e−η

2

1 − r2

1 + r2

))
1√

1 − |F |2
,

eventually after a restriction to a domain Ω′ ∈ D for which h|Ω′ > −t0.
If ψ reduces to an isometry of H2 preserving the orientation of H2, there exist w0 ∈ D and

δ0 ∈ R such that:

ψ(w) =
w + w0

1 + w0w
eiδ0 .

If ψ′ = F−1 ◦ ψ−1 ◦ F , then:

h′ = h ◦ ψ′ =
2eη◦ψ′

√
1 − |ψ−1 ◦ F |2

=

(
eη◦ψ′ |1 − w0F |√

1 − |w0|2

)
2√

1 − |F |2

= exp

(
η ◦ ψ′ + log

(
|1 − w0F |√

1 − |w0|2

))
2√

1 − |F |2 ,

and S′ ∈ E . Changing F in F , gives the result when ψ reduces to an isometry of H2 reversing
the orientation. �

Remark 2.4. The value η|∂D is invariant under vertical translations.

2.2 Compactification of the mean curvature

From now on, to ease the notations, we denote with indices 1, 2 quantities related to coordinates
r, θ respectively. Consider an admissible domain Ω ∈ D and a function a ∈ C2,α(Ω). The model
surface is the immersion Xa, written as in (3).

Theorem 2.5. For any deformation Xa+ξ of the model surface Xa, with ξ ∈ C2,α(Ω), the
respective mean curvatures H(a+ ξ) and H(a) verify the following:

√
|g(a)|

(
H(a+ ξ) −H(a)

)
=
∑

i,j

Aij(r, θ, a,Dξ)ξij +B(r, θ, a, ξ,Dξ), (4)

where |g(a)| is the determinant of the metric induced by Xa, Aij and B are C0,α functions on
Ω which are real-analytic in their variables, and A = (Aij) is a coercive matrix on Ω.
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Proof (See Appendix 5 for computation details). Denote σ the pullback metric F ∗ds2
P , i.e. in

matrix terms:

σ =
16

(1 − r2)4

(
(1 − r2)2 0

0 r2(1 + r2)

)
.

Differential properties of a surface in H
2 × R with graph coordinates at infinity (F, h) are the

ones of the actual graph of h in D × R endowed with the metric σ + dx2
3. Following J. Spruck

[8], the mean curvature H(a+ ξ) is:

H(a+ ξ) =
1

2
divσ

(∇σh(a+ ξ)

W (a+ ξ)

)
with W (a+ ξ) =

√
1 + |∇σh(a+ ξ)|2σ,

with quantities computed with respect to σ. If (Γkij) denote the Christoffel symbols associated
to σ, we have:

H(a+ ξ) =
1

2W (a+ ξ)

∑

i,j

gij(a+ ξ)

(
∂ijh(a+ ξ) −

∑

k

Γkij∂kh(a+ ξ)

)
,

where the non zero Christoffel symbols associated to the metric σ are:

Γ1
11 =

2r

1 − r2
, Γ2

12 =
4r

1 − r2

(
1 +

1 + 3r2

4r2(1 + r2)
(1 − r2)

)

and Γ1
22 = −4r3(1 + r2)2

(1 − r2)3

(
1 +

1 + 3r2

4r2(1 + r2)
(1 − r2)

)
.

The induced metric g(a) reads:

g11(a) =
64r2e2a

(1 − r2)4

[
1 +

1 + r2

2r
a1(1 − r2) +

(1 + r2)2

16r2

(
a2

1 +
4e−2a

(1 + r2)2

)
(1 − r2)2

]
,

g12(a) =
16r(1 + r2)e2a

(1 − r2)3
a2

[
1 +

1 + r2

4r
a1(1 − r2)

]

and g22(a) =
16r2(1 + r2)2e2a

(1 − r2)4

[
e−2a +

a2
2

4r2
(1 − r2)2

]
,

and the expression of W (a) is the following:

W (a) =
2rea

1 − r2

[
1 +

1 + r2

2r
a1(1 − r2) +

(1 + r2)2

16r2

(
a2

1 +
4e−2a

(1 + r2)2

)
(1 − r2)2

+
a2

2

16r4
(1 − r2)4

]1/2

. (5)

The computation detailed in Appendix 5 gives the expression (4) with the desired regularity
and:

A11 = e−a +O(1 − r2), A12 = A21 = O(1 − r2) and A22 = ea +O(1 − r2),

which shows that A is coercive. �

The quantity
√
g(a)

(
H(η) −H(a)

)
with η ∈ C2,α(Ω) can be called a compactification of the

mean curvature of Xη since it can be extended to the exterior boundary {r = 1} of Ω. It is
strongly linked with the compactification of the induced metric g(a) by the following equality:

A−1 =

(
ea 0
0 e−a

)
+O(1 − r2) =

1√
|g(a)|g(a) +O(1 − r2).
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3 Moduli space of CMC-1/2 entire graphs

In this section, we are interested in the subset G ⊂ E of CMC-1/2 complete entire graphs
contained in the half-space H

2 × R
∗
+. Since elements of G are simply connected, they can be

globally parametrized in graph coordinates at infinity over the whole disk D using (3):

Xη =

(
F, 2eη

1 + r2

1 − r2

)
with F (r, θ) =

2r

1 + r2
eiθ and η ∈ C2,α(D),

and the geometrically defined function η|∂D : S1 → R is the value at infinity of the surface.

Consider a CMC-1/2 entire graph S ∈ G, with graph coordinates at infinity Xa, where
a ∈ C2,α(D), and denote γa = a|∂D the value at infinity. A simple computation shows that the
vertical component ϕa of the upward pointing unit normal Na to Xa can be expressed as:

ϕa =
1

W (a)
=
e−a

2ca
1 − r2

1 + r2
with ca =

e−a

2

1 − r2

1 + r2
W (a), (6)

and W (a) given by (5). And ca is a positive function on D such that ca|∂D = 1/2.

In the sequel, we make the following abuse of notation denoting H the operator:

H : η ∈ C2,α(D) 7→ H(η) ∈ C0,α(D),

where H(η) is the mean curvature of Xη, and calling it the mean curvature operator.

