
HAL Id: hal-00676083
https://hal.science/hal-00676083v1

Preprint submitted on 5 Mar 2012 (v1), last revised 7 Mar 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Criojo: A Pivot Language for Service-Oriented
Computing -The Introspective Chemical Abstract

Machine
Hervé Grall, Mayleen Lacouture

To cite this version:
Hervé Grall, Mayleen Lacouture. Criojo: A Pivot Language for Service-Oriented Computing -The
Introspective Chemical Abstract Machine. 2012. �hal-00676083v1�

https://hal.science/hal-00676083v1
https://hal.archives-ouvertes.fr

Criojo: A Pivot Language for Service-Oriented

Computing

The Introspective Chemical Abstract Machine

Hervé Grall and Mayleen Lacouture

ASCOLA Research Team (Mines de Nantes–INRIA, LINA), France

Abstract. Interoperability remains a significant challenge in service-oriented
computing. After proposing a pivot architecture to solve three interoperability
problems, namely adaptation, integration and coordination problems between
clients and servers, we explore the theoretical foundations for this architecture.
A pivot architecture requires a universal language for orchestrating services
and a universal language for interfacing resources. Since there is no evidence
today that Web Services technologies can provide this basis, we propose a
new language called Criojo and essentially show that it can be considered as
a pivot language. We formalize the language Criojo and its operational seman-
tics, by resorting to a chemical abstract machine, and give an account of for-
mal translations into Criojo: in a distributed context, we deal with idiomatic
languages for four major programming paradigms: imperative programming,
logic programming, functional programming and concurrent programming.

1 Introduction

Assume you want to automatize the management of your photos, by usingWeb photos
management systems, like Picasa and Flickr. You may quickly face interoperability
problems, namely adaptation, integration and coordination problems. Indeed, Picasa
and Flickr are based over distinct interfaces, not only from a functional point of view,
with distinct resource models, differently organizing photos, but also from a commu-
nicational one, since Flickr provides both Restful and WS* services, the mainstream
technologies for Web services, while Picasa only provides Restful services. Therefore,
an adaptation is needed when a client application that orchestrates Picasa services
must evolve to orchestrate Flickr services, or conversely; or even when it must evolve
from a Restful interface to a WS* interface, in the case of Flickr. An integration is
needed when the client application must orchestrate both Picasa and Flickr services.
A coordination is needed when two scripts, possibly written in distinct languages,
must cooperate to orchestrate services provided by one system.

The Flickr vs Picasa scenario is summarized in Fig. 1. In the center, the Restful
and WS* interfaces, provided by Flickr and Picasa, manage the resources (photos) on
the right side. On the left side, you have some of the possible orchestration languages
used to communicate with the interfaces. At first glance is clear the combinatorial
explosion for communications from multiple languages to multiple interfaces.

2 Grall–Lacouture

Orchestration

Languages

Resource

Interfaces Resources

REST

REST

WS*

Java

BPEL

YQL

(SQL)

XQuery

Fig. 1. Problem Communication from Multiple Languages to Multiple Interfaces

In this paper, after proposing a pivot architecture to solve these problems, we
explore the theoretical foundations for this architecture. A pivot architecture essen-
tially requires a pivot language, which is universal both for orchestrating services and
for interfacing resources. Since there is no evidence today that WS* or Restful tech-
nologies can provide the basis for a pivot architecture, we propose a new language
called Criojo as a pivot language. Our contributions are as follows.

– We recall how a pivot architecture solves the problems of adaptation, integra-
tion and coordination. The solution requires three specific abilities for the associated
pivot language:

• Defining wrappers for resources,

• Translating any orchestration language,

• Encoding the Adapter, Mediator and Facade patterns [6, pp. 139, 273, 185], used
to adapt, integrate and coordinate.

We deduce from these requirements a specification of the pivot language, in the
context of service-oriented computing.

– We formalize the language Criojo and its operational semantics, by resorting to
a distributed chemical abstract machine. A program in Criojo actually corresponds
to (i) the description of the collaboration between agents and (ii) the syntactic de-
scription of the reduction rules specific to the chemical abstract machine associated
to each agent. Agents float in a chemical soup, which represents the pervasive infras-
tructure of a network (like Internet) where agents produce and consume messages.
An agent acts as a server interfacing resources or as an orchestrator. It can be a black
box, implemented in impure Criojo, which means that another language is also used,
or an autonomous process executing a program written in pure Criojo. Thus, Criojo
exists in two distinct flavors, pure and impure. To fulfill the first requirement, we
simply define a wrapper of a resource as a black box server written in impure Criojo:
therefore the language Criojo can provide in its impure flavor a universal language
for interfacing resources.

– We give an account of the formal translation of four idiomatic languages into
pure Criojo while considering a distributed context:

• Imperative Programming: a variant of Dijkstra’s language of guarded commands,

• Logic Programming: Datalog with negation,

Criojo: A Pivot Language for Service-Oriented Computing 3

• Functional Programming: λ-calculus with inductive types and fixed point opera-
tor (Gödel’s System T),
• Concurrent Programming: π-calculus.

These translations aim at substantiating the argument that the language Criojo
can be the target language for compiling from any orchestration language, assumed
to be represented by the four idiomatic languages (second requirement) and allows
adapters, mediators and facades to be encoded (third requirement). Thus the lan-
guage Criojo can provide in its pure form a universal language for orchestrating
services. This ability results from a powerful extension of standard chemical abstract
machines: a program in pure Criojo can introspect the local chemical solution. Chem-
ical abstract machines become introspective.
From a theoretical perspective, the language Criojo can therefore be seen as an
attempt to combine different computational paradigms, such as imperative, logic (for
queries), functional and concurrent programming in a clean, uniform, and effective
way. From a practical perspective, an alternative to our proposal of a new language
could be chosen: just select an existing language enough expressive and experiment
it as a pivot language. But in our opinion this approach would have two drawbacks.
First, showing the practicability of the solution in concrete cases would probably
require an excessive implementation effort. Second, the experimentation would not
emphasize the concepts that are essential for designing a pivot language. Thus our
proposal follows a more economical and more foundational approach.

2 Specification of the Pivot Language

As seen in the example of Picasa and Flickr, the absence of a unified model for
service-oriented computing leads to interoperability issues, namely adaptation, in-
tegration and coordination problems. To solve these problems, we have proposed a
pivot architecture [12], as shown in Fig. 2. On the left side of the diagram, scripts
written in existing orchestration languages, like BPEL or Java, are compiled into the
pivot language, here Criojo. On the right side of the diagram, wrappers implemented
in impure Criojo allow the interaction of the compiled scripts with the Restful and
WS* interfaces proposed by Picasa and Flickr. In the middle of the diagram, we use
design patterns to solve the adaptation, integration and coordination problems. The
adaptation problem is solved with the Adapter pattern: an adapter built between
the client and the new service provider allows to switch from one service provider
to another without modifying the client. The integration problem is solved with the
Facade pattern: an intermediate component built between the client and the two ser-
vice providers offers a common representation for the two resource models. Finally,
the coordination problem is solved with the Mediator pattern: a mediator component
allows the coordination of two or more scripts by combining their results.

However, the solution relies on three assumptions for the pivot language Criojo:
(i) that any orchestration language can be compiled into Criojo, (ii) that Criojo can
interact with different resource interfaces, and (iii) that the design patterns used to
solve interoperability issues can be encoded in Criojo. We turn these assumptions
into three requirements for the pivot language.

4 Grall–Lacouture

Orchestration

Languages

Resource

Interfaces Resources

REST

REST

WS*

Java

BPEL

YQL

(SQL)

XQuery

CRIOJO

Wrappers +

Compile

Execute

Fig. 2. The Pivot Architecture

Universality for Compiling In order to compile scripts written in different or-
chestration languages into Criojo, we need a multi-paradigm language. Concretely,
the pivot language must support compilation from imperative languages like Java,
functional languages like XQuery, concurrent languages like BPEL, and logic lan-
guages like YQL or SQL, following an approximate classification since each language
also presents features from other paradigms.

Universality for Interfacing Service interfaces differ not only from a func-
tional point of view, but also from a communicational one. A universal language
for representing resources is therefore required, as well as a middleware layer.

Expressivity The pivot language must be enough expressive to allow the differ-
ent design patterns to be encoded. However, as we consider that this last requirement
derives from the first one, we do not deal with it in the following. The interested reader
can find examples with an earlier version of Criojo in a preceding article [12, Sect. 5].

Finally, we also add requirements specific to the context of service-oriented com-
puting. As exemplified by mainstream technologies for Web services, service-oriented
computing is an efficient solution to organise the exchange of messages in a network-
based architecture, by making agents provide services. These agents are used not
only to manipulate local resources, in response to requests, but also to remotely
call other services, following a specific orchestration. Thus, each agent can play two
roles, a server, as in the first case, and an orchestrator, which is also a client of
other services, and often implements a business process, as in the second case. We
have identified four requirements resulting from service orientation: message passing,
channel mobility, scope management and Black Box principle.

Message Passing Traditionally, distributed systems are represented as sets of
autonomous agents that execute concurrently and interact with each other. There
are two classes of models [13]: message-passing models and the other ones, includ-
ing models based on shared memory and on synchronous communication between
sequential processes. Clearly, service-oriented computing, where agents communicate
with each other by exchanging messages [11], requires to choose a message-passing
model for the pivot language.

Channel Mobility Dynamic binding is necessary for service discovery and dy-
namic routing. Indeed, during an execution, the network topology often needs to
evolve: an agent needs to discover another agent that it does not know initially. The

Criojo: A Pivot Language for Service-Oriented Computing 5

π-calculus provides an elegant solution to the problem of dynamic binding, by al-
lowing the mobility of communication channels: messages convey not only values but
also channels [16, p. 1]. Thus, we require channel mobility for the pivot language.

Scope Management The collaborations between agents are often organized
around sessions. A session is identified by a token, with a particular scope: the token is
generated when the session starts, and then shared between the agents participating
to the session. Scope management is therefore required in the pivot language.

Black Box Principle To promote interoperability, service-oriented computing
adheres to the Black Box principle: agents hide the implementation details of the
services that they provide and use the services that they require only through their
interfaces. Thus, the pivot language must allow an agent implementation to be ab-
stracted away.

3 The Introspective Chemical Abstract Machine and its

Language

In the section, we describe the syntax and the semantics of the pivot language Criojo.
It can be described as the language associated to a chemical abstract machine dedi-
cated to service-oriented computing. Finally, we define a notion of program equiva-
lence, based on weak bisimulations.

Before the formalization, we start by a small example with a client and a server.
The server provides a channel ping while the client provides a channel pong to get
the response. The server also manages a local counter: when it receives a request over
channel ping, it sends the current value of the counter to the client and increments
the counter. The whole collaboration can be described as follows.

Client. (Begin) ‖ Server. (Counter(0))

The initial state of the client contains a unique internal message, Begin, whereas the
initial state of the server contains a unique message Counter(0), giving the initial
value 0 of the counter. The behavior of the client is described by the following rules.

Begin→ ping(pong), End pong(n)→ Print(n)

It first sends the request to the server, then waits for the response, and finally prints
the value received. The behavior of the server is described as follows.

