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A general formula for event-based

stabilization of nonlinear systems

Nicolas Marchand, Sylvain Durand and Jose Fermi Guerrero Castellanos

Abstract

In this paper, a universal formula is proposed for event-based stabilization of general nonlinear

systems affine in the control. The feedback is derived from the original one proposed by E. Sontag in

the case of continuous time stabilization. Under the assumption of the existence of a smooth Control

Lyapunov Function, it is proved that an event-based static feedback, smooth everywhere except at the

origin, can be designed so to ensure the global asymptotic stability of the origin. Moreover, the inter-

sampling time can be proved not to contract at the origin. More precisely, it is proved that for any

initial condition within any given closed set the minimal inter-sampling time is proved to be below

bounded avoiding the infinitely fast sampling phenomena. Moreover, under homogeneity assumptions

the control can be proved to be smooth anywhere and the inter-sampling time bounded below for any

initial condition. In that case, we retrieve a control approach previously published for continuous time

stabilization of homogeneous systems.

I. INTRODUCTION

The classical discrete time framework of controlled systems consists in sampling the system

periodically with a constant time period T and in computing/updating the control every tk = k·T .

This field, denoted as the time-triggered case, has been widely investigated for linear control

systems (see [1] and the references therein), even in the case of delays, sampling jitter and

measurement loss [2]. In the case of nonlinear control systems, one way to address a discrete-time

feedback is to implement a continuous time control algorithm with a sufficiently small sampling
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period [3]. However, this can be constrained by hardware and reducing the sampling period to a

level that guarantees acceptable closed-loop performance may be impossible. Other way to tackle

this problem is the application of sampled-data control algorithms based on approximate discrete-

time models [4] which is not a trivial task. Another proposed approach consist to modify a

continuous time stabilizing control using a general formula to obtain a redesigned control suitable

for sampled-data implementation [5]. Beside these works, sampling was also used for control

theory purpose in order to establish an equivalence between controllability and stabilizability for

nonlinear systems [6], [7]. However, in these approaches, the control remains time varying in

between sampling instants contrary to the case addressed in this paper.

To overcome the complexity of periodic sampling, event-based control has been recently

proposed. In this control strategy the control task is executed after the occurrence of an external

event (event-triggered) or, as focused in this paper, after the occurrence of an internal event

generated by some event function (self-triggered). In this scheme, the inter-sampling time denotes

the time interval between two consecutive events. The sampling instants are not necessarily

equidistant in time. Let us first consider general nonlinear systems of the form:

ẋ = f(x, u) (1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rp, and f a Lipschitz function vanishing at the origin. For sake

of simplicity, we only consider in this paper null stabilization with initial time instant t0 = 0.

Event-based feedback usually means a set of two functions:

• an event function e : X ×X → R that indicates if one needs (e ≤ 0) or not (e > 0) to update

the control value. Event function e takes the current state x as input and a memory m of x

last time e became negative. There is a priori no constraint on the regularity of e. Memoryless

(that is e(x)), time-varying (e(x,m, t)) or simply time index depending (e(x,m, k)) is not

the purpose of the contribution.

• a feedback function k. The terms static (depending upon x) and dynamic (depending upon

x and t or k) will then be used as in the classical frame.

Typical event mechanisms are functions of the state variation (or the output) of the system, like

in [8], [9], [10], [11], [12]. Although the event-triggered control is well-motivated and allows to

relax the periodicity of computations, only few works report theoretical results about the stability,
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convergence and performance. In [13] for instance, it is proved that such an approach reduces

the number of sampling instants for the same final performance. Recent works deal with the

problem of scheduling the control task for continuous-time linear systems [13], [14], [15], [16]

and discrete-time linear system [17] where stability and some robustness proprieties such as ISS

and L∞-performance are exploited. Furthermore, in [17] a Model Predictive Control scheme is

used and the event-triggered policies relax the computationally demanding algorithms. Some of

the above contributions do not need memory of the last sampling.

An alternative approach consists in taking e related to the variation of a Lyapunov function -

and consequently to the state too - between the current state and its value at the last sampling,

like in [18], [19], or in taking e related to the time derivative of the Lyapunov function. An

important contribution for convergence and stability in the nonlinear case is studied in [20], [21],

[22]. Their main contribution is the existence of a minimal inter-sampling time for any bounded

initial conditions. The update policy is based on the existence of a Lipchitz stabilizing control

law and an ISS-CLF, that is a CLF such that ∂V
∂x
f(x, k(x + ε)) ≤ −α(‖x‖) + β(‖ε‖) where

α and β are two functions of class K∞ and ε = m − x denotes the measurement error. The

update is then computed as soon as β(‖ε‖) ≤ σα(‖x‖) ensuring that way the strict decrease

of the CLF with 0 < σ < 1. Results are given for general non linear systems, homogeneous

systems (quite in the spirit of the second part of this paper) and polynomial systems. However,

in these works is assumed that the control is Lipschitz at the origin. Unfortunately it is known

that general formulas as treated in this paper can not ensure this strong property. Moreover, the

event policy is based on the knowledge of an upper bound of the CLF with respect to state and

measurement error, which is not the case of this paper.