Lemma 3.1. The differential of the operator H at point a is:

∀η ∈ C2,α(D), DH(a) · η =
1

2
L

(
η

ca

)
,

where L is the Jacobi operator of Xa.

Proof. If (Xηt) is a differentiable family in the parameter t such that η0 = a, it is a standard
fact that:

d

dt

∣∣∣∣
t=0

H(ηt) =
1

2
L

〈
d

dt

∣∣∣∣
t=0

Xηt , Na
〉

=
1

2
L

(
2eaϕa

1 + r2

1 − r2

dηt
dt

∣∣∣∣
t=0

)
,

and the expression (6) of ϕa leads to the conclusion. �

Using Theorem 2.5, we define the compactified mean curvature operator to be:

H : ξ ∈ C2,α(D) 7→
√

|g(a)|
(
H(a+ 2caξ) − 1

2

)
∈ C0,α(D).

The compactified Jacobi operator is L = DH(0) : C2,α(D) → C0,α(D) and using Lemma 3.1 we
know that:

L =
√

|g(a)|L.

Lemma 3.2 (Green identity). For any u, v ∈ C2,α(D), L satisfies the following identity:

∫

D

(
uLv − vLu

)
dA =

∫ 2π

0
e−γa

(
u
∂v

∂r
− v

∂u

∂r

)∣∣∣∣
r=1

dθ,

with dA the Lebesgue measure on D.
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Proof. Let u, v ∈ C2,α(D). For any R ∈ (0, 1), L satisfies a Green identity on {r ≤ R}:

∫

{r≤R}
(uLv − vLu)dA =

∫

{r=R}

(
u
∂v

∂ν
− v

∂u

∂ν

)
ds,

where dA and ds are the measures corresponding to the metric induced by Xa on {r ≤ R} and
{r = R} respectively, and where ∂ · /∂ν denotes the co-normal derivative. Notice that:

dA =
√

|g(a)| dA, ds =
√
g22(a) dθ and ν =

1√
g22(a)|g(a)|

(
g22(a)Xa

1 − g12(a)Xa
2

)
,

with dA the Lebesgue measure on R
2. Taking the limit when R → 1, we obtain:

lim
R→1

√
g22(a)ν = e−γa ∂

∂r

∣∣∣∣
r=1

,

and the identity follows. �

Let L0 be the restriction of L to C2,α
0 (D) and K = kerL0. Using the standard inclusions

C2,α
0 (D) ⊂ C0,α(D) ⊂ L2(D), we denote by K⊥ the orthogonal to K in C0,α(D) for the natural

scalar product of L2(D) and K⊥
0 = K⊥ ∩ C2,α

0 (D).

It is a standard fact that the restriction L0 is a Fredholm operator with index zero (see for
instance [5]). Namely K = Rϕa and L0

(
C2,α

0 (D)
)

= K⊥. We deduce the following technical
lemma:

Lemma 3.3. There is no solution u ∈ C2,α(D) to the equation:

{
Lu = 0 on D

u|∂D = 1
.

Proof. By contradiction, suppose such a u exist and apply Lemma 3.2 to ϕa and u:

0 =

∫

D

(
ϕaLu− uLϕa

)
dA =

∫ 2π

0
e−γa

(
ϕa
∂u

∂r
− u

∂ϕa

∂r

)∣∣∣∣
r=1

dθ =

∫ 2π

0
e−2γa

dθ,

since ϕa|r=1 = 0 and
∂ϕa

∂r

∣∣∣∣
r=1

= −e−γa

,

which is impossible. �

3.1 General deformations

Let µa : C2,α(S1) → C2,α(D) be the operator such that µa(γ) is the harmonic function on D

(for the flat laplacian) with value γ − γa on the boundary ∂D. Denote ΠK and ΠK⊥ be the
orthogonal projections on K and K⊥ respectively. Following B. White [10], we show:

Lemma 3.4. Consider the map Φ : C2,α(S1) × R ×K⊥
0 → K⊥ defined by:

Φ(γ, λ, σ) = ΠK⊥ ◦H
(
µa(γ) + λϕa + σ

)
.

Then D3Φ(γa, 0, 0) : K⊥
0 → K⊥ is an isomorphism.

Proof. A direct computation gives D3Φ(γa, 0, 0) = ΠK⊥ ◦ L0|K⊥

0
and we know K⊥ is the range

of L0. Thus D3Φ(γa, 0, 0) = L0|K⊥

0
, which is an isomorphism onto K⊥. �
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Therefore, we can apply the implicit function theorem to Φ, which states that there exist a
neighborhood Ua of (γa, 0) in C2,α(S1) × R and a unique smooth map σ : Ua → K⊥

0 such that:

∀(γ, λ) ∈ Ua, Φ
(
γ, λ, σ(γ, λ)

)
= 0.

We define the maps ηa : Ua → C2,α(D) and κa : Ua → K by:

ηa(γ, λ) = a+ 2ca
(
µa(γ) + λϕa + σ(γ, λ)

)
and κa(γ, λ) = ΠK ◦H

(
µa(γ) + λϕa + σ(γ, λ)

)
.

If a surface in E , defined on D, admits Xηa(γ,λ) as graph coordinates at infinity, we say that
{γ, λ} are the data of the surface with respect to S or to a.

Lemma 3.5. The map ηa has the following properties:

1. ηa(γ
a, 0) = a.

2. ∀(γ, λ) ∈ Ua, ηa(γ, λ)|∂D = γ.

3. D2ηa(γ
a, 0) : λ ∈ R 7→ 2λcaϕa ∈ C2,α(D).

Proof. Point 1 comes from the definition of µa and from the uniqueness in the implicit function
theorem. Point 2 is a direct computation:

ηa(γ, λ)|∂D = a|∂D + 2ca|∂D
(
µa(γ)|∂D + λϕa|∂D + σ(γ, λ)|∂D

)

= γa + 2
1

2

(
(γ − γa) + λ0 + 0

)
= γ.

For Point 3, it is sufficient to show D2σ(γa, 0) = 0. To do so we compute:

0 =
d

dt

∣∣∣∣
t=0

Φ
(
γa, t, σ(γa, t)

)
= ΠK⊥ ◦ L0

(
ϕa +D2σ(γa, 0) · 1

)
= L0

(
D2σ(γa, 0) · 1

)
.