Counter(n), ping(k)→ Counter(n+ 1), k(n)

The server indefinitely replies to requests by sending the value of the counter and
incrementing its value. This simple example highlights some essential concepts: (i) a
program in Criojo describes a collaboration and the behaviors of the agents involved
in the collaboration.; (ii) there are two kinds of messages, internal ones like Print(n)
and external ones like pong(n); (iii) channels are also values, like pong; (iv) a name
server, like a counter, allows names to be locally managed.

6 Grall–Lacouture

3.1 Syntax and Semantics

The starting point for the formal definition of the pivot language Criojo is Berry
and Boudol’s chemical model [1], based on a chemical abstract machine (or cham).
Thanks to the associativity and commutativity properties of multisets, their chem-
ical model has been immediately acknowledged as an elegant formalism for concur-
rency, as shown for instance by Milner, who gave a new way of formulating the
π-calculus [14]. The model is also well suited to distribution, and especially message-
passing models. Indeed, chemical solutions can be organized in a hierarchy. Thus,
any solution can contain cells, defined as membranes encapsulating sub-solutions,
and which can be distributed. Cells evolve in a (truly) concurrent way: indeed chem-
ical reactions, which are always local to a solution, can be performed in parallel,
provided that they involve disjoint sets of molecules or cells. The communication
between chemical solutions is also local: to migrate, a molecule need to move from
a sub-solution to the airlock of the membrane, and then after reaction to the outer
solution, or in the reverse direction.

After this general description, we now define the cham dedicated to service-
oriented computing.

The molecules of the cham are messages, corresponding to requests and responses.
A message is a value, defined as a term over some algebraic signature, and conveyed by
a channel. To ensure channel mobility, channels belong to the signature as constants,
and can therefore be considered as terms.

Messages: k(v) k ∈ K (Set of Channels), v ∈ V (Set of Values),K ⊆ V

In the following, the algebraic signature is left implicit. It is often tacitly as-
sumed to contain tuple constructors, which are often omitted. For instance, we write
k(v1, . . . , vn) instead of k(cn(v1, . . . , vn)), where cn is the constructor of n-tuple. The
cells of the cham are agents. Each agent a provides some channels, which together
form the set K(a). It consumes incoming messages, produces outgoing messages and
updates its state.

A program in Criojo first defines a collaboration between agents, as defined as
follows.

Collaboration c ::= a. σ Agent a with State σ

| c ‖ c Collaborations in Parallel

Agent a ∈ A Set of Agents

State σ ∈ Σ Set of States

We assume that the agent identifiers are pairwise distinct and that the sets K(a)
of provided channels are pairwise disjoint. The collaboration is then deployed in the
top-level chemical solution, called the web. Finally, the cham makes the web evolve,

Criojo: A Pivot Language for Service-Oriented Computing 7

by performing chemical reactions. The web is defined as a multiset, as follows.

Web Ω ::= 〈−→ω 〉 Multiset of Web Entities ω

Entity ω ::= c Collaboration to be Deployed

| a[Λ] Agent a with Local Solution Λ

| a. α[Λ] Agent a with Local Solution Λ and Airlock α

| k(v) Message in Transit

Local Solution Λ ::= 〈σ 〉 ⊎ 〈
−−→
k(v) 〉 State and Multiset of Messages

Airlock α ::= σ | k(v) State or Message

It contains collaborations to be deployed, active agents, each one with a state, a
local solution, defined as a multiset of messages, and possibly an airlock containing
the initial state or a migrating message. The semantics of the cham is operational,
defining a reduction relation. The generic reduction rules are described in Table 1.
First, there are two kinds of inference rules, [chemical] and [membrane], which are
laws, that is to say rules common to all chams: they allow reductions to locally occur
in any solution. Second, there are specifics rules, for deployment and for communica-
tion, as well as the associated law [reaction], allowing the specific rules (which are
rule schemata) to be instantiated. The deployment rules allow a collaboration to be

[chemical]
Ω1→Ω2

Ω1 ⊎Ω→Ω2 ⊎Ω

a ⊢ Λ1→Λ2

(Λ = 〈
−−→
k(v) 〉)

a ⊢ Λ1 ⊎Λ→Λ2 ⊎Λ

[membrane]
a ⊢ Λ1→Λ2

〈 a[Λ1] 〉→ 〈 a[Λ2] 〉

a ⊢ Λ1→Λ2

〈 a. α[Λ1] 〉→ 〈 a. α[Λ2] 〉

[deployment] c1 ‖ c2→ c1, c2 a. σ→ a. σ[〈 〉]

[in] k(v), a[Λ]→ a. k(v)[Λ]
(

k ∈ K(a)
)

[in-airlock] a. k(v)[Λ]→ a[〈 k(v) 〉 ⊎Λ]
(

k ∈ K(a)
)

[out-airlock] a[〈 k(v) 〉 ⊎Λ]→ a. k(v)[Λ]
(

k /∈ K(a)
)

[out] a. k(v)[Λ]→ k(v), a[Λ]
(

k /∈ K(a)
)

[reaction]

−→ω1→
−→ω2 (

θ : X → V valuation
)

〈
−−−→
ω1[θ] 〉→ 〈

−−−→
ω2[θ] 〉

Table 1. Chemical Abstract Machine – Generic Reduction Rules

decomposed until the agents stand in the web and become active with the creation
of an empty local solution. The two communication rules [in] allow a message k(v)

8 Grall–Lacouture

[init]impure a. σ[〈 〉]→ a[〈σ 〉]

[local]impure a ⊢ σ1,
−−−−→
k1(v1)→σ2,

−−−−→
k2(v2)

[reaction]impure

a ⊢
−→
λ1→

−→
λ2

(θ : X → V valuation)
a ⊢ 〈

−→
λ1[θ] 〉→ 〈

−→
λ2[θ] 〉

Table 2. Impure Criojo – Reduction Rules

in transit to come through the airlock into the local solution associated to the agent
providing the channel k. Symmetrically, the two communication rules [out] allow a
message k(v) in the local solution to go through the airlock into the web.

Besides the preceding rules, which are generic, there are rules specific to agents.
Indeed, a program in Criojo defines not only a collaboration but also the behavior of
the agents involved in the collaboration. In impure Criojo, the behavior of an agent
is described by any finite presentation of a possibly infinite set of instances of the
generic rule [local]impure: see Table 2. These reduction rules can perform after the
local solution has been initialized with the initial local state, as described by the
rule [init]impure. Associated to the specific rules, there is the law [reaction]impure,
allowing an instantiation: the free variables, which occur in the left hand side con-
taining the premises are instantiated and then substituted in the right hand side
containing the conclusions. Thus, impure Criojo is a language for wrappers: it allows
an integration into a Criojo collaboration, by abstracting away from concrete devices
for generating the rules specific to agents. We will see in the next section different
examples. We now present pure Criojo: contrary to impure Criojo, it allows specific
rules to be directly defined.

3.2 Introspection with Pure Criojo

A program in impure Criojo is not effective, in that it assumes some external device
to generate a possibly infinite set of rules. In pure Criojo, the program is effective:
there is a finite set of rules, which are given extensionally, so that no external device
is needed. The machine is purely chemical.

Concretely, in pure Criojo, the state of an agent has a concrete representation,
as an aggregate of internal messages. An internal message is an atom, a predicate
applied to a value.

Internal Messages: R(v) R ∈ P (Set of Predicates), v ∈ V (Set of Values)
State: σ ::= ∅ | R(v)&σ

Internal messages look like external ones. However, there is a difference between
predicates and channels: contrary to channels, predicates are not terms and therefore
cannot occur in a value. In the following, we will follow a naming convention: channels
will have a name with the first letter lowercase while predicates will have a name
with the first letter capitalized. With the formal homogeneity between the internal

Criojo: A Pivot Language for Service-Oriented Computing 9

messages defining the local state and the external messages, the local solution can
become a multiset of messages, which is performed by the following initialization rule.

[init]pure a. (R(u)&σ)[Λ]→ a. σ[〈R(u) 〉 ⊎Λ] a. ∅[Λ]→ a[Λ]

Pure Criojo is defined as a language that allows syntactically describing the reduc-
tions of a local solution, defined as a multiset of messages, and semantically defining
all the possible transformations of a local solution. This universality property requires
an extension of standard chams. Indeed we now show a computability limitation for
standard chams, where all reactions are assumed to be local with respect to an
agent a, that is to say to conform to the following rules.

a ⊢
−→
λ1→

−→
λ2

a ⊢
−→
λ1→

−→
λ2

a ⊢ 〈
−−→
λ1[θ] 〉→ 〈

−−→
λ2[θ] 〉

a ⊢ Λ1→Λ2

a ⊢ Λ1 ⊎Λ→Λ2 ⊎Λ

The first rule expresses the local reduction of some messages (internal and external),
and is a schema for the rules specific to the local cham associated to the agent. The
first inference rule, an instance of the law [reaction], allows the instantiation of the
specific rules. The second inference rule, an instance of the law [chemical], allows
the reduction to occur in any local solution. To express the computability limitation
for standard chams, we need some terminology. Without loss of generality, we only
consider internal messages. Predicates are arbitrarily split into two classes, the class
of public predicates and the class of private ones. A transformation is a binary rela-
tion over multisets of messages, defined over public predicates. A transformation T is

computable by a standard cham if there are (i) a finite set of local rules (a ⊢
−→
λ1→

−→
λ2)

and (ii) a multiset Λi of initial messages defined over private predicates such that
for all multiset Λin in the input domain of the transformation T , we have: (i) for
all multiset Λout associated to Λin by T , there exists an execution starting from the
solution Λi ⊎Λin and terminating with the solution Λf ⊎Λout, where Λf is some mul-
tiset of final messages defined over private predicates, and (ii) all execution starting
from the solution Λi ⊎Λin terminates, with a final solution Λf ⊎Λout, where Λf is
some multiset of final messages defined over private predicates, and where (Λin, Λout)
belongs to T . We can now formally specify the following limitation: a standard cham
cannot compute a cloning transformation.

Proposition 1 (Clone Problem). Given a public predicate R with arity zero, the
transformation T equal to (〈Rn 〉, 〈R2n 〉)n∈N cannot be computed by a standard cham
(Rp means p occurrences of R).

Proof. Suppose for a contradiction that there exists a standard cham computing
transformation T . Let n be a natural number. There exists an execution starting
from Λi ⊎ 〈R

n 〉 and terminating with Λf ⊎ 〈R
2n 〉 Then by applying the chemical

law, we deduce an execution starting from Λi ⊎ 〈R
n+1 〉 and reaching Λf ⊎ 〈R

2n+1 〉.
The last solution cannot be final. Hence there exists a rule that can be fired. If
the rule consumes less than 2n + 1 messages R, then Λf ⊎ 〈R

2n 〉 cannot be a final
solution, contradiction. Therefore, for each n, there exists a rule that consumes 2n+1
messages R. This is a contradiction, since the cham has a finite set of rules. ⊓⊔

10 Grall–Lacouture

To tackle this limitation, we extend the cham with introspection capacities. Thus,
in pure Criojo, the behavior of an agent is described by a finite set of guarded rules
a ⊢
−→
λ1→ g ?

