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This article deals with time-domain numerical modeling of Biot poroelastic waves. The viscous dissipation inside

the pores is described by the model of dynamic permeability of Johnson-Koplik-Dashen (JKD). Some coefficients

of the Biot-JKD model are proportional to the square root of the frequency. In the time-domain, they introduce

shifted fractional derivatives of order 1/2, which involves a convolution product. A diffusive representation re-

places the convolution kernel by a finite number of memory variables that satisfy local-in-time ordinary differential

equations. Based on the dispersion relation, the coefficients of the diffusive representation are determined by opti-

mization on the frequency range of interest. A numerical modeling based on a splitting strategy is proposed: the

propagative part is discretized by a fourth-order ADER scheme on a Cartesian grid, whereas the diffusive part is

solved exactly. Comparisons with analytical solutions are proposed, demonstrating the efficiency and the accuracy

of the approach.

1 Introduction

The propagation of waves in porous media has crucial

implications in many areas in applied mechanics, such as

the characterization of industrial foams, spongious bones and

petroleum rocks. We consider the 1D Biot-JKD model, which

describes the viscous dissipation in the high-frequency range

(HF) in the case of pores of random geometry. This model

involves a frequency correction F̂(ω), depending on on the

square root of the frequency. In the time-domain, shifted

fractional derivatives are introduced, which requires to store

the past values of the solution. Computational effort is there-

fore largely increased, and large simulations are out of reach.

Our aim is to propose a much more efficient approach.

To do so, we use a diffusive approximation of the frac-

tional derivatives. The fractional derivatives are then replaced

by a finite number N of diffusive variables, that satisfy local-

in-time differential equations. The coefficients of the approx-

imation are determined by least-squares optimization on the

frequency range of interest, depending on the spectrum of

the source. The number N of diffusive variables can be es-

timed in terms of the required accuracy. The whole system

of the evolution equations is then integrated using a splitting

method: the propagative part is solved with a temporally and

spatially fourth-order accurate ADER scheme, and the diffu-

sive part is solved exactly. Numerical experiments of wave

propagation are proposed; they show both the quality of the

diffusive approximation and the accuracy of the numerical

integration.

2 Physical modeling

2.1 Biot-JKD model

The Biot-JKD model describes the propagation of me-

chanical waves in a porous medium and accounts for the vis-

cous dissipation in the high-frequency range. It is assumed

that [1, 2, 3]:

• the wavelengths are large compared with the diameter

of the pores;

• the amplitudes of perturbations are small;

• the elastic and isotropic matrix is fully saturated by a

single fluid phase;

• the thermomechanical effects are neglected.

This model relies on 11 physical parameters: the density ρ f

and the dynamic viscosity η of the fluid; the density ρs and

the shear modulus µ of the elastic skeleton; the porosity 0 <

φ < 1, the tortuosity a ≥ 1, the absolute permeability κ,

the Lamé coefficient λ f , the two Biot coefficients β and m

of the saturated matrix and the viscous characteristic length

Λ. The following notations are introduced: ρw =
a
φ
ρ f , ρ =

φ ρ f + (1−φ) ρs, χ = ρ ρw −ρ2
f
> 0, λ0 = λ f −m β2, C = λ0 +

2 µ > 0. Using a velocity-stress formulation, the unknowns

in 1D are the elastic velocity vs =
∂us

∂t
, the filtration velocity

w = ∂W
∂t
= φ (v f − vs) where v f =

∂u f

∂t
is the fluid velocity,

the elastic stress σ, and the acoustic pressure p. In one hand,

the constitutive laws are:



σ = (λ f + 2 µ) ε − m β ξ, (1a)

p = m (−β ε + ξ), (1b)



where ε =
∂us

∂x
is the strain tensor and ξ = − ∂W

∂x
is the rate of

fluid change. On the other hand, the conservation of momen-

tum yields:



ρ
∂vs

∂t
+ ρ f

∂w

∂t
=
∂σ

∂x
, (2a)

ρs

∂vs

∂t
+ ρw

∂w

∂t
+
η

κ
F ∗ w = −∂p

∂x
, (2b)

where ∗ is the convolution product in time. The equation

(2b) is the generalized Darcy’s law. Using the Fourier trans-

form F (F(t)) = F̂(ω) =
∫
R

F(t) e−iωtdt and introducing the

notations

fc =
ωc

2 π
=

η φ

2 π a κ ρ f

, P =
4 a κ

φΛ2
, Ω =

ωc

P
=

η φ2
Λ

2

4 a2 κ2 ρ f

,

(3)

the frequency correction of the Biot-JKD model [3] is:

F̂JKD(ω) =

(
1 + iω

4 a2 κ2 ρ f

ηΛ2 φ2

)1/2

,

=

(
1 + i P

ω

ωc

)1/2

,

=
1
√
Ω

(Ω + iω)1/2.