Hence, D2σ(γa, 0) · 1 ∈ K ∩K⊥ = {0}, which means D2σ(γa, 0) = 0. �

Remark 3.6. Let S′ ∈ G with graph coordinates at infinity Xa′

and suppose there exist a
surface in E with data {γ, λ} and {γ′, λ′} with respect to S and S′ respectively. Therefore,
this surface admits graph coordinates at infinity Xηa(γ,λ) and Xηa′ (γ′,λ′) — i.e. ηa(γ, λ) =
ηa′(γ′, λ′) — and we get:

γ′ = γ and λ′ =
1

|ϕa′ |2L2(D)

〈
ηa(γ, λ) − a′

2ca′ − µa′(γ), ϕa
′

〉

L2(D)

. (7)

The identity on values at infinity comes from Lemma 3.5 Point 2, and the expression of λ′ is
just the projection along ϕa

′

.

Lemma 3.5 Point 2 also shows that the value at infinity of a surface Xηa(γ,λ) does not depend
on λ, which means there exists a 1-parameter family of surfaces admitting the same value at
infinity. This family is nothing but the vertical translations of Xηa(γ,λ):

Proposition 3.7. Let (γ, λ) ∈ Ua. The surface Xηa(γ,λ′) exists for any λ′ ∈ R and coincides
with Xηa(γ,λ) up to a vertical translation.
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Proof. Changing a in ηa(γ, λ), we can suppose — using (7) — that γ = γa and λ = 0. Denote h(a)
the height function of Xa and m > 0 the minimum of h(a) on D. We know from Proposition 2.3
that the graph coordinates at infinity of the image of S under the vertical translation by some
t ∈ R can still be written Xa′(t) defined on D if and only if t > −m and in that case:

a′(t) = a+ log

(
1 + t

e−a

2

1 − r2

1 + r2

)
= a+ log

(
1 +

t

h(a)

)
.

We also know that a′(t)|∂D = a|∂D, which implies µa
(
a′(t)

)
= 0. Writing:

a′(t) = a+ 2ca
(
λ′(t)ϕa + σ

(
γa, λ′(t)

))
,

we only have to show that λ′(t) is a bijection in the variable t from the interval (−m,+∞) of
possible translations onto R. The expression of λ′(t) is:

λ′(t) =
1

|ϕa|2L2(D)

〈
a′(t) − a

2ca
, ϕa

〉

L2(D)

=
1

2π|ϕa|2L2(D)

∫

D

ϕa

ca
log

(
1 +

t

h(a)

)

=
1

2π|ϕa|2L2(D)

∫

D

(ϕa)2h(a) log

(
1 +

t

h(a)

)
since

1

ca
= ϕah(a).

Compute:
dλ′(t)

dt
=

1

2π|ϕa|2L2(D)

∫

D

(ϕa)2h(a)

t+ h(a)
> 0

i.e. λ′(t) is a strictly increasing bijection from (−m,+∞) into R. Also:

λ′(t) ≤
[

1

2π|ϕa|2L2(D)

∫

D

(ϕa)2h(a)

]
log

(
1 +

t

m

)
−−−−→
t→−m

−∞,

and if M > 0 is the maximum of h(a) on the disk {0 ≤ r ≤ 1/2}, we get:

λ′(t) ≥ 1

2π|ϕa|2L2(D)

∫

{0≤r≤1/2}
(ϕa)2h(a) log

(
1 +

t

h(a)

)

≥
[

m

2π|ϕa|2L2(D)

∫

{0≤r≤1/2}
(ϕa)2

]
log

(
1 +

t

M

)
−−−−→
t→+∞

+∞,

which ensures that λ′(t) is bijective from (−m,+∞) onto R. �

3.2 CMC-1/2 deformations

The values of the mean curvature of deformations Xηa(γ,λ) of S are determined by κa. Indeed:

H
(
µa(γ) + λϕa + σ(γ, λ)

)
= κa(γ, λ) + Φ

(
γ, λ, σ(γ, λ)

)
= κa(γ, λ),

since by construction Φ
(
γ, λ, σ(γ, λ)

)
= 0. In particular:

∀(γ, λ) ∈ Ua, H
(
ηa(γ, λ)

)
=

1

2
⇐⇒ κa(γ, λ) = 0.

We consider Ua = κ−1
a ({0}) ∩ Ua and Va ⊂ G the set of surfaces admitting data in Ua. Using

Proposition 3.7, we know there exists a subset Γa ⊂ C2,α(S1) such that Ua = Γa × R.
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Proposition 3.8. Γa is a real-analytic codimension 1 submanifold of C2,α(S1) such that the
tangent space to Γa at γa is the orthogonal space 〈e−2γa〉⊥ to e−2γa

in C2,α(S1) for the scalar
product of L2(S1).

Moreover, Γa is a closed subset of
{
γ ∈ C2,α(S1)

∣∣∣|e−γ |L2(S1) = |e−γa |L2(S1)

}
.

Proof. By construction, Γa is a smooth submanifold of C2,α(S1) and its codimension is the rank
of Dκa(γ

a, 0). We compute:

D2κa(γ
a, 0) · 1 =

d

dt

∣∣∣∣
t=0

κa(γ
a, t) = ΠK ◦ L

(
1

2ca
D2ηa(γ

a, 0) · 1

)
= ΠK ◦ L0(ϕa) = 0,

since ϕa ∈ K. Thus the rank of Dκa(γ
a, 0) is the rank of D1κa(γ

a, 0). We know that
rankD1κa(γ

a, 0) ≤ dimK = 1. Hence, we only need to find a curve γ ∈ C2,α(S1) such that
D1κa(γ

a, 0) · γ is not identically zero. We can take γ = 1. Indeed:

D1κa(γ
a, 0) · 1 =

d

dt

∣∣∣∣
t=0

κa(t, 0) = ΠK ◦ Lu = Lu with u =
1

2ca
D1ηa(γ

a, 0) · 1.

Lemma 3.5 Point 2 shows that u|∂D = 1. And using Lemma 3.3, we know that D1κa(γ
a, 0) · 1

is not identically zero.
Consider a smooth path γt in Γa with γ0 = γa and tangent vectors γ̇t. Note that:

0 = Dκa(γ
a, 0) · (γ̇0, 0) =

d

dt

∣∣∣∣
t=0

κa(γt, 0) = ΠK ◦ Lv = Lv with v =
1

2ca
D1ηa(γ

a, 0) · γ̇0.