−→
λ2. Such a rule is fired only when the guard condition g is satisfied in

the local solution formed with the internal messages, then consuming the premises−→
λ1 and producing the conclusions

−→
λ2. External messages, which can freely come in

or go out, are not considered in a guard to avoid race conditions. How to express
guards? As we will see in the solution of the clone problem as well as in the following
section, introspection is powerful when it allows to determine whether some rules are
blocked. Hence guards are expressed in first-order logic, since a rule a ⊢

−→
λ1→ g ?

−→
λ2 is

blocked when the local solution satisfies ¬(∃−→x . 〈
−→
λ1 〉 ∧ g), where −→x denotes the free

variables in
−→
λ1 and 〈

−→
λ1 〉 means that this multiset is included in the local solution.

Guard g ::= 〈
−−−→
R(u) 〉 Presence of Local Messages

| True | False | g ∨ g | g ∧ g | ¬g Propositional Guards

| ∃x . g | ∀x . g First-Order Guards

Semantically, we define the satisfaction judgment Λ �θ g, which means that g[θ]
is satisfied in the solution Λ. The satisfaction relation is defined as usual, following
Tarski’s interpretation over the set V of values, with one notable exception for atomic
formulas.

Λ �θ 〈
−−−→
R(u) 〉

def

⇔ 〈
−−−→
R(u)[θ] 〉⊑Λ

Λ �θ True
def

⇔ True

Λ �θ g1 ∨ g2
def

⇔ Λ �θ g1 ∨ Λ �θ g2

Λ �θ ¬g
def

⇔ ¬(Λ �θ g)

Λ �θ ∃x . g
def

⇔ ∃ v ∈ V . Λ �θ⊕(v/x) g

The satisfaction relation is decidable, in time polynomial in the size of the solution
Λ, as shown by Dantsin and Voronkov [3]. Finally, the cham for pure Criojo is defined
as follows.

[local]pure a ⊢
−−−−→
R1(u1),

−−−−→
k1(v1)→ g ?

−−−−→
R2(u2),

−−−−→
k2(v2)

[introspection]pure
a ⊢
−→
λ1→ g ?

−→
λ2 〈

−−−−→
R1(u1)[θ] 〉 ⊎Λ �θ g











−→
λ1 =

−−−−→
R1(u1),

−−−−→
k1(v1)

−→
λ2 =

−−−−→
R2(u2),

−−−−→
k2(v2)

Λ = 〈
−−−→
R(u) 〉

θ : X → V valuation









a ⊢ 〈
−→
λ1[θ] 〉 ⊎Λ→〈

−→
λ2[θ] 〉 ⊎Λ

The introspection rule combines the reaction rule expressing instantiation and the
chemical rule expressing locality while adding the satisfaction of the guard. Note also
that a guarded rule a ⊢

−→
λ1→ True ?

−→
λ2 is equivalent to the standard rule a ⊢

−→
λ1→

−→
λ2,

so that we will often omit the guard True. With introspection, we can now solve the
clone problem.

Proposition 2 (Clone Problem Revisited). Given a public predicate R with ar-
ity zero, the transformation T equal to (〈Rn 〉, 〈R2n 〉)n∈N can be computed by an
introspective cham.

Proof. Consider the following program in pure Criojo.

One, R→ One, S, S One→¬〈R 〉 ? Two Two, S→ Two, R Two→¬〈S 〉 ? Three

Then its execution starting from the local solution 〈 One, Rn 〉 terminates with the
solution 〈 Three, R2n 〉, for any n. ⊓⊔

Criojo: A Pivot Language for Service-Oriented Computing 11

3.3 Other Examples: Equality and Substitution

The translations into pure Criojo described in the next section require realizing some
substitutions. It turns out that realizing a substitution also requires testing equality
(between variables). We now give two programs written in pure Criojo to test term
equality and to implement substitutions respectively. They are modular, since they
are associated to two agents, EQ, a generic agent for equality and SUBp, an agent for
substitutions depending on an underlying nominal algebra, an algebra with binders.

Here is the program to test equality. It is generic, being independent from the
signature for terms, thanks to introspection and instantiation.

EQ ⊢ isEqual(v, u, k+, k−), Session(n) → RepEq(n, k+, k−), Eq(n, v, u),
Session(succ(n))

EQ ⊢ Eq(n, v, u), RepEq(n, k+, k−) → ¬〈 Eq(n, v, v) 〉 ? k−(v, u)

EQ ⊢ Eq(n, v, v), RepEq(n, k+, k−) → k+(v)

To test the equality between v and u, a client sends the request isEqual(v, u, k+, k−):
channel isEqual is provided by agent EQ, and channels k+ and k−, provided by the
client, are response channels used for positive tests and negative tests respectively.
When the agent EQ receives a request, first it gets a new session identifier from the
name server: thus the agent EQ can organize the responses to requests in parallel,
each response being identified by the session identifier. The name server is imple-
mented with the predicate Session, the constant 0 used to initialize the state with
Session(0) and the successor function succ used to increment the identifier n. Sec-
ond the agent EQ generates two internal messages depending on the session identifier,
one for the pending request, the other for testing equality. If the values v and u
are distinct, the second rule is executed, which sends the negative response over k−.
Otherwise, the last rule is executed, which sends the positive response over k+.

For substitutions, we do not consider universal algebras but nominal algebras [17],
which are universal algebras with a built-in support for names and binding. This gen-
eralization is not only useful since the λ-calculus and the π-calculus, translated into
Criojo, have binders, but also quite simple, since we only substitute closed terms to
variables. Given a nominal algebra, we can define an agent SUBp computing substi-
tutions over the algebra. The agent provides a channel doSub, manipulated following
a request-response protocol, as already seen for equality.

SUBp ⊢ doSub(t, v, a, k), Session(n) → RepSub(n, k), Sub(n, t, v, a), Session(succ(n))

SUBp ⊢ RepSub(n, k), ResSub(n, t) → k(t)

When the agent receives the message doSub(t, v, a, k), it computes the substitution
t[v/a], from Sub(n, t, v, a) to ResSub(n, t′), and finally sends the result t′ over k. A
variant allows the client to send not only the channel but also a session identifier s
used by the client to correlate the response with the calling computation. Thus, the
response would become k(s, v) instead of k(v), the identifier s allowing correlation on
the client side. We now detail the computation of substitutions in a nominal algebra.

A nominal signature has two basic sorts, ν for atoms (representing bound vari-
ables) and δ for data, and a set of functions f , each of which has an arity of the

12 Grall–Lacouture

form τ → δ. The left sort τ ranges over the sorts generated by the following gram-
mar.

Sort τ ::= 1 | ν | δ | τ × τ | [ν]τ

A sort is either the singleton 1, used to represent the absence of arguments, the
basic sorts ν and δ, used to represent a unique argument, an atom or a data, the
Cartesian product τ×τ , used to represent multiple arguments, and the non-standard
sort [ν]τ , used to represent an argument that is an abstraction binding atoms. The
corresponding terms are defined as follows.

Term t ::= () | a | f t | (t, t) | a.t

The term a.t, with sort [ν]τ , binds atom a in t. For instance, the λ-calculus can be
described with the following signature.

var : ν → δ
app : δ × δ → δ

lambda : [ν]δ → δ

We now recursively define the computations for substituting atom a with v in a
term. The case for () is trivial.

SUBp ⊢ Sub(n, (), v, a) → ResSub(n, ())

For an atom b, we need to test equality, which is performed by calling agent EQ.

SUBp ⊢ Sub(n, b, v, a) → isEqual(b, a, equal+, equal−), WSub(n, b, v, a)
SUBp ⊢ equal+(a), WSub(n, a, v, a) → ResSub(n, v)
SUBp ⊢ equal−(b, a), WSub(n, b, v, a) → ResSub(n, b)

We now deal with the recursive cases. There are two phases: a top-down phase that
makes the recursive calls, and a bottom-up phase that synthesize the result. Here
is the top-down phase. First, for a function or a pair, one or two recursive calls are
generated. Each recursive call has an identifier, provided by the name server RecCall.
The internal messages Op(n, f,m) and Pair(n,m, succ(m)) give the links between
the different identifiers, assigned to the caller and to the callees, which later will allow
the result to be synthesized.

SUBp ⊢ Sub(n, f t, v, a), RecCall(m) → Sub(m, t, v, a), Op(n, f,m), RecCall(succ(m))

SUBp ⊢ Sub(n, (t1, t2), v, a), RecCall(m) → Sub(m, t1, v, a), Sub(succ(m), t2, v, a),
Pair(n,m, succ(m)), RecCall(succ(succ(m)))

Second, for a binding abstraction, an equality test is also needed: only free atoms
are substituted.

SUBp ⊢ Sub(n, b.t, v, a) → isEqual(b, a, equal+, equal−),
WSub(n, b.t, v, a)

SUBp ⊢ equal+(a), WSub(n, a.t, v, a) → ResSub(n, a.t)
SUBp ⊢ equal−(b, a), WSub(n, b.t, v, a), RecCall(m) → Sub(m, t, v, a), Binder(n, b,m),

RecCall(succ(m))

Criojo: A Pivot Language for Service-Oriented Computing 13

Now we come to the bottom-up phase: the results are collected at some level and
then synthesized at the upper level, thanks to the internal messages Op(n, f,m),
Pair(n,m1,m2) and Binder(n, a,m), which keep the links between recursive calls.

SUBp ⊢ Op(n, f,m), ResSub(m, v) → ResSub(n, f v)
SUBp ⊢ Pair(n,m1,m2),

ResSub(m1, v1), ResSub(m2, v2) → ResSub(n, (v1, v2))
SUBp ⊢ Binder(n, a,m), ResSub(m, v) → ResSub(n, a.v)

How can we prove that this implementation is right? We propose a systematic
method to answer questions like this one, described below for the case of substitutions.
First, derive from the standard definition of substitutions with an inference system
an implementation in impure Criojo, for a new agent SUBi. The reduction relation is
generated by an inference rule that looks like the following one, giving a benchmark
definition.

t[v/a] 7→ t′

SUBi ⊢ Sub(n, t, v, a)→ ResSub(n, t′)

Second, we prove that the pure agent SUBp and the impure agent SUBi are equivalent.
We now formalize this notion of equivalence.

3.4 Bisimilarity

Consider a web Ω and a subset A of its agents. The projection of Ω over A is the
web including in Ω and containing all the entities associated to agents in A:

– active agents a[Λ] or a. α[Λ], with a in A,
– messages k(v) in transit, with k provided by some agent in A.