The solution of (1) with event-based feedback (e, k) starting in x0 ∈ X at t = 0 is then

defined as the solution (when it exists) of the differential system:

ẋ = f(x, k(m)) (2) m = x if e(x,m) ≤ 0, x 6= 0

ṁ = 0 elsewhere
(3)

with: x(0) = x0 and m(0) = x(0) (4)

If f is assumed to be Lipschitz, a unique solution in the Caratheodory sense always exists without
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any smoothness assumption on k similarly to [6] with punctual events. However, this solution

may not exists for all t ≥ 0 as shown by example 2 of section II. Let t → x(t, x0) denote this

solution. Given an event function e, and a feedback k defined as above, for any initial condition

x(t = 0) = x0 it fully defines a sampling set Te,k,x0 := {t0, t1, t2, . . . } as the set of time instant

t0 = 0, t1, etc. (called sampling instants) at which e is negative. The event-based closed-loop

solution is therefore defined at least for all positive t in [0, sup(Te,k,x0)[. This interval is closed if

sup(Te,k,x0) ∈ Te,k,x0 . To illustrate this we give in the next section different examples of possible

phenomena. This will introduce new notions and definitions given in section III. Section IV is

dedicated to the main theorem that extends Sontag’s universal formula for feedback stabilization

to event-based stabilization.

Notations: In the following, B(d, x) will stand for the ball of radius d centred at x and B(d) for

the ball of radius d centred at the origin. x(t;x0, t0, u) will denote the solution of a differential

system starting in x0 at t0 with control u. For sake of simplicity, u will be omitted when trivial

and x(t;x0) will stand for x(t;x0, 0). ‖·‖ will stand for the classical L2 euclidian norm. ‖·‖p
will stand for the Lp-norm. For diagonal matrices, the norm will denote the norm of its diagonal

taken as a vector.

II. WHAT CAN HAPPEN WITH EVENT-BASED CONTROL ?

To illustrate different phenomena that can arise with event-based feedback systems, we

consider the simple linear integrator ẋ = u. All event functions considered in these examples

are assumed to be memoryless that is to be just functions of X . Between two sampling instants

ti and ti+1, u remains constant so that: xi+1 = xi + (ti+1 − ti) · u, xi denoting the value of the

state when the ith event occurs. The following examples illustrate what may happen.

1) Take k(x) = −x, e(x) = 0 when |x| = exp(−κ), κ ∈ Z and initial condition x0 = 0.

Then Te,k,x0 := {0}. Now, taking x0 = 1, the solution is xi = exp(−i), the inter-sampling

time is constant (equal to 1 − exp(−1)) and Te,k,x0 := {j · (1− exp(−1)), j ∈ N}. For

both initial conditions trajectories are well-defined for all t ∈ [0,+∞[.

2) Take k(x) = −x 1
2 , e(x) = 0 when |x| = 1

κ
, κ ∈ Z and initial condition x0 = 1. In

that case, the inter-sampling interval ti+1 − ti = 1

i
1
2 (i+1)

. And when i tends to infinity, the

sampling interval tends to zero and ti converges to some t̄ ≈ 1.86. The trajectory is then

well-defined only for all t ∈ [0, t̄[.
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3) Take k(x) = −x, e(x) = 0 when |x| = 1
κ

, κ ∈ Z and initial condition x0 = 1. In that case,

one can calculate that ti = i−
∑i

j=1
j−1
j

and ti+1− ti = 1
i
. Hence the inter-sampling time

tends to zero although the trajectory is well defined on [0,∞[.

4) Take k(x) = −x3, e(x) = 0 when |x| = exp(−κ), κ ∈ Z and initial condition x0 = 1.

Then, the inter-sampling time ti+1 − ti = xi+1−xi
−x3i

= exp(2i) · [1− exp(−1)] and when

i tends to infinity, ti+1 − ti also tends to infinity. The trajectory is well-defined for all

t ∈ [0,+∞[ as in case 1.