Knowing that:

ϕa|r=1 = 0,
∂ϕa

∂r

∣∣∣∣
r=1

= −e−γa

and v|r=1 = γ̇0,

apply Lemma 3.2 to ϕa and v:

0 =

∫

D

(
ϕaLv − vLϕa

)
dA =

∫ 2π

0
e−γa

(
ϕa
∂v

∂r
− v

∂ϕa

∂r

)∣∣∣∣
r=1

dθ

=

∫ 2π

0
γ̇0e

−2γa

dθ = 2π〈γ̇0, e
−2γa〉L2(S1). (8)

Therefore 〈e−2γa〉⊥ is the tangent space to Γa at γa, since it is of codimension 1.

For a fixed t, consider the reparametrized path γ′
s = γs+t and denote a′ = ηa(γt, 0). There

exists ε > 0 such that γ′
s ∈ Γa′ for any |s| < ε. Hence, the path of surfaces Xηa(γ′

s,0) can be
described by a path of data {γ′

s, λ
′
s} in Ua′ , |s| < ε, with λ′

0 = 0 and tangent vectors denoted
γ̇′
s. By construction, we know that γ̇′

0 = γ̇t. The result (8) applies to {γ′
s, λ

′
s}, thus:

d

dt
|e−γt |2L2(S1) = −2〈γ̇t, e−2γt〉L2(S1) = 0,

for any t, i.e. |e−γt |L2(S1) is constant.

To show that Γa is closed, consider γ in the closure Γa, and a smooth path (γt) with γ0 = γa,
γ1 = γ and γt ∈ Γa for all 0 ≤ t < 1. For any t ∈ [0, 1), there exists an immersion Xt with
γt as value at infinity, and using Proposition 3.7, we can suppose the minimum height of Xt

is exactly 1, to prevent the immersions from escaping to infinity. We only need to show that
Xt converges as t → 1 to a vertical graph X1 with no asymptotic point at finite height. The
fact that X1 admits γ as value at infinity is then straightforward, since surfaces are actually
considered as surfaces with boundary, due to the compactification property.

Let d be the greatest distance of the family (Xt) from S0 at infinity:

d = 2 max
t∈[0,1]

(
sup
S1

|γt|
)
,
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and consider β = ed+1. As discussed in the beginning of Section 4, there exists a rotational
immersed annulus Aβ which is at signed distance − log β = −d− 1 from S0 at infinity. It means
that, at infinity, the hyperbolic distance between Aβ and any Xt is greater than 1 and that the
end of each Xt is contained in the mean-convex side of Aβ. Up to a vertical translation (which
preserves the behavior at infinity), we can suppose Aβ ∩ (H2 × R

∗
+) is embedded and X0 is

strictly contained in the mean-convex side of Aβ . We use Aβ as an exterior barrier and we only
have to prove that Xt is completely included in the mean-convex side of Aβ for all t ∈ [0, 1) to
ensure the existence of X1.

For small values of t, Xt is strictly included in the mean-convex side of Aβ, since the process
is smooth. Acing by contradiction, suppose there exist a first value t0 ∈ (0, 1) for which the
hyperbolic distance between Xt0 and Aβ is zero. By construction of Aβ, the contact is not at
infinity, so that we can apply the maximum principle to Aβ and Xt0 , which is absurd. �

3.3 Applications

A direct consequence of Proposition 3.8 is the global structure of G:

Theorem 3.9. The family G can be endowed with a structure of infinite dimensional smooth
manifold modeled on the space C2,α(S1) × R.

Proof. It is sufficient to show that for any surface S ∈ G with graph coordinates at infinity Xa,
a local chart around S is given by the map S′ ∈ Va 7→ (γ, λ) ∈ Ua where {γ, λ} are the data of
S′ with respect to a. This fact is a direct consequence from identities (7). �

A. E. Treibergs showed (see [9]) that given a C2 curve — generalized to continuous curves
by H. I. Choi and A. E. Treibergs in [1] — γ : S1 → R, there exists a CMC-1/2 complete entire
vertical graph in the 3-dimensional Minkowski space which is asymptotically at signed distance
γ from the light cone. Namely, it is the graph of a smooth function f : R2 → R such that:

f(x) = |x| + γ

(
x

|x|

)
+ ε(x) with lim

|x|→+∞
ε(x) = 0.

The local structure of G allows us to prove a C2,α version of this result in H
2 × R:

Theorem 3.10. Let S be a surface in G with graph coordinates at infinity Xa and γ ∈ C2,α(S1)
be such that |e−γ |L2(S1) = |e−γa |L2(S1). There exists a surface in G with γ as value at infinity.
In particular, if S = S0 there exists a CMC-1/2 complete entire vertical graph at asymptotic
horizontal signed distance γ from S0, for any γ ∈ C2,α(S1) with unit L2(S1)-norm.

Proof. Consider the path γt in C2,α(S1) defined for 0 ≤ t ≤ 1 by:

γt = −1

2
log

(
(1 − t)e−2γa

+ te−2γ
)
,

and denote by T the set of t ∈ [0, 1] for which γt is the value at infinity of a surface in G. We
know that T is not empty, since 0 ∈ T . Using Proposition 3.8 and that |e−γt |L2(S1) = |e−γa |L2(S1)

for any t, we see that T is open and closed in [0, 1], which implies 1 ∈ T . �

Corollary 3.11. For any surface in G with graph coordinates at infinity Xa, we have:

Γa =
{
γ ∈ C2,α(S1)

∣∣∣|e−γ |L2(S1) = |e−γa |L2(S1)

}
.
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4 Deformations of CMC-1/2 annuli

R. Sa Earp and E. Toubiana showed in [2] that — up to a not necessarily orientation preserving
isometry of H2 × R — a rotational CMC-1/2 vertical annulus is a bigraph, symmetrical with
respect to the slice H

2×{0}. The upper graph part of such an annulus admits graph coordinates
at infinity (F, hβ), with β a positive real number, β 6= 1 and hβ defined by:

hβ(r) =

∫ 2 log( 1+r
1−r )

| logβ|

cosh t− β√
2β cosh t− 1 − β2

dt where r ≥
∣∣∣∣∣

√
β − 1√
β + 1

∣∣∣∣∣ = Rβ.