In the following, a projection over A is also called a collaboration over A, since it
represents the semantic counterpart of a syntactic collaboration. Given a collabora-
tion Ω over A, we denote by K(Ω) the set of the channels provided by the agents in
A. We deal with the following question: can we replace a collaboration with another
one observationally equivalent, that is to say such that the environment can never
observe any difference? Following the Black Box principle, the environment interacts
with a collaboration only by exchanging messages. First difficulty: when we replace a
collaboration by another one providing extra channels, the environment can trivially
observe a difference, the ability to communicate over the extra channels. Thus, we
should restrict ourselves to collaborations providing exactly the same set of chan-
nels. But it is not a good idea: it would prevent from decomposing an agent into
multiple agents to provide the same services. Therefore we may need a firewall be-
tween a collaboration and its environment. It is represented as a restriction operator,
reminiscent of the language CCS: given a collaboration Ω and a subset K of K(Ω),
Ω \ K represents a collaboration where the communications with the environment
over the channels in K are forbidden. Second difficulty: the operational semantics,
defined by a reduction relation, does not account for the interactions with an envi-
ronment. Thus, to formalize observational equivalence, we turn the reduction relation
into a labeled transition system, following a standard technique [1]. We consider as

14 Grall–Lacouture

actions the silent action, τ , input messages, denoted +k(v), and output messages,
denoted −k(v). For collaborations Ω \K and Ω′ \K, denoting by →∗ the reflexive
and transitive closure of the reduction relation →,

– we write (Ω \K) τ=⇒(Ω′ \K) if Ω→∗ Ω′;
– we write (Ω \K)

+k(v)
=⇒ (Ω′ \K) if there exists a collaboration Ω1 and an active

agent a[Λ] such that

Ω→∗ Ω1 ⊎ 〈 a[Λ] 〉, Ω1 ⊎ 〈 a. k(v)[Λ] 〉→
∗ Ω′ and k ∈ K(a)−K;

– we write (Ω \K)
−k(v)
=⇒ (Ω′ \K) if there exists a collaboration Ω1 and an active

agent a[Λ] such that

Ω→∗ Ω1 ⊎ 〈 a. k(v)[Λ] 〉, Ω1 ⊎ 〈 a[Λ] 〉→
∗ Ω′ and k /∈ K(Ω).

For any labeled transition system, there is a standard notion of bisimulation.

Definition 1 (Simulation – Bisimulation – Bisimilarity). Let R be a relation
over collaborations. R is a simulation if for any ordered pair (Ω1 \K1, Ω2 \K2) in R,
whenever (Ω1 \K1)

X=⇒ (Ω′
1 \K1), there exists Ω′

2 such that (Ω2 \K2)
X=⇒ (Ω′

2 \K2)
and (Ω′

1 \K1, Ω
′
2 \K2) ∈ R. R is a bisimulation if R and R−1 are simulations.

Two collaborations Ω1\K1 and Ω2\K2, are bisimilar if there exists a bisimulation
containing (Ω1 \K1, Ω2 \K2).

We do not develop further the theory of bisimulation because the previous definition
is enough to state the main properties of the translations in the next section and to
state the equivalence between both versions for substitutions, as shown below. The
development of the theory probably requires extending the grammar for syntactic
collaborations with the restriction operator and the chemical abstract machine with
firewalls: we let this extension to a future work.

Coming back to substitutions, we can now prove the equivalence between both
definitions, the impure one and the pure one.

We first define the impure version for substitutions. The state of the impure agent
SUBi is represented as an aggregate combining (i) a global counter

Session(n)

for the identifiers of the internal sessions, and (ii) pending requests. A pending request
is a sub-aggregate, either

Sub(n, t, v, a)& RepSub(n, k)

or
ResSub(n, t′)& RepSub(n, k).

It indicates that in the internal session n, the agent either has to evaluate t[v/a] or
has evaluated t[v/a] into t′, and will respond over channel k. The join operator & is
assumed to be associative and commutative, which leads to the following rules.

σ1 &(σ2 &σ3) ≡ (σ1 &σ2)&σ3

σ1 &σ2 ≡ σ2 &σ1

σ1 ≡ σ′

1 SUBi ⊢ σ′

1→σ′

2 σ′

2 ≡ σ2

SUBi ⊢ σ1→σ2

Criojo: A Pivot Language for Service-Oriented Computing 15

Like SUBp, the impure agent SUBi provides a channel doSub, manipulated following
the same request-response protocol.

SUBi ⊢ doSub(t, v, a, k), σ& Session(n) → RepSub(n, k)& Sub(n, t, v, a)&σ& Session(succ(n))

SUBi ⊢ RepSub(n, k)& ResSub(n, t)&σ → σ, k(t)

The reduction rules SUBi ⊢ Sub(n, t, v, a)&σ→ ResSub(n, t′)&σ are defined in Ta-
ble 3 by a syntax-directed inference system, directly adapted from the standard
definition.

SUBi ⊢ Sub(n, (), v, a)&σ→ ResSub(n, ())&σ

SUBi ⊢ Sub(n, b, v, a)&σ→ ResSub(n, v)&σ (b = a)

SUBi ⊢ Sub(n, b, v, a)&σ→ ResSub(n, b)&σ (b 6= a)

SUBi ⊢ Sub(n, t, v, a)&σ→ ResSub(n, t′)&σ

SUBi ⊢ Sub(n, f t, v, a)&σ→ ResSub(n, f t′)&σ

SUBi ⊢ Sub(n, t1, v, a)&σ→ ResSub(n, t′1)&σ SUBi ⊢ Sub(n, t2, v, a)&σ→ ResSub(n, t′2)&σ

SUBi ⊢ Sub(n, (t1, t2), v, a)&σ→ ResSub(n, (t′1, t
′

2))&σ

SUBi ⊢ Sub(n, t, v, a)&σ→ ResSub(n, t′)&σ
(b 6= a)

SUBi ⊢ Sub(n, b.t, v, a)&σ→ ResSub(n, b.t′)&σ

SUBi ⊢ Sub(n, b.t, v, a)&σ→ ResSub(n, b.t)&σ (b = a)

Table 3. Substitutions in Impure Criojo

We finally show the equivalence between the pure agent SUBp and the impure one
SUBi.

Theorem 1 (Substitutions – Bisimilarity). Let K be the following set of chan-
nels:

isEqual, equal+, equal−.

Then the collaborations
〈 SUBi[〈 Session(0) 〉] 〉 \∅

and
〈 SUBp[〈 Session(0), RecCall(0) 〉], EQ[〈 Session(0) 〉] 〉 \K

are bisimilar.

Proof. We sketch the proof. We split the relations and channels of SUBi and SUBp
into three sets:

H = {doSub (request), k (response)},
I = {Session (for substitutions), RepSub, ResSub},
J = {Sub, WSub, Op, Pair, Binder, RecCall, equal+, equal−, isEqual,

. . . (equality relations)}.

16 Grall–Lacouture

We exhibit a bisimulation R containing both collaborations. Consider collaborations

〈 SUBi[〈A1 &C1 〉 ⊎B1] 〉 \∅

and
(〈 SUBp[A2 ⊎C2 ⊎B2], EQ[D2] 〉 ⊎E2) \K

where

– B1 and B2 contain the messages over H,
– A1 and A2 contain the messages over I,
– C1, C2, D2 and E2 contain the messages over J .

They are related by R if the following conditions are satisfied.
(A) There is a biunivocal correspondence between the impure state A1, B1 and

the pure state A2, B2, built as follows.

doSub(t, v, a, k)←→ doSub(t, v, a, k)
k(t)←→ k(t)

Session(n)←→ Session(n)
RepSub(n, k)←→ RepSub(n, k)
ResSub(n, t)←→ ResSub(n, t)

(B) We denote by X the set of session identifiers occurring in C1:

C1 = 〈 Sub(n, tn, vn, an) | n ∈ X 〉

If n ∈ X, whereas there is an internal message Sub(n, tn, vn, an) in the impure state
C1, either there is a corresponding message in the pure state C2, or there is no
corresponding message, the pure agent being computing the substitution tn[vn/an].
Therefore, we add the following condition: the collaboration

〈 SUBp[C2], EQ[D2] 〉 ⊎E2

converges to the following final state 〈 ResSub(n, t′n) | n ∈ X 〉, such that for any n,
we have t′n = tn[vn/an].

Finally, it remains to prove that R is a bisimulation. We need to consider three
cases, corresponding to the silent action, an input message (over channel doSub) and
an output message (over channels k). We deduce the simulation properties from the
following lemmas.

(1) First Lemma – Computational Correction
Assume the collaboration

〈 SUBp[C2], EQ[D2] 〉 ⊎E2

converges to the following final state

〈 ResSub(n, t′n) | n ∈ X 〉 .

Then given a fresh identifier m, the collaboration

〈 SUBp[C2 ⊎ 〈 Sub(m, t, v, a) 〉], EQ[D2] 〉 ⊎E2)

Criojo: A Pivot Language for Service-Oriented Computing 17

converges to the following final state

〈 ResSub(n, t′n) | n ∈ X 〉 ⊎ 〈 ResSub(m, t′) 〉,

such that t′ = t[v/a]. By induction over term t.
(2) Second Lemma – Operational Simulation

Starting from two collaborations

Λ1
def

= 〈 SUBi[〈A1 &C1 〉 ⊎B1] 〉 and Λ2
def

= 〈 SUBp[A2 ⊎C2 ⊎B2], EQ[D2] 〉 ⊎E2

such that (Λ1 \ ∅, Λ2 \K) belongs to R, if Λ1→Λ′
1, then there exists Λ′

2 such that
Λ2→

∗ Λ′
2 and (Λ′

1 \ ∅, Λ
′
2 \K) belongs to R, and conversely if Λ2→Λ′

2, then there
exists Λ′

1 such that Λ1→
∗ Λ′

1 and (Λ′
1 \ ∅, Λ

′
2 \K) belongs to R. By a case analysis

over reductions and by using the preceding lemma.
⊓⊔

Finally, to conclude the section, we examine to what extent the language Criojo
meets the requirements. Pure Criojo, with its introspective capacities, is a candi-
date for a universal language for compiling orchestration languages, whereas impure
Criojo, with its capacities for wrapping, is a candidate for a universal language for
interfacing resources. The next section essentially aims at arguing these claims. The
chemical abstract machine that we have designed for service-oriented computing is
clearly based on a message-passing model: molecules represent messages and some
obvious chemical rules account for message communication. Channel mobility is also
an important feature of our cham: it allows complex protocols to be implemented in
a simple way, by passing channels as values. We have not dealt with scope manage-
ment explicitly: as seen through the previous examples, it essentially corresponds to a
specific discipline in the management of names like session identifiers by using name
servers. The chemical model, as developed, also adheres to the Black Box principle.
The bisimulation theory that we have sketched formalizes the principle and will lead
to applications in the next section.

4 Translation of Four Idiomatic Languages

We now give the formal translations of the four idiomatic languages that we have
chosen: a variant of Dijkstra’s language of guarded commands, Datalog with negation,
a λ-calculus extended and the π-calculus. Actually, except for Datalog, where there
is a computation but no communication, we proceed as described at the end of the
preceding section: in a distributed context, we give two versions, the former in impure
Criojo, considered as the benchmark definition, the latter in pure Criojo, and then
we prove that they are equivalent by giving a bisimilarity result.

4.1 Dijkstra’s Language of Guarded Commands

As shown by the solution to the clone problem, sequencing can be managed by tokens.
Instead of this low-level management, we would rather writing the following program:

do {R⊸ g ?S, S} ; do {S⊸ g ?R}.