Consider now the unstable system ẋ = (x + u)3. The control u being constant between each

sampling instant, the solution is the one of a Bernoulli differential system whose solution is:

xi+1 =
xi + u√

1− 2(ti+1 − ti) · (xi + u)2
− u

Then, taking

5) k(x) = −2x, e(x) = 0 when |x| = exp(−κ), κ ∈ Z and initial condition x0 = 1. Then the

inter-sampling duration is:

ti+1 − ti =
exp(2i)

2
·
[
1− 1

(2− exp(−1))2

]
and when i tends to infinity, ti+1−ti also tends to infinity. However, the origin of the closed

loop system can be proved to be asymptotically stable and the trajectories well-defined on

[0,+∞[ for any initial condition.

In cases 1 to 5, the system can trivially be proved to be globally null-asymptotically stable.

Cases 1 show that the sampling set is initial condition dependent. Cases 1 to 4 show that for

the same system and initial condition, the sampling can be periodic, contractile or expansile

(with a finite or infinite limit) depending upon the event function or the feedback. Case 5 shows

the inconsistency of Shannon’s sampling theorem in the event-based paradigm since the inter-

sampling duration can infinitely increase even with an open-loop unstable system.

III. PRELIMINARY DEFINITIONS FOR EVENT-BASED SYSTEMS

Usually, the set of event instants is of null measure, in the sense that the control is recomputed

only at distinct t. However, taking e(x) = 0 for all x ∈ X would mean that one recomputes the

control at each x and therefore that one applies a classical continuous-time feedback. On the
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sets of non null measure where e(x) = 0, the solution is understood in the classical sense (with

all possible solution existence problems if the field is discontinuous). Elsewhere, the solution

can be intended in the Caratheodory sense. To go further on that, we define:

Definition 3.1 (Well-defined event-based control): An event-based control (k, e) will be said

well-defined if and only if for any initial condition x0 at t = 0, the solution t→ x(t;x0) exists

for all t ≥ 0.

Property 3.1 (Minimal Sampling Interval - MSI): An event-based control (k, e) will be said

to satisfy the Minimal inter-Sampling Interval property (MSI) iff for any initial condition x0

at t = 0, there exists a non zero minimal sampling interval τ(x0) := infi∈N,ti∈T (x0) ti+1− ti > 0.

The aim of this property is to avoid zero inter-sampling time leading to zeno phenomena at finite

time as in example 2 or at infinity as in example 3 as explained in the last section. In case the

MSI property is satisfied, the control is piecewise constant between each time sample and xi,

i ∈ I ⊂ N with x0 := x(t = 0) will denote the series of successive state values at which e is

negative for a given initial condition x0. To this series corresponds naturally the time series ti,

i ∈ I ⊂ N with t0 := 0. It trivially follows (proof is omitted):

Theorem 3.2: An MSI event-based control is well-defined.

This minimal sampling period is useful for implementation purpose but also when the feedback

k is discontinuous for robustness purpose [23]. However, it would be more suitable to have such

a bound less depending upon the initial condition:

Property 3.3 (Semi-uniformly MSI event-based control): An event-based control (k, e) will

be said semi-uniformly MSI iff for any δ > 0, τ(δ) := infi∈N,ti∈T (x0),x0∈B(δ) ti+1 − ti > 0

Property 3.4 (Uniformly MSI event-based control): An event-based control (k, e) will be

said uniformly MSI iff τ := infi∈N,ti∈T (x0),x0∈X ti+1 − ti > 0.

Properties 3.1 to 3.4 can be specified adding the term “global” when X = Rn in opposition to the

term “local” that was omitted above for sake of simplicity. Now that the above notions for event-

based controlled systems are appropriately defined, notions like stability, asymptotic stability and

stabilizability naturally follow since they rely on the resulting trajectory. The question that arises

then is: does a universal formula for uniformly discrete event-based feedback stabilization exist

similarly to the continuous time case ? This is the purpose of the next section.
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IV. A UNIVERSAL FORMULA FOR EVENT-BASED STABILIZATION

In the sequel, the analysis is restricted to systems affine in the control:

ẋ = f(x) + g(x)u = f(x) +
∑
i

gi(x)ui (5)

where f and g are smooth functions with f vanishing at the origin. We assume that a Control

Lyapunov Function (CLF) exists for system (5), that is a smooth and positive definite function

V : X → R so that for each x 6= 0 there is some u ∈ U such that:

∂V

∂x
f(x) +

∂V

∂x
g(x)u < 0 (6)

In addition, one may require that V fulfills the small control property [24], that is that for each

ε > 0 there is some µ > 0 such that for any x in the ball B(µ)\ {0}, there is some u with