We denote by Aβ this annulus, which is embedded if 0 < β < 1 and only immersed when β > 1.

-

6

0 1

0 < β < 1: embedded annulus

β = 1: entire graph (the hyperboloid S0)

β > 1: immersed annulus

Figure 1: Profile curves of rotational CMC-1/2 examples in the Poincaré disk model (2)

We have the following asymptotic development as r → 1:

hβ(r) =
1√
β

1 + r

1 − r
+O(1), (9)

which means that the restriction of (F, hβ) to the exterior domain ΩRβ
is in E with constant

value − log β at infinity. Therefore, the method developed in Section 3 should adapt to the
study of deformations of these annuli.

For our purpose, we slightly change the notations. Fix β > 0 with β 6= 1; the annulus
Aβ is now the model surface. To deform rotational annuli, we need conformal coordinates to
provide a compactification of the mean curvature. A conformal parametrization of the annulus
Aβ, written in cylindrical coordinates, is the following:

X0 : (s, θ) ∈ Ωβ 7→
(
F
(
r(s), θ

)
, ε(s)hβ

(
r(s)

))
with Ωβ = (−T, T ) × S

1, (10)

T =
4

|β − 1|

∫ 1

Rβ

dt√
(t2 −R2

β)(R−2
β − t2)

, ε(s) = sign(s),

dr

ds
=

|β − 1|
4

√(
r2(s) −R2

β

)(
R−2
β − r2(s)

)
and r(0) = Rβ.

We also identify functions over Aβ with functions over Ωβ. The cylindrical parametrization of
a deformed annulus is the following immersion:

Xη : (s, θ) ∈ Ωβ 7→
(
F
(
r(s), θ

)
, ε(s)eη(s,θ)hβ

(
r(s)

))
with η ∈ C2,α(Ωβ).

The determinant of the first fundamental form is |g(η)|, the mean curvature H(η) and the values
at infinity are the couple

(
η(T, ·), η(−T, ·)

)
∈ (C2,α(S1))2.
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4.1 Non degeneracy of rotational annuli

As in Section 3, we need to understand the Jacobi functions in order to control the deformations.
Thus, we focus the study on annuli in E that are non degenerate in the following sense:

Definition 4.1. A surface in E is said to be non degenerate if the only Jacobi functions that
are zero at infinity on each end of the surface (i.e. when r = 1 in the graph coordinates at
infinity of the ends) come from isometries of H2 × R.

A direct consequence of the proof of Proposition 2.3 and the shape of the ends is that if
an annulus in E is non degenerate, then the space of Jacobi functions which are zero on the
boundary is 1-dimensional, generated by the vertical component of the unit normal.

Another fact is that, since the rank of the Jacobi operator is locally constant, small defor-
mations of a non degenerate annulus are still non degenerate.

Therefore, the method used in Section 3 can be strictly transposed to the study of deforma-
tions in a small neighborhood of a non degenerate example.

Proposition 4.2. The annulus Aβ is non degenerate for any value of β (6= 1).

Proof. If L denotes the Jacobi operator of Aβ , the compactified Jacobi operator L =
√

|g(0)|L
of Aβ can be written ∆ + q(s) in the conformal parametrization (10), with ∆ the flat laplacian
and q ∈ C0([−T, T ]). Moreover, Aβ being symmetric with respect to H

2 × {0}, the function q is
even.

Since a Jacobi function is 2π-periodic in θ, using the Fourier decomposition, we reduce the
problem to solving a family (Dn) of Dirichlet problems on C2([−T, T ]) for n ∈ N:

{
u′′ +

(
q(s) − n2

)
u = 0

u(−T ) = u(T ) = 0
. (Dn)

We make two immediate observations:

• Considering a solution of (Dn) for any n ∈ N, its odd and even parts are also solutions
of (Dn). Hence, we only have to consider odd and even solutions.

• The vertical component ϕ of the unit normal to Aβ is an odd solution of (D0) which does
not vanish on (0, T ).

Let n ∈ N. An odd solution of (Dn) is proportional to ϕ. Otherwise, using Sturm comparison
theorem with q − n2 ≤ q, ϕ should vanish once in (0, T ). There is no even solution to (Dn).
Suppose such a function exist. Using Sturm comparison theorem, this function vanishes nowhere
in (−T, T ), which means n2 is the first eigenvalue of the elliptic operator:

d2

ds2
+ q(s),

which contradicts the existence of ϕ. �

4.2 Small deformations of annuli

Consider a β-deformable CMC-1/2 annulus A i.e. a surface such that:

• A admits Xb, with b ∈ C2,α(Ωβ), as a cylindrical parametrization;

• A is non degenerate;
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• the values at infinity are the couple γb = (γb+, γ
b
−) = b|∂Ωβ satisfying the condition:

|e−γb
+ |L2(S1) = |e−γb

− |L2(S1).

Again, the vertical component ϕb of the unit normal to A reads:

ϕb = ε
e−b

hβ(r)

1

cb
with cb|∂Ωβ =

1

2
,

and we use a similar definition to Section 3 for the compactified mean curvature operator:

H : η ∈ C2,α(Ωβ) 7→
√

|g(b)|
(
H(b+ 2cbη) − 1

2

)
∈ C0,α(Ωβ).

The compactified Jacobi operator is still L = DH(0), L0 is its restriction to C2,α
0 (Ωβ) and

K,K⊥,K⊥
0 are defined as before. The non degeneracy hypothesis on A means L0 = Rϕb.

Again, define µb : (C2,α(S1))2 → C2,α(Ωβ) to be the harmonic function on Ωβ with values
γ − γb on ∂Ωβ.

The compactified Jacobi operator satisfies a Green identity similar to Lemma 3.2 for entire
graphs:

Lemma 4.3 (Green identity). For any u, v ∈ C2,α(Ωβ), the compactified Jacobi operator satisfies
the following identity:

∫

Ωβ

(
uLv − vLu

)
dA =

√
β

∫ 2π

0
e−γb

+

(
u
∂v

∂s
− v

∂u

∂s

)∣∣∣∣
s=T

dθ

−
√
β

∫ 2π

0
e−γb

−

(
u
∂v

∂s
− v

∂u

∂s

)∣∣∣∣
s=−T

dθ,

with dA the Lebesgue measure on Ωβ.