18 Grall–Lacouture

The command do, corresponding to a loop, allows the rule to be repeated until
blocking, which entails its termination. Note the new notation for a rule, reminiscent
of Linear Logic: indeed, a rule is now consumed after it has been fired. Commands
can also be sequenced. If we add a blocking alternative, we get the following variant
of Dijkstra’s language of guarded commands.

Script s ::= skip | s ; s | if {c} | do {c}

Guarded Command Set c ::= r ⊲ s | c ‖ c

Guard Rule r ::= M ⊸ g ?M

Messages M ::=
−−−→
R(u),

−−→
k(v)

Compared with Dijkstra’s language, there are two differences, related: first, there
is no atomic action, except the empty one skip, second, the guard of a command
becomes a one-shot rule, with a side-effect, called a guard rule, thus compensating the
lack of actions. In the following, a guard rule with no message (∅⊸ g ? ∅) is simply
denoted by its guard (g). The empty action is also omitted, r ⊲ skip becoming r.

The operational semantics of the language is described in Table 4. It is a variant of
the one given by Plotkin for Dijkstra’s language of guarded commands [15], following
the Structural Operational Semantics style. It involves two relations, the first one to
reduce a configuration composed of a script and a solution, and the second one to
select a guarded command. More precisely, (s, Λ) ⇒ (s′, Λ′) means that the script
s with solution Λ reduces to the script s′ with solution Λ′, while (s, Λ) ⇒ Λ means
that the script s cannot reduce in solution Λ and terminates. Given a set of guarded
commands c and a solution Λ, (c, Λ) 7→ (M,M ′, s) means that a guarded command
has been selected in c, producing two multisets of messages, M to be removed, and
M ′ to be added, and a script s to be executed, while (c, Λ) 7→ ⊥ means that the
selection fails.

(skip, Λ)⇒ Λ
(s1, Λ)⇒ (s′1, Λ

′)

(s1 ; s2, Λ)⇒ (s′1 ; s2, Λ
′)

(s1, Λ)⇒ Λ

(s1 ; s2, Λ)⇒ (s2, Λ)

(c, Λ) 7→ (M−,M+, s)

(if {c}, Λ)⇒ (s, Λ⊎ 〈M+ 〉 - 〈M− 〉)

(c, Λ) 7→ (M−,M+, s)

(do {c}, Λ)⇒ (s ; do {c}, Λ⊎ 〈M+ 〉 - 〈M− 〉)

(c, Λ) 7→ ⊥

(do {c}, Λ)⇒ Λ

Λ �θ M ∧ g

((M ⊸ g ?M ′) ⊲ s, Λ) 7→ (M [θ],M ′[θ], s)

Λ � ¬(∃−→x . M ∧ g)

((M ⊸ g ?M ′) ⊲ s, Λ) 7→ ⊥

(ci, Λ) 7→ (M,M ′, s)
(i ∈ {1, 2})

(c1 ‖ c2, Λ) 7→ (M,M ′, s)

(c1, Λ) 7→ ⊥ (c2, Λ) 7→ ⊥

(c1 ‖ c2, Λ) 7→ ⊥

Table 4. Guarded Commands – Small-Step Operational Semantics

Criojo: A Pivot Language for Service-Oriented Computing 19

Thanks to the impure version of Criojo, we can embed the Dijkstra’s language
in Criojo in a straightforward way: it suffices to translate the operational semantics
into rules for the cham. The state of an agent GCi that implements a script is a pair
s&Λ composed of the script s and a multiset of internal messages Λ. We add an
extra state ⊤&Λ to indicate that the script has terminated its execution because it
could not reduce. The rules of the cham are generated by the following inferences
rules.

(s1, Λ1 ⊎ 〈
−−−−→
k1(v1) 〉)⇒ (s2, Λ2 ⊎ 〈

−−−−→
k2(v2) 〉)

GCi ⊢ s1 &Λ1,
−−−−→
k1(v1)→ s2 &Λ2,

−−−−→
k2(v2)

(s, Λ⊎ 〈
−−→
k(v) 〉)⇒ Λ⊎ 〈

−−→
k(v) 〉

GCi ⊢ s&Λ→⊤&Λ

Now, we translate into pure Criojo Dijkstra’s language of guarded commands.
The translation of each command depends on two tokens, B for ”Begin” and E for
”End”, which are used to manage the scheduling of commands.

D(skip)B,E = B→ True ?E
D(s1 ; s2)B,E = ν I.D(s1)B,I ,D(s2)I,E
D(if {c})B,E = D(c)B,E

D(do {c})B,E = D(c)B,B , (B→G(c) ?E)

The empty script converts the begin token into the end token. The sequence s1 ; s2
requires an intermediate fresh token (cf. ν I.−), which corresponds to the end of s1
and the beginning of s2. The translation of the alternative and the loop depends
on the translation of the associated set of guarded commands. Note the differences:
for the loop, the translation uses the same token, allowing a repetition, and adds a
rule to quit the loop, when its guard rules cannot be fired. A guarded command is
translated into a rule and the translation of the continuation script. Their sequencing
results from the use of an intermediate fresh token.

D((M ⊸ g ?M ′) ⊲ s)B,E = ν I.(M,B→ g ?M ′, I),D(s)I,E
D(c1 ‖ c2)B,E = D(c1)B,E ,D(c2)B,E

Finally, given a set c of guarded commands, the guard G(c) expresses that the guard
rules cannot be fired.

G((M ⊸ g ?M ′) ⊲ s) = ¬(∃−→x . M ∧ g)
G(c1 ‖ c2) = G(c1) ∧ G(c2)

Note that we need to assume that the premise M only contains internal messages in
order to get a guard defined over internal messages. This assumption is reasonable
because it prevents race conditions from happening: since external messages can
freely come in or go out, the termination of a loop ought not to depend on external
messages.

Conversely, any program R in Criojo can be represented as a script in the language
of guarded commands. First, the rules are translated into guarded commands. Second,
a program is translated into a loop. To avoid the termination of the loop, the rules
translated belong to an alternative, which can block and wait, and is guarded with
True.

ER(M→ g ?M ′) = (M ⊸ g ?M ′) ⊲ skip
ER(R1, R2) = ER(R1) ‖ ER(R2)

EP(R) = do {True ⊲ if {ER(R)}}

20 Grall–Lacouture

The variant EP(R) = do {ER(R)}, simpler, does not work: indeed, in a situation
where no rule could be selected, the program would terminate.

The next version of the paper will integrate the study of the equivalence between
the scripts in Dijkstra’s language and the programs in Criojo, for both translations.
It will be available on 5 March, 2012.

4.2 A Logic Language: Datalog with negation

Pure Criojo shares many features with logic programming. A rule with the guard
True can be considered as an inference rule. However the premises are consumed, as
in Linear Logic: in Criojo, logical atoms are ephemeral and not persistent. It is not
really a problem: just preserve the premises, by adding them to the conclusions. For
instance, given a binary relation R, assume that we want to compute its reflexive
and transitive closure. Here is a program in Datalog.

R∗(x, x) ← True

R∗(x, z) ← R(x, y) ∧R∗(y, z)

Following the preservation principle, a first attempt to translate the second inference
rule would give the following rule.

R(x, y), R∗(y, z)→R(x, y), R∗(y, z), R∗(x, z)

However, this rule loops: an infinite number of atoms R∗(x, z) can be generated. To
avoid this indefinite generation, we can require that an atom is either absent in the
solution, or present with a unique occurrence. Introspection can force this condition.

R(x, y), R∗(y, z)→¬〈R∗(x, z) 〉 ?R(x, y), R∗(y, z), R∗(x, z)

There is still a problem. Assume we now want to compute the Cartesian product R2

of a unary relation R, which is performed as follows in Datalog.

R2(x, y) ← R(x) ∧R(y)

A naive translation would give the following rule in Criojo.

R(x), R(y)→¬〈R2(x, y) 〉 ?R(x), R(y), R2(x, y)

But this rule cannot generate R2(x, x), which requires two atoms R(x) in the solu-
tion. To solve the problem, we can either increase the number of occurrences of each
atom in the solution, or require a linearity condition for Datalog rules. Both options
are akin. We opt for the second alternative: it forbids a rule where there are two
atoms with the same predicate in the premises. The previous program in Datalog
needs to be rewritten as follows.

R1(x) ← R(x)
R2(x, y) ← R(x) ∧R1(y)

The translation now works. In the following, we formalize the translation and gener-
alize it to an extension of Datalog with negation. The implementation, which requires
computing an alternating fixed point, highlights the contribution provided by the ex-
tension of Criojo with guarded commands.

Criojo: A Pivot Language for Service-Oriented Computing 21

The alternating fixed point construction A program in Datalog with negation
is a set of inference rules. An inference rule is of the form a ← l1 ∧ . . . ∧ ln, where
the head a is an atom and where each literal li in the body is either a positive literal,
that is an atom ai, or a negative literal, that is the negation ¬ai of an atom ai. It is a
logical implication, asserting that from premises l1, . . . , ln, you can deduce conclusion
a. A fact is represented by a rule a← True, called an axiom. Atoms are defined from
predicates applied to variables and constants. As usual, we assume that the rules are
range-restricted: in any rule, each variable also occurs in the body of a positive literal.
The condition ensures the existence of a finite set, such that each variable takes its
value in this set. This finite set is a subset of the universe, which is the finite set of
all the constants occurring in the program. Moreover, without loss of generality, we
assume that two positive literals in the body never have the same predicate, likewise
for two negative literals. In the following, we refer to this assumption as the linearity
hypothesis.

Whereas Datalog has a univocal fixed point semantics, there are different fixed
point semantics for Datalog with negation. Here, we will assign to each program
its well-founded model [9], which can be characterized by an alternating fixed point
construction [8]. In this model, a ground atom is either true, false or unknown. In
order to compute the set of true atoms, two approximations are computed. The first
one computes the set of atoms that are certainly true: this is an under-approximation.
The second one computes the set of atoms that are possibly true: this is an over-
approximation. By complementation, we get the set of atoms that are possibly false
and certainly false respectively: an atom is possibly false if and only if it is not
certainly true, and certainly false if and only if it is not possibly true. More formally,
given a programD in Datalog with negation, let U be the finite universe, andH be the
Herbrand base, the finite set of all the ground atoms defined from the predicates in
D and the constants in U . We define the immediate consequence operator as follows,
for any set of negative ground literals N and positive ground literals A:

ΦD[N](A)
def

= {a[τ] | ∃ r ∈ D . r = a← l1 ∧ . . . ∧ ln, ∀ i ∈ {1, . . . , n} . li[τ] ∈ N +A}

We introduce four sequences (C+i)i, (C
−

i)i, (P
+
i)i, (P

−

i)i, with the following interpre-
tation:

– C+i : set of ground atoms that are certainly true at rank i
– C−i : set of ground atoms that are certainly false at rank i
– P+i : set of ground atoms that are possibly true at rank i
– P−i : set of ground atoms that are possibly false at rank i

These sequences are inductively defined as follows. We use some usual notations: X
denotes the complement of the set X in H, and ¬X the set of the negations of atoms
in X; lfp(ϕ) denotes the least fixed point of the operator ϕ defined over the powerset
2H.