(4)

Setting DΩw(x, t) = ∂w
∂ t
+ Ωw, the term F ∗ w in (2b) is

therefore written:

FJKD(t) ∗ w(x, t) = F −1

(
1
√
Ω

(Ω + iω)1/2ŵ(x, ω)

)
,

=
1
√
Ω

(D + Ω)1/2w(x, t),

=
1
√
π

∫ t

0

e−Ω(t−τ)

√
t − τ

DΩw(x, τ) dτ.

(5)

The operator (D + Ω)1/2 is a shifted fractional derivative of

order 1/2 [8, 9]. It generalizes the classical derivative char-

acterized by ∂w
∂ t
= F −1

(
iω ŵ

)
.

Using (1), (2) and (5), the Biot-JKD equations lead to a

firs-order non-homogeneous linear system of partial differ-

ential equations:



∂ vs

∂ t
− ρw

χ

∂σ

∂ x
−
ρ f

χ

∂ p

∂ x
=
ρ f

ρ
γ (D + Ω)1/2w, (6a)

∂w

∂ t
+
ρ f

χ

∂σ

∂ x
+
ρ

χ

∂ p

∂ x
= − γ (D + Ω)1/2w, (6b)

∂σ

∂ t
− (λ f + 2µ)

∂ vs

∂ x
− m β

∂w

∂ x
= 0, (6c)

∂ p

∂ t
+ m β

∂ vs

∂ x
+ m

∂w

∂ x
= 0, (6d)

where γ =
η

κ

ρ

χ
1√
Ω

.

2.2 Diffusive representation

The operator (D + Ω)1/2 in (5) is not local-in-time, con-

trary to classical derivatives. A straightforward discretization

of (6) therefore requires to store the past values of w, which

highly penalizes the numerical modeling and prevents from

studying large configurations. Injecting a diffusive represen-

tation of the decreasing function 1√
t

1
√

t
=

∫ ∞

0

1
√
π

1
√
θ

e−θtdθ, (7)

in (5), we obtain:

(D + Ω)1/2w(x, t) =
1

π

∫ t

0

∫ ∞

0

e−(θ+Ω) (t−τ)

√
θ

DΩw(x, τ) dθ dτ,

=
1

π

∫ ∞

0

1
√
θ
ψ(x, t, θ) dθ.

(8)

For the sake of clarity, we omit the dependence on Ω and w

in the diffusive variable

ψ(x, t, θ) =

∫ t

0

e−(θ+Ω)(t−τ) DΩw(x, τ) dτ, (9)

From (9), ψ satisfies the following differential equation:



∂ψ

∂ t
= −(θ + Ω)ψ + DΩw,

ψ(x, 0, θ) = 0.

(10)

The diffusive representation transforms a non local-in-time

problem (5) in a continuum (8) of local-in-time problems

(10). We note that the diffusive representation just modifies

the writing of the fractional derivative and does not intro-

duce any approximation. Lastly, the diffusive representation

enables to prove the well-posedness of Biot-JKD model, as

stated in the following proposition.

Proposition 1 Let

E = E1 + E2 + E3,

with

E1 =
1

2

∫

R

(
ρ v2
+ ρw w2

+ 2 ρ f v w
)

dx,

E2 =
1

2

∫

R

(
1

C
(σ + β p)2

+
1

m
p2

)
dx,

E3 =
1

2

∫

x∈R

∫

θ∈R+

η

κ

1

π

1
√
Ω θ

1

θ + 2Ω
(w − ψ)2 dθ dx.

(11)

Then E ≥ 0 is the mechanical energy of the Biot-JKD system,

and it satisfies

d E

d t
= −

∫

x∈R

∫

θ∈R+

η

κ

1

π

Ωw2
+ (θ + Ω)ψ2

√
Ω θ (θ + 2Ω)

dθ dx

≤ 0.

(12)



3 Diffusive approximation: Biot-AD model

We use a quadrature rule on N points to approximate the

integral in (8). Let (aℓ, θℓ) be the weights and the abscissas

of this diffusive approximation (AD):

(D + Ω)1/2w(x, t) ≃
N∑

ℓ=1

aℓ ψ(x, t, θℓ),

=

N∑

ℓ=1

aℓ ψℓ(x, t).