And we also have the equivalent of Lemma 3.3:

Lemma 4.4. There is no solution u ∈ C2,α(Ωβ) to the equation:
{
Lu = 0 on Ωβ

u|∂Ωβ = (1,−1)
.

Let ΠK and ΠK⊥ be defined as in Section 3.1. Lemma 3.4) still holds:

Lemma 4.5. Consider the map Φ : (C2,α(S1))2 × R ×K⊥
0 → K⊥ defined by:

Φ(γ, λ, σ) = ΠK⊥ ◦H
(
µb(γ) + λϕb + σ

)
.

Then D3Φ(γb, 0, 0) : K⊥
0 → K⊥ is an isomorphism.

We can apply again the implicit function theorem to Φ, which states that there exist a
neighborhood Ub of (γb, 0) in (C2,α(S1))2 ×R and a unique smooth map σ : Ub → K⊥

0 such that:

∀(γ, λ) ∈ Ub, Φ
(
γ, λ, σ(γ, λ)

)
= 0.

We define similarly the maps ηb : Ub → C2,α(Ωβ) and κb : Ub → K by:

ηb(γ, λ) = b+ 2cb
(
µb(γ) + λϕb + σ(γ, λ)

)
and κb(γ, λ) = ΠK ◦H

(
µb(γ) + λϕb + σ(γ, λ)

)
.

Also, if an annulus, defined on Ωβ, admits Xηb(γ,λ) as a parametrization, we say that {γ, λ} are
the data of the annulus with respect to A or to b.

Properties of ηb are similar to those of ηa in Section 3.1:
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Lemma 4.6. The map ηb has the following properties:

1. ηb(γ
b, 0) = b.

2. ∀(γ, λ) ∈ Ub, ηb(γ, λ)|∂Ωβ = γ.

3. D2ηb(γ
b, 0) : λ ∈ R 7→ 2λcbϕb ∈ C2,α(Ωβ).

Let A′ be a β-deformable annulus with cylindrical parametrization Xb′

, and suppose there
exist an annulus with data {γ, λ} and {γ′, λ′} with respect to A and A′ respectively. Therefore,
this surface can be described as Xηb(γ,λ) and Xηb′ (γ′,λ′) and we get:

γ′ = γ and λ′ =
1

|ϕb′ |2
L2(Ωβ)

〈
ηb(γ, λ) − b′

2cb
′ − µb′(γ), ϕb

′

〉

L2(Ωβ)

.

Lemma 4.6 Point 2 shows that the values at infinity are still independent from the parameter
λ. The reason is the same as before:

Proposition 4.7. Let (γ, λ) ∈ Ub. The surface Xηb(γ,λ′) exists for any λ′ ∈ R and coincides
with Xηb(γ,λ) up to a vertical translation.

We are now interested in deformations Xηb(γ,λ) of A that are CMC-1/2, which means defor-
mations such that κb(γ, λ) = 0. We consider Ub = κ−1

b ({0}) ∩ Ub and Vb ⊂ E the set of annuli
admitting data in Ub. Using Proposition 4.7, we know there exists a subset Γb ⊂ (C2,α(S1))2

such that Ub = Γb × R.

Proposition 4.8. Γb is a real-analytic codimension 1 submanifold of (C2,α(S1))2 which is a
subset of: {

(γ+, γ−) ∈ (C2,α(S1))2
∣∣∣|e−γ+ |L2(S1) = |e−γ− |L2(S1)

}
.

Proof. By construction, Γb is a smooth submanifold of (C2,α(S1))2 and we know that its codi-
mension is the rank of Dκb(γ

b, 0). Again D2κb(γ
b, 0) = 0 since:

D2κb(γ
b, 0) · 1 =

d

dt

∣∣∣∣
t=0

κb(γ
b, t) = ΠK ◦ L

(
1

2cb
D2ηb(γ

b, 0) · 1

)
= ΠK ◦ L0(ϕb) = 0,

with ϕb ∈ K. Thus the rank of Dκb(γ
b, 0) is the rank of D1κb(γ

b, 0). Consider a couple
γ = (1,−1) ∈ (C2,α(S1))2 and compute:

D1κb(γ
b, 0) · γ =

d

dt

∣∣∣∣
t=0

κb
(
(t,−t), 0

)
= ΠK ◦ Lu = Lu with u =

1

2cb
D1ηb(γ

b, 0) · (1,−1).

Lemma 4.6 Point 2 shows u|∂D = (1,−1). Using Lemma 4.4, we know that D1κb(γ
b, 0) · (1,−1)

is not identically zero, and 1 ≤ rankD1κb(γ
b, 0) ≤ dimK = 1.

Consider a smooth path γt = ((γ+)t, (γ−)t) in Γb with γ0 = γb and tangent vector at t
γ̇t = ( ˙(γ+)t,

˙(γ−)t). Note that:

0 = Dκb(γ
b, 0) · (γ̇0, 0) =

d

dt

∣∣∣∣
t=0

κb(γt, 0) = ΠK ◦ Lv = Lv with v =
1

2cb
Dηb(γ

b, 0) · (γ̇0, 0).