C+0 = C−0 = ∅ P+0 = P−0 = H
C+i+1 = lfp(ΦD[¬C−i]) P+i+1 = lfp(ΦD[¬P−i])

C−i+1 = P+i+1 P−i+1 = C+i+1

The computation halts when the four sequences become stationary. They are ul-
timately stationary since the sequences (C+i)i and (C−i)i are increasing whereas the

22 Grall–Lacouture

positive

Certain facts

negative positive

Possible facts

negative

C+

@A

∆C
+=+δ

BC

∆P
−=−δ

OO

C− P+

BC

∆P
+=−δ

@A

∆C
−=+δ

OO

P−

Fig. 3. The Alternating Fixed Point Construction

sequences (P+i)i and (P−i)i are decreasing. The well-founded model is derived from
the limits C+ and C− of the sequences (C+i)i and (C−i)i:

– C+ is the set of ground atoms that are true in the model,
– C− is the set of ground atoms that are false in the model.

Implementation in Pure Criojo To implement the alternating fixed point con-
struction in pure Criojo, we prefer to modify the inductive definition by adding
difference sequences (∆C+i)i, (∆C−i)i, (∆P+i)i, (∆P−i)i. Indeed, they simplify the com-
putations by allowing the sequences (C−i)i and (P−i)i to be incrementally computed.
See Figure 3 for a visual representation of the following equations.

C+0 = C−0 = ∅ P+0 = P−0 = H
C+i+1 = lfp(ΦD[¬C−i]) ∆C+i+1 = C+i+1 − C+i ∆P−i+1 = ∆C+i+1

P+i+1 = lfp(ΦD[¬P−i]) ∆P+i+1 = P+i − P+i+1 ∆C−i+1 = ∆P+i+1

C−i+1 = C−i +∆C−i+1 P−i+1 = P−i −∆P−i+1

The local state is defined by using the following relations. Let m be the maximal
arity of the predicates R occurring in the program D.

– U: relation representing the universe U
– Hn: relation representing the Cartesian product Un (n ≤ m)
– For each predicate R occurring in the program D, relations

C+[R], C−[R], P+[R], P−[R], ∆C+[R], ∆C−[R], ∆P+[R], ∆P−[R]

corresponding to the projection of the sets

C+i , C
−

i , P
+
i , P

−

i , ∆C+i , ∆C−i , ∆P+i , ∆P−i

over the predicate R
– For each predicate R occurring in the program D, relations C[R] and P[R] cor-

responding to the result of the computation of the least fixed points at each
iteration

We now describe the script computing the alternating fixed point in a sequence of
elementary steps, which will be finally combined.

Criojo: A Pivot Language for Service-Oriented Computing 23

1. Universe Initialization
The solution is initialized with the multiset

〈 U(v) | v ∈ U 〉 .

2. Multiple Universe
Actually, we need multiple occurrences of atoms U(v) in order to compute the Her-
brand base, used to initialize P+0 and P−0 . The number of occurrences of each atom
becomes m, the maximal arity.

[Multiplicity] U(x)⊸¬ 〈 U(x)m 〉 ? U(x)m

3. Generation of Cartesian Products (for n ≤ m)
We also need to compute Cartesian products in order to compute the Herbrand base.

[Basen] U(x1), . . . , U(xn)⊸¬ 〈 Hn(x1, . . . , xn) 〉 ? Hn(x1, . . . , xn), U(x1), . . . , U(xn)

4. Initialization of Relations for Possible Facts (n: arity of R)

[InitR] Hn(
−→x)⊸¬ 〈 P+[R](−→x) 〉 ? P+[R](−→x), P−[R](−→x), Hn(

−→x)

This set of rules initializes the families (P+[R]) and (P−[R]) with P+0 and P−0 respec-
tively.

5. Cleanup
The atoms that are henceforth useless are consumed.

[Cleanupn] U(x)m ⊸ U(x)
‖ Hn(

−→x) ⊸ ∅

6. Computation of the Least Fixed Points
The programD in Datalog is translated into a program in Criojo: each rule in Datalog
gives rise to two rules, for certain facts and possible facts respectively.

T (D) = ‖r∈D T (r)
T (r) = T C

Prem(r)⊸ T C

Guard(r) ? T
C

Ccl(r) ‖ T
P

Prem(r)⊸ T P

Guard(r) ? T
P

Ccl(r)

We now detail how to get the premises, the guard and the conclusions of the rules
in Criojo. The translation is parametrized by X, either C for certain facts, or P for
possible facts. The positive atoms occurring as premises are translated using the
family (X[R]) whereas the negative atoms are translated using the family (X−[R]).

T X
Prem(a←

−→
l) = T X

Prem(
−→
l)

T X
Prem(R(

−→
t)) = X[R](

−→
t) T X

Prem(¬R(
−→
t)) = X−[R](

−→
t)

T X
Prem(l1 ∧

−→
l2) = T

X
Prem(l1), T

X
Prem(

−→
l2) T X

Prem(True) = ∅

If the rule r has R(
−→
t) as head, then the guard tests the absence of X[R](

−→
t) before

the conclusion not only generates X[R](
−→
t) corresponding to the head atom but also

preserves all the premises.

T X
Guard(r) = ¬ 〈X[R](

−→
t) 〉 T X

Ccl(r) = T
X
Prem(r), X[R](

−→
t)

Finally, starting from the families C−[R] and P−[R] initialized with C−i and P−i
respectively, the previous rules (after iterations) compute the families C[R] and P[R],
equal to lfp(ΦD[¬C−i]) and lfp(ΦD[¬P−i]) respectively.

24 Grall–Lacouture

7. Update of Families C+i , P
+
i , ∆C+i , ∆P+i

The differences for positive atoms can be computed as follows.

[UpdateOld+R] C+[R](−→x), C[R](−→x) ⊸ C+[R](−→x)
‖ P+[R](−→x) ⊸ ∆P+[R](−→x)

[UpdateDiff+R] C[R](−→x) ⊸ ∆C+[R](−→x), C+[R](−→x)
‖ ∆P+[R](−→x), P[R](−→x) ⊸ P+[R](−→x)

Assume that before the execution of the previous rules, we have the following equal-
ities.

Family Sequence

(C[R]) lfp(ΦD[¬C−i])
(P[R]) lfp(ΦD[¬P−i])
(C+[R]) C+i
(∆C+[R]) ∅
(P+[R]) P+i
(∆P+[R]) ∅

Then, after their execution, we have the following equalities.

Family Sequence

(C[R]) ∅
P[R] ∅

(C+[R]) C+i+1

(∆C+[R]) ∆C+i+1

(P+[R]) P+i+1

(∆P+[R]) ∆P+i+1

8. Progress Condition
The computation has progressed if the following condition is satisfied.

∨

R

∃−→x . ∆C
+[R](−→x) ∨∆P

+[R](−→x)

Indeed, it means that some new fact has been generated by the last computation of
the fixed points.

9. Update of Families ∆C−i , ∆P−i , C
−

i , P
−

i ,
The differences for negative atoms can be computed as follows.

[UpdateDiff−R] ∆C+[R](−→x) ⊸ ∆P−[R](−→x)
‖ ∆P+[R](−→x) ⊸ ∆C−[R](−→x)

[UpdateNew−R] ∆C−[R](−→x) ⊸ C−[R](−→x)
‖ ∆P−[R](−→x), P−[R](−→x) ⊸

Assume that before the execution of the previous rules, we have the following equal-
ities.

Family Sequence

(∆C+[R]) ∆C+i+1

(∆P−[R]) ∅
(∆P+[R]) ∆P+i+1

(∆C−[R]) ∅
(P−[R]) P−i
(C−[R]) C−i

Criojo: A Pivot Language for Service-Oriented Computing 25

Then, after their execution, we have the following equalities.

Family Sequence

(∆C+[R]) ∅
(∆P−[R]) ∅
(∆P+[R]) ∅
(∆C−[R]) ∅
(P−[R]) P−i+1

(C−[R]) C−i+1

Thus a new computation for the fixed points is possible.
Finally, we can conclude.

Theorem 2 (Alternating Fixed Point in Pure Criojo). Let D be a Datalog
program with universe U and Herbrand Base H. Let us define a script D′ in the
Criojo variant of Dijkstra’s language of guarded commands as follows.

do {Multiplicity}; (Multiple Universe)
do {‖n Basen}; (Cartesian Products for Herbrand base)
do {‖R InitR}; (Initialisation)
do {‖n Cleanupn}; (Cleanup)
do {T (D)}; (First Fixed-Point Computation)
do {‖R UpdateOld+R}; do {‖R UpdateDiff+R}; (First Update of Positive Families)
do { (Main Loop)
(
∨

R ∃
−→x . ∆C+[R](−→x) ∨∆P+[R](−→x)

)

⊲ (If Progress)
do {‖R UpdateDiff−R}; do {‖R UpdateNew−R}; (Update of Negative Families)
do {T (D)}; (New Fixed-Point Computation)
do {‖R UpdateOld+R}; do {‖R UpdateDiff+R}; (New Update of Positive Families)

} (End of Loop)

Then the script D′ transforms the solution

〈 U(v) | v ∈ U 〉

into the solution

〈 U(v) | v ∈ U 〉⊎(
⊎

R
C+[R])⊎(

⊎

R
C−[R])⊎(

⊎

R
P+[R])⊎(

⊎

R
P−[R])

where the families (C+[R]) and (C−[R]) are equal to C+ and C−, the set of ground
atoms that are true and false respectively in the well-founded model, and where the
families (P−[R]) and (P+[R]) are equal to their complementary with respect to the
Herbrand base H.

Proof. By induction on the index i used for iterations. The result derives from the
description previously given of the different steps involved in the script. ⊓⊔

4.3 A Functional Language: Gödel’s System T

As an idiomatic language for functional programming, we consider Gödel’s Sys-
tem T [10, chap. 7], a λ-calculus with inductive types and recursion operators. Here

26 Grall–Lacouture

we only consider the type of natural numbers, directly represented by constructors 0
and s, and use a call-by-value and weak (without reduction under abstraction) strat-
egy. We do not consider the type system, which ensures that the redexes effectively
reduce while preserving typing. In order to cope with distribution, we extend the
language by adding the possibility to call external functions.

Term e ::= x | λx . e | e e | 0 | s(e) | r(e, e, e) | f

Value v ::= λx . e | 0 | s(v) | f

Redex r ::= v v | r(v, v, v)

Reduction Context E ::= − | E e | v E | s(E) | r(E, e, e) | r(v,E, e) | r(v, v, E)

Since we need to represent the language in Criojo, its (nominal) signature is added
to the signature used in Criojo. However, we keep the usual notation for λ-terms,
instead of the notation for nominal terms.

Thanks to the impure version of Criojo, we can embed Gödel’s System T into
Criojo in a straightforward way, leading to a distributed version for free. Indeed, the
operational semantics, expressed by an inference system, can be considered as a finite
description of local rules for the cham. The state of the agent STi, implementing some
function c, is represented as an aggregate combining (i) a global counter Session(n)
for the identifiers of the internal sessions, and (ii) pending requests. A pending request
LC(n, e)& Rep(n, k, s) indicates that in the internal session n, the agent is currently
evaluating e and will response over channel k with external identifier s. The join
operator & is assumed as usual to be associative and commutative, which leads to
the following rules.