(13)

We replace the fractional derivatives in (6) by their diffusive

approximation (13). Doing so, we obtain a new mathematical

model, called Biot-AD, well-suited for time-domain numer-

ical modeling. After some calculations, we get:

∂U

∂ t
+ A

∂U

∂ x
= −S U, (14)

where U = (vs,w, σ, p, ψ1, . . . , ψN)T , and A, S are (N + 4)2

matrices. The size of the problem to solve increases with the

number N of diffusive variables, and thus with the quality of

the diffusive approximation of the fractional derivatives. De-

pending on the model, Biot-JKD or Biot-AD, the frequency

correction in (2b) can be written:

F̂(ω) =



F̂JKD(ω) =
1
√
Ω

(Ω + iω)1/2, (15a)

F̂AD(ω) =
Ω + iω
√
Ω

N∑

ℓ=1

aℓ

θℓ + Ω + iω
. (15b)

Now, we determine the coefficients of the diffusive represen-

tation aℓ and θℓ in (13). To do so, F̂JKD(ω) is approximated

by F̂AD(ω) (15) over [ωmin, ωmax] depending on the central

frequency of the source f0 =
ω0

2 π
. We choose ωmin = ω0/10

et ωmax = 10ω0. The coefficients aℓ and θℓ are obtained

by a classical linear least-squares optimization procedure in

the L2 norm [11, 12]. The relaxation angular frequencies are

distributed linearly on a logarithmic scale of N points:

θℓ = ωmin

(
ωmax

ωmin

) ℓ−1
N−1

, ℓ = 1, ...,N. (16)

The weights aℓ are then obtained by minimizing the L2 norm

of

(Ω+ i ω̃k)1/2

N∑

ℓ=1

1

θℓ + Ω + iωk

aℓ −1, k = 1, ...,N, (17)

where ω̃k are distributed linearly on a logarithmic scale of N

points:

ω̃k = ωmin

(
ωmax

ωmin

) k−1
N−1

, k = 1, ...,N. (18)

Now, we determine the number N of diffusive variables in

terms of both the chosen accuracy εm and the ratio f0/ fc.As

a criterion of error, we use the relative error in L2 norm be-

tween F̂AD(ω) and F̂JKD(ω) (figure 1), which amounts to the

energy of error of model. In figure 1, we note that N = 6

is required to obtain εm ≤ 2.5%. A parametric determina-

tion of N in terms of εm and f0/ fc is proposed in figure 2.

Figure 1: Approximation of the Biot-JKD model by the

Biot-AD model. Relative error of model εm versus the

number of diffusive variables N.

The observed stairs-steps are due to the fact that N is an in-

teger. To get more accurate results, we observe that N must

be logically increased.

Figure 2: Number of diffusive variables N versus f0/ fc and

the accuracy of model εm.

4 Numerical modeling

To integrate the system (14), we consider a uniform grid,

with the spatial mesh size ∆x and the time step ∆t. An ap-

proximation U
n
j of U(x j = j∆x, tn = n∆t) is sought. We

solve alternatively the propagative part (19a) and the diffu-

sive part (19b) by Strang’s splitting:



∂U

∂ t
+ A

∂U

∂ x
= 0, (19a)

∂U

∂ t
= −S U. (19b)

The propagative part (19a) is solved using a temporally and

spatially fourth-order accurate ADER scheme, and the dif-

fusive part is solved exactly. The integration (19) yields the

optimal CFL stability condition:



CFL = C∞p f

∆t

∆x
≤ 1, (20)

where C∞
p f

is the high-frequency limit of the phase velocity

of the fast wave. The diffusive part is unconditionally sta-

ble. Since A and S do not commute, the theoretical order

of convergence in time and in space falls from 4 to 2. Us-

ing the ADER 4 scheme is nevertheless advantageous, com-

pared with the second-order accurate ADER scheme (Lax-

Wendroff): numerical artifacts, such as dispersion and atten-

uation, are greatly reduced.

5 Numerical experiments

5.1 Parameters

We consider sandstone saturated with water (medium Ω0

in [6]). The frequency of transition is fc ≃ 3845 Hz. The

source is a Dirac in space: h(x) = δ(x − x0), where x0 = 0 m.

The temporal evolution of the source g(t) is a C6 truncated

sinusoid with a central frequency f0 = 200 kHz ( f0/ fc ≈ 50).

The point source symmetrically generates left-going waves

and right-going waves. Fast and slow waves are denoted by

P f and Ps. The JKD frequency correction mainly affects the

slow waves; all the observations are therefore made on these

waves.