Knowing that:

ϕb|s=T = ϕb|s=−T = 0,
∂ϕb

∂s

∣∣∣∣∣
s=T

= −e−γb
+ ,

∂ϕb

∂s

∣∣∣∣∣
s=−T

= −e−γb
− ,

v|s=T = ˙(γ+)0 and v|s=−T = ˙(γ−)0,
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apply Lemma 4.3 to ϕb and v:

0 =

∫

Ωβ
(ϕbLv − vLϕb)dA =

√
β

∫ 2π

0

˙(γ+)0e
−2γb

+dθ −
√
β

∫ 2π

0

˙(γ−)0e
−2γb

−dθ

= 2π
√
β

(〈
˙(γ+)0, e

−2γb
+

〉

L2(S1)
−
〈

˙(γ−)0, e
−2γb

−

〉

L2(S1)

)
. (11)

For a fixed t, consider the reparametrized path γ′
s = γs+t and denote b′ = ηb(γt, 0). There

exists ε > 0 such that γ′
s ∈ Γb′ for any |s| < ε. Hence, the path of surfaces Xηb(γ′

s,0) can be
described by a path of data {γ′

s, λ
′
s} in Ub′ , |s| < ε, with λ′

0 = 0 and tangent vector γ̇′
0 = γ̇t at

s = 0. The result (8) applies to (γ′
s, λ

′
s) i.e.:

d

dt

(
|e−(γ+)t |2L2(S1) − |e−(γ−)t |2L2(S1)

)
=
〈

˙(γ+)t, e
−2(γ+)t

〉

L2(S1)
−
〈

˙(γ−)t, e
−2(γ−)t

〉

L2(S1)
= 0,

for any t, and thus:

|e−(γ+)t |2L2(S1) − |e−(γ−)t |2L2(S1) = |e−γb
+ |2L2(S1) − |e−γb

− |2L2(S1) = 0,

since the annulus A is β-deformable. �

The condition on the values at infinity defining Γb is indeed the conservation of the vertical
flux in the deformed annuli.

4.3 Annuli with non aligned ends

For minimal surfaces in R
3, one can define two Nœther vector-invariants associated to isometries,

namely the flux — associated to translations — and the torque — associated to rotations. In
the case of a minimal catenoidal end with growth α > 0 and vertical axis {x1 = u, x2 = v}, the
flux and the torque are respectively (0, 0, 2πα) and 2πα(v,−u, 0). In other words, the growth
and the position of the axis of the end are determined by the vertical component of the flux
and horizontal components of the torque.

In H
2×R, Nœther invariants are constructed similarly but the torque is not a vector anymore,

since remain only rotations around vertical axis. In the case of a vertical rotational end with
parameter β > 0, the flux is vertical with third component β and the torque is always zero,
no matter where the rotation axis is situated. The fact the position of the axis is no longer
caught by Nœther invariants, indicates that the construction of CMC-1/2 annuli with vertical
ends should be more flexible regarding the relative positions of the axis of the ends.

Theorem 4.9. There exist CMC-1/2 annuli in H
2 × R with vertical ends, that are asymptotic

— regarding the horizontal hyperbolic distance — to rotational examples with different vertical
axis.

Proof. Fix β > 0, β 6= 1. From Proposition 2.3, we know that, in the Poincaré disk model (2),
a horizontal translation of w0 = εeiθ0 ∈ D

∗ changes the top value at infinity of the rotational
annulus Aβ into:

γ(θ) = log

(
|1 − εei(θ−θ0)|√

1 − ε2

)
.

A direct computation shows that |e−γ |L2(S1) = 1. Thus, for ε sufficiently small the CMC-1/2

annulus Xη0

(
(γ,0),0

)
exists. �
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5 Appendix: Compactification of the mean curvature

Consider the product metric σ + dx2
3 on D × R where:

σ = F ∗ds2
P and F : (r, θ) ∈ D 7→ 2r

1 + r2
eiθ ∈ H

2,

in the Poincaré disk model (2). To ease the notations, we use indices 1, 2 for quantities respec-
tively related to coordinates r, θ on D. In matrix terms, the metric is σ = (σij) with:

σ11 =
16

(1 − r2)2
, σ12 = σ21 = 0, σ22 =

16r2(1 + r2)2

(1 − r2)4
and |σ| =

(
16r(1 + r2)

(1 − r2)3

)2

.

The Christoffel symbols (Γkij) associated to σ for the Levi-Civita connection verify:

Γkij =
1

2

∑

m

σkl (∂iσjm + ∂jσim − ∂mσij) ,

which means:

Γ1
11 =

2r

1 − r2
, Γ2

12 =
4r

1 − r2

(
1 +

1 + 3r2

4r2(1 + r2)
(1 − r2)

)

and Γ1
22 = −4r3(1 + r2)2

(1 − r2)3

(
1 +

1 + 3r2

4r2(1 + r2)
(1 − r2)

)
,

the other terms being zero.
Fix Ω ∈ D. A surface in S ∈ E defined on Ω with graph coordinates at infinity:

(r, θ) ∈ Ω 7→
(
F (r, θ), h(η)

)
with η ∈ C2,α(Ω) and h(η) = 2eη

1 + r2

1 − r2
,

can be reparametrized as the actual graph of the function h(η) : Ω → R in D×R endowed with
metric σ + dx2

3. As shown by J. Spruck [8], the metric g(η) = (gij(η)) induced by h(η) is given
by:

gij(η) = σij + ∂ih(η)∂jh(η),

and denoting ηi = ∂iη, for i = 1, 2, we obtain:

g11(η) =
64r2e2η

(1 − r2)4

[
1 +

1 + r2

2r
η1(1 − r2) +

(1 + r2)2

16r2

(
η2

1 +
4e−2η

(1 + r2)2

)
(1 − r2)2

]
,

g12(η) =
16r(1 + r2)e2η

(1 − r2)3
η2

[
1 +

1 + r2

4r
η1(1 − r2)

]

and g22(η) =
16r2(1 + r2)2e2η

(1 − r2)4

[
e−2η +

η2
2

4r2
(1 − r2)2

]
.

The determinant |g(η)| of the induced metric is:

|g(η)| =

(
32r2(1 + r2)eη

(1 − r2)4

)2

w2(η)

with w(η) denoting:

w(η) =

[
1 +

1 + r2

2r
η1(1 − r2) +

(1 + r2)2

16r2

(
η2

1 +
4e−2η

(1 + r2)2

)
(1 − r2)2 +

η2
2

16r4
(1 − r2)4

]1/2

.
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In the metric σ + dx2
3, the mean curvature H(η) of S can be expressed as:

H(η) =
1

2
divσ

(∇σh(η)

W (η)

)
=

1

2W (η)

∑

i,j

gij(η)

(
∂ijh(η) −

∑

k

Γjij∂kh(η)

)

with W (η) =
√

1 + |∇σh(η)|2σ =
2reη

1 − r2
w(η),

where the quantities are computed with respect to the metric σ on D, and g−1(η) = (gij(η)).

In order to ease the notations, denote:

Hij(η) = gij(η)

(
∂ijh(η) −

∑

k

Γjij∂kh(η)

)
.