σ1 &(σ2 &σ3) ≡ (σ1 &σ2)&σ3

σ1 &σ2 ≡ σ2 &σ1

σ1 ≡ σ′

1 STi ⊢ σ′

1→σ′

2 σ′

2 ≡ σ2

STi ⊢ σ1→σ2

The agent STi provides a channel g for requests. A client transmits the argument a
of the function c, a channel k to get the response and an external identifier s used to
correlate the response with the calling computation. At each request, a fresh session
identifier is used, allowing multiple computations to be run in parallel. The response
is finally sent over the external channel, with the external identifier.

STi ⊢ σ& Session(n), g(a, k, s) → LC(n, c a)& Rep(n, k, s)&σ& Session(succ(n))
(

STi ⊢ LC(n, v)& Rep(n, k, s)&σ → σ, k(s, v)
)

v value

Note that the second rule is indexed by an infinite set: indeed, it is impossible to
match a value, because of the case s(v). The remaining rules directly come from the
operational semantics. Again they describe an infinite set of rules.

(

STi ⊢ LC(n, (λx . e) v)&σ → LC(n, e[v/x]) &σ
)

v
(

STi ⊢ LC(n, r(v1, v2, 0))&σ → LC(n, v1)&σ
)

v1,v2
(

STi ⊢ LC(n, r(v1, v2, s(v)))&σ → LC(n, v2 r(v1, v2, v) v)&σ
)

v1,v2,v
(

STi ⊢ LC(n, e1)&σ→ LC(n, e2)&σ

STi ⊢ LC(n,E[e1]) &σ→ LC(n,E[e2]) &σ

)

E

Finally, the rules for calling an external function follow the protocol that is now
common. The agent STi sends a request, with the argument, the return channel retF

Criojo: A Pivot Language for Service-Oriented Computing 27

and the session identifier, then waits for the response on channel retF.

(

STi ⊢ LC(n,E[f v]) &σ → LC(n,E)&σ, f(v, retF, n)
)

E,v
(

STi ⊢ LC(n,E)&σ, retF(n, v) → LC(n,E[v]) &σ
)

E

To translate the program in pure Criojo, we need to solve two problems: decom-
posing in a top-down way a term into a value or a redex in a reduction context,
and realizing the substitution involved in the β-reduction. The local state is defined
with three predicates, LC for terms, V for values, RC for reduction contexts. First the
request-response protocol is implemented as usual.

STp ⊢ Session(n), g(a, k, s) → LC(n, c a), RC(n, ε), Rep(n, k, s), Session(succ(n))

STp ⊢ V(n, v), RC(n, ε), Rep(n, k, s) → k(s, v)

The reduction context − is represented as ε, an empty stack. Indeed, reduction
contexts are represented as stacks.

Stack S ::= ε | S ::− e | S ::v− | S ::s(−) | S ::r(−, e, e) | S ::r(v,−, e) | S ::r(v, v,−)

We denote by S the reduction context associated to S. The usual unique decom-
position of a term into a value or a redex in a reduction context can be rephrased
as follows: for any term e, there exists a unique value v and a unique stack S of the
form ε, (S′ :: v′−) or

(

S′ ::r(v′, v′′,−)
)

such that e = S[v]. In that case we say that
(S, v) is the canonical decomposition of e. To get the decomposition, we implement a
focus function, a well-known technique for abstract machines dedicated to functional
languages, formalized by Danvy et al. [4]. The focus function leads to the intended
canonical decomposition, in two alternating steps. The stack is progressively built,
in a top-down left-to-right movement.

STp ⊢ LC(n, e1 e2), RC(n, S) → LC(n, e1), RC(n, S ::− e2)

STp ⊢ V(n, v), RC(n, S ::− e) → LC(n, e), RC(n, S ::v−)

STp ⊢ LC(n, s(e)), RC(n, S) → LC(n, e), RC(n, S ::s(−))

STp ⊢ LC(n, r(e1, e2, e3)), RC(n, S) → LC(n, e1), RC(n, S ::r(−, e2, e3))

STp ⊢ V(n, v1), RC(n, S ::r(−, e2, e3)) → LC(n, e2), RC(n, S ::r(v1,−, e3))

STp ⊢ V(n, v2), RC(n, S ::r(v1,−, e3)) → LC(n, e3), RC(n, S ::r(v1, v2,−))

As for the values, they are built in a bottom-up movement.

STp ⊢ LC(n, λ x . e) → V(n, λ x . e))

STp ⊢ LC(n, 0) → V(n, 0)

STp ⊢ V(n, v), RC(n, S ::s(−)) → V(n, s(v)), RC(n, S)

STp ⊢ LC(n, f) → V(n, f)

28 Grall–Lacouture

Finally, the redexes can be reduced. For the β-reduction, an external call is needed
to perform the substitution: the agent uses the channel retS to get the response.

STp ⊢ V(n, v), RC(n, S :: (λx . e)−) → RC(n, S), doSub(e, v, x, retS, n)

STp ⊢ retS(n, e) → LC(n, e)

STp ⊢ V(n, 0), RC(n, S ::r(v1, v2,−)) → V(n, v1), RC(n, S)

STp ⊢ V(n, s(v)), RC(n, S ::r(v1, v2,−)) → LC(n, v2 r(v1, v2, v) v), RC(n, S)

STp ⊢ V(n, v), RC(n, S ::f −) → RC(n, S), f(v, retF, n)

STp ⊢ retF(n, v) → V(n, v)

Both implementations, in impure Criojo and in pure Criojo respectively, are equiv-
alent.

Theorem 3 (Gödel’s System T – Bisimilarity). Let K be the following set of
channels:

doSub, retS, isEqual, equal+, equal−.

The collaborations
〈 STi[〈 Session(0) 〉] 〉 \∅

and

〈 STp[〈 Session(0) 〉], SUBp[〈 Session(0), RecCall(0) 〉], EQ[〈 Session(0) 〉] 〉 \K

are bisimilar.

Proof. We sketch the proof. We split into four sets the relations and channels of STp
and STi:

G = {Session, Rep},
H = {LC, V, RC, doSub, retS},
I = {g, k, f, retF}.

We also consider a restriction ST′p of agent STp: it contains all the rules of the focus
function, as well as the rule ST′p ⊢ retS(n, e)→ LC(n, e). In other words, the agent
ST′p performs the decomposition needed before reduction.

We exhibit a bisimulation R containing both collaborations. Consider collabora-
tions

〈 STi[〈A1 &B1 〉 ⊎C1] 〉 \∅

and
(〈 STp[A2 ⊎B2 ⊎C2], SUBp[E2], EQ[F2] 〉 ⊎M2) \K

where

– A1 and A2 contain the messages over G,
– B1 and B2 contain the messages over H,
– C1 and C2 contain the messages over I,
– M2 contains the messages in transit, therefore over K.

Criojo: A Pivot Language for Service-Oriented Computing 29

They are related by R if the following conditions are satisfied.
(A) There is a biunivocal correspondence between the impure state A1 and the

pure state A2, and between the external messages C1 and C2, built as follows.

Rep(n, k, s)←→ Rep(n, k, s)
Session(n)←→ Session(n)

g(a, k, s)←→ g(a, k, s)
k(s, v)←→ k(s, v)

f(v, retF, n)←→ f(v, retF, n)
retF(n, v)←→ retF(n, v)

(B) There exists two sets X and Y of session identifiers, a bipartition (B′
1, B

′′
1)

of B1 and a bipartition (B′
2, B

′′
2) of B2 such that

– B′
1 = 〈 LC(n,En) | n ∈ X 〉,

– B′′
1 = 〈 LC(n, en) | n ∈ Y 〉,

– B′
2 = 〈 RC(n, S′

n) | n ∈ X 〉,
– B′′

2 = B2 −B′
2.

Moreover, the following conditions are satisfied:
– there is a biunivocal correspondence between B′

1 and B′
2, with for all n in X,

S′
n = En,

– the collaboration
〈 ST′p[B

′′
2], SUBp[E2], EQ[F2] 〉 ⊎M2

converges to the following final state 〈 V(n, vn), RC(n, S
′′
n) | n ∈ Y 〉, such that for

any n in Y, (S′′
n, vn) is the canonical decomposition of en.

Finally, it remains to prove that R is a bisimulation. We need to consider three
cases, corresponding to the silent action, an input message (over channels retF or g)
and an output message (over channels f or k). We deduce the simulation properties
from the following lemmas.

(1) First Lemma – Canonical Decomposition
Assume the collaboration

〈 ST′p[B], SUBp[E], EQ[F] 〉 ⊎M

converges to the following final state

〈 V(n, vn), RC(n, Sn) | n ∈ Y 〉,

such that for any n in Y, (Sn, vn) is the canonical decomposition of some term en.
Then given a fresh session identifier m, the collaboration

〈 ST′p[B ⊎ 〈 LC(m, e), RC(m,S) 〉], SUBp[E], EQ[F] 〉 ⊎M

converges to the following final state

〈 V(n, vn), RC(n, Sn) | n ∈ Y 〉 ⊎ 〈 V(m, v′), RC(m,S′) 〉,

such that (S′, v′) is the canonical decomposition of S[e].

30 Grall–Lacouture

It is sufficient to prove that the rules defining ST′p are convergent. Indeed, the normal
forms clearly correspond to the canonical decomposition. First, when we consider a
unique session, the rules are deterministic. Second, there is a natural well-founded
order over reductions: it measures the length of the traversal, which is depth-first
and left-to-right.

(2) Second Lemma – Operational Simulation
Starting from two collaborations

Λ1
def

= 〈 STi[〈A1 &B1 〉 ⊎C1] 〉 and Λ2
def

= (〈 STp[A2 ⊎B2 ⊎C2], SUBp[E2], EQ[F2] 〉 ⊎M2)

such that (Λ1 \ ∅, Λ2 \K) belongs to R, if Λ1→Λ′
1, then there exists Λ′

2 such that
Λ2→

∗ Λ′
2 and (Λ′

1 \ ∅, Λ
′
2 \K) belongs to R, and conversely if Λ2→Λ′

2, then there
exists Λ′

1 such that Λ1→
∗ Λ′

1 and (Λ′
1 \ ∅, Λ

′
2 \K) belongs to R. By a case analysis

over reductions and by using the preceding lemma.
⊓⊔

4.4 A Concurrent Language: The π-Calculus

As an idiomatic language for concurrent programming, we consider the asynchronous
π-calculus [16, chap. 5], defined as follows.

p ::= 0 | p ‖ p | x y | x(y).p |!x(y).p | νx.p

Without loss of generality, we opt for input replication instead of general replication.
Moreover, we omit sums, corresponding to external choices, to simplify the presen-
tation since their translation is a bit lengthy. In order to avoid confusions between
Criojo channels and π-calculus channels, a channel of the π-calculus is called a name
in the following, whereas a channel always refer to a Criojo channel. Since we need
to represent the language in Criojo, its (nominal) signature is added to the signature
used in Criojo. However, we keep the usual notation for π-processes, instead of the
notation for nominal terms.