The computational domain studied [−0.04, 0.04] m is dis-

cretized on a mesh of Nx = 700 points (32 points per slow

wavelength and 104 points per fast wavelength). The time

step follows from (20) with CFL = 0.9. Errors are measured

in L2 norm on the domain [0, 0.007] m, centered on the right-

going slow wave at t1 ≃ 8.63 10−6 s. The analytical solutions

of Biot-JKD and Biot-AD are obtained by Fourier synthesis:

we use the band of frequencies [0, 62.5 f0], and the number

of Fourier modes is N f = 9.6 105 (∆ f ≃ 13 Hz). We choose

N = 6 diffusive variables. The numerical experiments are

performed on a processor Intel Core i7 (2.80 GHz).

5.2 Test 1: numerical validation of Biot-AD

The aim of this test is to validate the numerical model-

ing of the approximate Biot-AD system. The figure 3 shows

the numerical Biot-AD (circle) and analytical Biot-AD (solid

line) values of the pressure, after 200 iterations (t1 ≃ 8.63 10−6

s). We note the excellent agreement between these two curves.

More quantitatively, the relative error measured is εn ≃ 1.70%.

Next, we measure the numerical error εn for several Nx.

The values of the measured error and the local convergence

rates are given in table 1. The figure 4 shows εn versus 1/Nx,

using a logarithmic scale. The convergence rate measured by

linear regression is 1.990, close to the second order theori-

cally predicted.

5.3 Test 2: numerical validation of Biot-JKD

The aim of this test is to validate the mathematical and

numerical modeling of the original Biot-JKD system. In fig-

ure 5, we compare the numerical Biot-AD (circle) and ana-

lytical Biot-JKD (solid line) values of the pressure, at t1 and

t2 > t1. The parameters are given in section 5.2, in particular

f0 = 200 kHz ( f0/ fc ≈ 50).

We observe the dispersion and the large attenuation of the

slow wave. Excellent agreement between the two curves is

Pressure

Zoom on the right-going slow wave

Figure 3: Test 1. Fast waves P f and slow waves Ps

generated by a point source centered on x0 = 0 m.

Comparison between the numerical Biot-AD (circle) and

analytical Biot-AD (solid line) values of the pressure at

t1 ≃ 8.63 10−6 s.

Table 1: Test 1. Measure of the convergence rate.

Nx Error L2 Convergence rate

1000 2.235 10−1 -

2000 1.571 10−2 3.853

3000 4.176 10−3 3.353

4000 2.047 10−3 2.558

5000 1.273 10−3 2.166

6000 8.817 10−4 2.032

7000 6.494 10−4 1.989

8000 4.989 10−4 1.977

9000 3.953 10−4 1.974

10000 3.210 10−4 1.975

obtained. More quantitatively, the relative error measured at

t1 is εt ≃ 1.95%. The errors are due to the mathematical

modeling (error of model εm between Biot-JKD and Biot-

AD) and also to the numerical modeling (numerical error εn

between exact and numerical values of Biot-AD). Thus the

total error εt satisfies:

εt ≤ εm + εn. (21)

As seen in test 1, εn ≃ 1.70%. According to the figure

2, the choice N = 6 leads to a relative error between the



Figure 4: Test 1. Measure of convergence. Numerical error

εn versus Nx.

Pressure at t1

Pressure at t2

Figure 5: Test 1. Fast waves P f and slow waves Ps

generated by a point source centered on x0 = 0 m.

Comparison between the numerical Biot-AD (circle) and

analytical Biot-JKD (solid line) values of the pressure, with

f0 = 200 kHz ( f0/ fc ≈ 50), at t1 ≃ 8.63 10−6 s and

t2 ≃ 1.51 10−5 s.

frequency correction functions F̂AD(ω) (15b) and F̂JKD(ω)

(15a) of 5.58%. The inegality (21) is therefore well satisfied.

6 Prospects

Various extensions of the present work are suggested:

• 2D algorithm. Extension to 2D of the numerical meth-

ods is currently in progress. The validity of each nu-

merical tools has already been established in 2D [6].

Parallelization of the algorithm will be performed also.

To take in account the interfaces, an immersed inter-

face method [6] will be implemented.

• Thermal effects. In the present work, the thermome-

chanical effects are neglected. To take them into ac-

count, we can consider the model of dynamic thermal

permeability described in [4]. The formalism is anal-

ogous to the model of dynamic viscous permeability

proposed by JKD, leading also to fractional derivatives

of order 1/2.

• Heterogeneous medium. In a homogeneous medium,

we can compute the analytical solutions of Biot-JKD

model by Fourier synthesis, but it is out of reach when

the Biot parameters of the medium vary continuously

in space. On the contrary, the numerical tools pre-

sented along this paper are well-suited to this case.
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