Taking η = a + ξ with a, ξ ∈ C2,α(Ω), we express the Taylor expansions of Hij(a + ξ). For
H11(a+ ξ), compute:

e−(a+ξ)H11(a+ ξ) = e−(a+ξ)g11(a+ ξ)
(
∂11h(η) − Γ1

11∂1h(η)
)

=
e−aw2(a)

w2(a+ ξ)
H11(a) +

(1 + r2)(1 − r2)

8r2w2(a+ ξ)

(
e−2a(e−2ξ − 1) +

r

1 + r2
ξ1(1 − r2)

+R11(1 − r2)2
)

+
2(1 + r2)

1 − r2
g11(a+ ξ)ξ11,

with R11 = R11(r, θ, a, ξ,Dξ) defined on Ω ∪ ∂D, identically zero if ξ = 0 and real-analytic in
its variables. For H12(a+ ξ):

e−(a+ξ)H12(a+ ξ) = e−(a+ξ)g12(a+ ξ)
(
∂12h(a+ ξ) − Γ2

12∂2h(a+ ξ)
)

=
e−aw2(a)

w2(a+ ξ)
H12(a) +R12(1 − r2)3 +

2(1 + r2)

1 − r2
g12(a+ ξ)ξ12,

again with R12 = R12(r, θ, a, ξ,Dξ) defined on Ω ∪ ∂D, zero if ξ = 0 and real-analytic in its
variables. And for H22(a+ ξ):

e−(a+ξ)H22(a+ ξ) = e−(a+ξ)g22(a+ ξ)
(
∂22h(a+ ξ) − Γ1

22∂1h(a+ ξ)
)

=
e−aw2(a)

w2(a+ ξ)
H22(a) +

1 + r2

2rw2(a+ ξ)

{
2ξ1 +

1 + r2

4r

[
3ξ2

1 + 3

(
2a1

+
1 + 3r2

r(1 + r2)2

)
ξ1 +

4e−2a

(1 + r2)2
(e−2ξ − 1)

]
(1 − r2) +

(1 + r2)2

16r2

[
ξ3

1 + 3

(
a1

+
1 + 3r2

r(1 + r2)2

)
ξ2

1 +

(
3a2

1 +
6(1 + 3r2)

r(1 + r2)2
a1 +

4e−2a

(1 + r2)2
e−2ξ

)
ξ1

+
4e−2a

(1 + r2)2

(
a1 +

1 + 3r2

r(1 + r2)2

)
(e−2ξ − 1)

]
(1 − r2)2 +R22(1 − r2)3

}

+
2(1 + r2)

1 − r2
g22(a+ ξ)ξ22,

with R22 = R22(r, θ, a, ξ,Dξ) defined on Ω ∪ ∂D, zero if ξ = 0 and real-analytic in its variables.
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Therefore, a Taylor expansion oh the mean curvature H(a+ ξ) is:

H(a+ ξ) =
w3(a)

w3(a+ ξ)
H(a) +

∑

i,j

(1 + r2)gij(a+ ξ)

2rw(a+ ξ)
ξij +

(1 + r2)(1 − r2)

8r2w3(a+ ξ)

{
2ξ1 +

1 + r2

4r

[
3ξ2

1

+ 3

(
2a1 +

1 + 3r2

r(1 + r2)2

)
ξ1 +

(5 + r2)e−2a

(1 + r2)2
(e−2ξ − 1)

]
(1 − r2) +

(1 + r2)2

16r2

[
ξ3

1

+ 3

(
a1 +

1 + 3r2

r(1 + r2)2

)
ξ2

1 +

(
3a2

1 +
6(1 + 3r2)

r(1 + r2)2
a1 +

4e−2a

(1 + r2)2
e−2ξ +

4r2

(1 + r2)3

)
ξ1

+
4e−2a

(1 + r2)2

(
a1 +

1 + 3r2

r(1 + r2)2

)
(e−2ξ − 1)

]
(1 − r2)2

}
+RH(1 − r2)4,

with as before RH = RH(r, θ, a, ξ,Dξ) defined on Ω ∪ ∂D, identically zero if ξ = 0 and real-
analytic in its variables.

The Taylor expansion of w−3(a+ ξ) is the following:

1

w3(a+ ξ)
=

1

w3(a)

{
1 − 3(1 + r2)

4rw2(a)
ξ1(1 − r2) +

3(1 + r2)2

16r2w4(a)

[
2ξ2

1 − a1ξ1

− 2e−2a

(1 + r2)2
(e−2ξ − 1)

]
(1 − r2)2 − (1 + r2)3

32r3w6(a)

[
5ξ3

1 − 6a1ξ
2
1 + 3

(
a2

1

− 5e−2a

(1 + r2)2
(e−2ξ − 1)

)
ξ1 +

6e−2a

(1 + r2)2
a1(e−2ξ − 1)

]
(1 − r2)3

}
+Rw(1 − r2)4,

with Rw = Rw(r, θ, a, ξ,Dξ) defined on Ω ∪ ∂D, zero if ξ = 0 and real-analytic in its variables.
Finally, we obtain:

H(a+ ξ) = H(a) +
1√

|g(a)|
∑

i,j

Aijξij +
1√

|g(a)|B,

with A11 =
(1 + r2)

2rw(a+ ξ)

√
|g(a)|g11(a+ ξ) =

(1 + r2)

2rw(a+ ξ)

g22(a+ ξ)√
|g(a)|

= e−a +O(1 − r2),

A12 =
(1 + r2)

2rw(a+ ξ)

√
|g(a)|g12(a+ ξ) = − (1 + r2)

2rw(a+ ξ)

g12(a+ ξ)√
|g(a)|

= O(1 − r2)

and A22 =
(1 + r2)

2rw(a + ξ)

√
|g(a)|g22(a+ ξ) =

(1 + r2)

2rw(a+ ξ)

g11(a+ ξ)√
|g(a)| = ea +O(1 − r2).

Moreover Aij = Aij(r, θ, a, ξ,Dξ) and B = B(r, θ, a, ξ,Dξ) are defined on Ω ∪ ∂D and real-
analytic in their variables, the matrix A = (Aij) is coercive on Ω ∪∂D, and B is identically zero
if ξ = 0.
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