As with Gödel’s System T, thanks to the impure version of Criojo, we can embed
the π-calculus in Criojo in a straightforward way, leading to a distributed version: just
translate the operational semantics into rules for the cham. The state of an agent that
implements a process of the π-calculus is represented as a pair Pi(p)& New(n), where
p is the current process and n is a counter generating new identifiers, allowing the
creation of new names. Each agent provides a unique channel. A name is represented
as an ordered pair (k, n), where k is a channel provided by an agent and n is an
identifier generated by the agent. Thus a π-calculus particle (k, n)x corresponds to
the Criojo message k(n, x). There are two related rules, for distribution. Although
they involve the nil process, they are actually general, since any process p can be put
in parallel, by applying an inference rule defined below.

PIi ⊢ Pi(0)& New(n), l(m,x) → Pi((l,m)x)& New(n) (l ∈ K(PIi))

PIi ⊢ Pi((k,m)x)& New(n) → Pi(0)& New(n), k(m,x) (k /∈ K(PIi))

The following rules directly express the reduction axioms. They correspond to a
finite representation of an infinite set of rules, because of substitutions. Note that we

Criojo: A Pivot Language for Service-Oriented Computing 31

use a name server to manage scope extrusion, as proposed by Berry and Boudol [1].
(

PIi ⊢ Pi(νx.p)& New(n) → Pi(p[(l, n)/x]) & New(succ(n))
)

p
(

PIi ⊢ Pi(x y′ ‖x(y).p)& New(n) → Pi(p[y′/y]) & New(n)
)

p
(

PIi ⊢ Pi(x y′ ‖!x(y).p)& New(n) → Pi(p[y′/y] ‖!x(y).p)& New(n)
)

p

There are also the standard rules for the congruence relation, expressing that the
processes equipped with the nil process and the parallel operator form a commutative
monoid.

p ‖ 0 ≡ p p ‖ p′ ≡ p′ ‖ p p ‖(p′ ‖ p′′) ≡ (p ‖ p′) ‖ p′′

Finally, two inference rules express that the congruence relation and the parallel
operator are compatible with the reduction relation.

q ≡ p PIi ⊢ Pi(p)& New(n),
−−→
l(v)→ Pi(p′)& New(n′),

−−−→
k′(v′) p′ ≡ q′

PIi ⊢ Pi(q)& New(n),
−−→
l(v)→ Pi(q′)& New(n′),

−−−→
k′(v′)

PIi ⊢ Pi(p)& New(n),
−−→
l(v)→ Pi(p′)& New(n′),

−−−→
k′(v′)

PIi ⊢ Pi(p ‖ q)& New(n),
−−→
l(v)→ Pi(p′ ‖ q)& New(n′),

−−−→
k′(v′)

To translate a π-calculus process in pure Criojo, we need to solve two problems:
first, realizing the substitutions involved in the different reductions, second, express-
ing the congruence and the compatibility rules. The solution to the first problem is
easy: just use an external agent to realize substitutions, as already seen for System T.
For the second problem, the solution is straightforward: the free commutative monoid
of processes in parallel can be taken to be the set of finite multisets with processes as
elements. That is the reason why ”the chemical abstract machine can be regarded as
the computational model of the π-calculus” [5]. The local state is defined with two
predicates, Pi for processes and New for creating new names. Consider an agent PIp
providing the channel l. The local state 〈 Pi(p1), . . . , Pi(pn), New(n) 〉 represents the
process p1 ‖ . . . ‖ pn and the fact that the next new name will be (l, n). Here are the
two rules for distribution.

PIp ⊢ l(n, x) → Pi((l, n)x) (l ∈ K(PIp))

PIp ⊢ Pi((k, n)x) → k(n, x) (k /∈ K(PIp))

The following rules translate the communication rules and the rule for new names.
Since they require a substitution, an external message doSub(p, y, x, pi) is generated
to compute the substitution p[y/x]. The response will use the channel pi.

PIp ⊢ Pi(νx.p), New(n) → doSub(p, (l, n), x, pi), New(succ(n))

PIp ⊢ Pi(x y′), Pi(x(y).p) → doSub(p, y′, y, pi),

PIp ⊢ Pi(x y′), Pi(!x(y).p) → doSub(p, y′, y, pi), Pi(!x(y).p)

PIp ⊢ pi(p) → Pi(p)

Finally, the processes in parallel are embedded into the multiset defined by the local
solution, thanks to the following decomposition rules.

PIp ⊢ Pi(0) →

PIp ⊢ Pi(p ‖ q) → Pi(p), Pi(q)

32 Grall–Lacouture

Finally, the translation is a simple adaptation of the one given by Berry and
Boudol [1], with a name server to generate new names. The only difference comes
from substitutions: they are not effectively described in the original translation, which
therefore contains an infinite set of rules, hence is impure following our terminology,
while they are performed by an adjoint agent in pure Criojo.

Again, both implementations, in impure Criojo and in pure Criojo respectively,
are equivalent.

Theorem 4 (π-calculus – Bisimilarity). Let K be the following set of channels:

doSub, pi, isEqual, equal+, equal−.

For any process p, the collaborations

〈 PIi[〈 Pi(p), New(0) 〉] 〉 \∅

and

〈 PIp[〈 Pi(p), New(0) 〉], SUBp[〈 Session(0), RecCall(0) 〉], EQ[〈 Session(0) 〉] 〉 \K

are bisimilar.

Proof. We sketch the proof. We exhibit a bisimulation R containing both collabora-
tions. Consider collaborations

〈 PIi[C1] 〉 \∅

and
(〈 PIp[D1], SUBp[D2], EQ[D3] 〉 ⊎M1) \K

where M1 is a multiset of messages over channels in K. They are related by R if the
following conditions are satisfied.

(A) There is a biunivocal correspondence between the impure local solution C1

and the pure one D1, when considering the relation New and the channels l and k.

New(n)←→ New(n)
l(n, x)←→ l(n, x)
k(n, x)←→ k(n, x)

(B) Consider the remaining solution in C1: 〈 Pi(p) 〉. Consider now the remaining
solution inD1. It can be split into two solutions, on the one hand 〈 Pi(p1), . . . , Pi(pn) 〉,
on the other hand M2, a multiset of external messages over the channels doSub and
pi, used for substitutions. Then the collaboration

〈 SUBp[D2], EQ[D3] 〉 ⊎M1 ⊎M2

converges to the following final state 〈 pi(p′1), . . . , pi(p
′
m) 〉, and we have

p ≡ (p1 ‖ . . . ‖ pn) ‖(p
′
1 ‖ . . . ‖ p

′
m).

Finally, it remains to prove that R is a bisimulation. It is straightforward, by
using a canonical decomposition for any process p: p ≡ (p1 ‖ . . . ‖ pn), where each
process pi is either an output particle, an input process (possibly with replication),
or a restriction process. ⊓⊔

Criojo: A Pivot Language for Service-Oriented Computing 33

5 Summary – Related Work – Perspectives

The language Criojo is the internal language of the chemical abstract machine that
we have designed for service-oriented computing: it allows the collaborations between
agents and the rules specific to each agent to be defined. In its impure form, by ab-
stracting the state of agents, it provides a universal language for interfacing (informa-
tional or computational) resources. We have seen three examples of this ability: the
translation of (i) a variant of Dijkstra’s language of guarded commands, (ii) Gödel’s
System T and (iii) the π-calculus. For Gödel’s System T and the π-calculus, the
translation was eased by the algebraic framework used to represent data in Criojo.
In its pure form, the language Criojo provides a universal language for orchestrating
services, thanks to an extension of the chemical abstract machine by an introspec-
tion mechanism. We have seen four examples of this ability: the translation of the
three previous languages as well as Datalog with negation, which covers the major
paradigms in programming.

Our starting point is clearly Berry and Boudol’s chemical abstract machine [1].
However this is not an effective machine. First, the reversible rules are not effective,
as pointed out by Garg et al. [7]. Second, the set of specific rules may be infinite,
which implies an external device generating them, leading to an impure aspect. The
reflexive chemical abstract machine, proposed by Fournet and Gonthier [5], brings
effectiveness, thanks to intercession (the ability to produce new reaction rules). How-
ever, its rules are still local. As proved here, this is a limitation: such a machine
cannot compute all the transformations of a chemical solution that an introspective
machine can compute. If the introspective chemical abstract machine is new, the idea
of introspection is not new in chemical programming: see the definition of contexts
as catalysts or inhibitors given by Braione and Picco [2], or the extension of the
language CHR with a negation as absence [18].

Finally, these theoretical foundations are still a preliminary work. First, the devel-
opment of the theory of bisimulation can lead to interesting extensions with firewalls.
Second, we need for Criojo a proof of concept in order to get a real programming
language. An implementation is currently developed, using the language Scala and
the technology of Web Services.

References

1. Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical Com-
puter Science, 96(1):217–248, 1992.

2. Pietro Braione and Gian Pietro Picco. On calculi for context-aware coordination. In
COORDINATION 2004.

3. Evgeny Dantsin and Andrei Voronkov. Expressive power and data complexity of query
languages for trees and lists. In PODS, pages 157–165, 2000.

4. Olivier Danvy and Lasse Nielsen. Refocusing in reduction semantics. Technical report,
BRICS Report Series, 2004.

5. Cédric Fournet and Georges Gonthier. The reflexive cham and the join-calculus. In
POPL 96, pages 372–385.

6. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. 1994.

34 Grall–Lacouture

7. Deepak Garg, Akash Lal, and Sanjiva Prasad. Effective chemistry for synchrony and
asynchrony. In TCS 2004.

8. Allen Van Gelder. The alternating fixpoint of logic programs with negation. Journal of
Computer and System Sciences, 47(1):185–221, 1993.

9. Allen Van Gelder, Kenneth Ross, and John Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620–650, 1991.

10. Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types. 1989.
11. M.N. Huhns and M.P. Singh. Service-oriented computing: key concepts and principles.

Internet Computing, IEEE, (1):75 – 81, 2005.
12. Mayleen Lacouture, Hervé Grall, and Thomas Ledoux. CREOLE: a Universal Language

for Creating, Requesting, Updating and Deleting Resources. In FOCLASA 2010.
13. Leslie Lamport and Nancy A. Lynch. Distributed computing: Models and methods. In

Handbook of Theoretical Computer Science, Volume B, pages 1157–1199. 1990.
14. Robin Milner. Functions as processes. Mathematical Structures in Computer Science,

2(2):119–141, 1992.
15. Gordon Plotkin. Dijkstra’s predicate transformers and Smyth’s powerdomains. In

Abstract Software Specifications, pages 527–553, 1980.
16. Davide Sangiorgi and David Walker. The Pi-Calculus: A Theory of Mobile Processes.

Cambridge University Press, 2003.
17. Christian Urban, Andrew Pitts, and Murdoch Gabbay. Nominal unification. Theoretical

Computer Science, 2004.
18. Peter Van Weert, Jon Sneyers, Tom Schrijvers, and Bart Demoen. Extending chr with

negation as absence. In CHR 2006.

	Criojo: A Pivot Language for Service-Oriented Computing