‖u‖ ≤ ε such that (6) holds. Then, it is known that it is possible to design a feedback control

that asymptotically stabilizes the system [24]:

Theorem 4.1 (Sontag’s universal formula): Assume that system (5) admits V as CLF. For

any real analytic function q : R → R such that q(0) = 0 and bq(b) > 0 for b 6= 0, let

φ : R2 → R be defined by φ(a, b) :=
a+
√
a2+bq(b)

b
if b 6= 0 and zero when b = 0. Let the feedback

k : X → U , smooth on X\ {0} be defined by ki(x) := −bi(x)φ(a(x), β(x)), i ∈ {1, . . . , p}

with a(x) := ∂V
∂x
f(x), b(x) := ∂V

∂x
g(x), β(x) := ‖b(x)‖2. Then k is such that for all non zero x,

∂V
∂x
f(x) + ∂V

∂x
g(x)k(x) < 0. Moreover, if the CLF satisfies the so called small control property,

then taking q(b) := b, the control is continuous at the origin .

The main purpose of this paper is to establish that a universal formula also exists in the event-

based context up to a modification of the original formula proposed by Sontag:

Theorem 4.2: If there exists a CLF for system (5), then the event-based feedback (e, k)

defined below is semi-uniformly MSI, smooth on X\ {0}, and such that:

∂V

∂x
f(x) +

∂V

∂x
g(x)k(m) < 0, x ∈ X\ {0} (7)

where m is defined by (3) and:

ki(x) := −bi(x)δi(x)γ(x) (8)

e(x,m) := −a(x)− b(x)k(m)− σ
√
a(x)2 + θ(x)b(x)∆(x)b(x)T (9)
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where

• a(x) and b(x) are as in Theorem 4.1,

• x→ ∆(x) := diag(δ1(x), δ2(x), . . . , δp(x)) is a smooth function of X\ {0} to Rp×p, positive

definite on S := {x ∈ X | ‖b(x)‖ 6= 0}

• x → θ(x) is a smooth positive function of X to R, such that θ(x) ‖∆(x)‖ vanishes at the

origin, and ensuring on S\ {0} the inequality a(x)2 + θ(x)b(x)∆(x)b(x)T > 0

• σ is a control parameter in [0, 1[,

• γ : X → R is defined by:

γ(x) :=


a(x)+
√
a(x)2+θ(x)b(x)∆(x)b(x)T

b(x)∆(x)b(x)T
if x ∈ S

0 if x /∈ S
(10)

As in Theorem 4.1, if the CLF satisfies the small control property, then the control is continuous

at the origin. Moreover, if there exists some smooth function ω : X → R+ such that on S\ {0},

ω(x)b(x)∆(x)b(x)T − a(x) > 0 (11)

then the control is smooth on X as soon as θ(x) ‖∆(x)‖ vanishes at the origin with:

θ(x) := ω(x)2b(x)∆(x)b(x)T − 2a(x)ω(x) (12)

Before giving the proof of Theorem 4.2, let us explain the ideas behind the construction

of feedback (8). In the event function, the term a(x) + b(x)k(m) is the time derivative

of V where −
√
a(x)2 + θ(x)b(x)∆(x)b(x)T is the value of V̇ if k(x) is applied instead

of k(m). Therefore, right after an event, e(x,m) necessarily takes a strictly positive value,

more precisely, it equals (1− σ)
√
a(x)2 + θ(x)b(x)∆(x)b(x)T and remains positive as long as

V̇ ≤ −σ
√
a(x)2 + θ(x)b(x)∆(x)b(x)T . Events will be more frequent with smaller σ. σ = 0

means updating the control when V̇ = 0. The second crucial tuning parameter of the control

law is the choice of the function ∆ that directly impacts the performance of the control as well

as the frequency of events.

We next focus on homogeneous systems that gave rise to an important literature (see for

instance [25], [26] and the references therein) and more recently for event-based approaches

(mainly in [22], [18], [20]). We shortly recall few definitions:
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Definition 4.1: Let r = (r1, . . . , rn) ∈ Rn
≥0, and a set of coordinates x = (x1, . . . , xn).

• The family of dilations (δrλ)λ>0 is defined by: δrλ(x) := (λr1x1, . . . , λ
rnxn), ∀λ > 0

• V :X → R is a δr-homogeneous function of degree d if: ∀(x, λ)∈X×R>0, V (δrλ(x))=λdV (x)

• h :X → X is a δr-homogeneous function of degree d if: ∀(x, λ)∈X×R>0, h(δrλ(x))=λdδrλ(h(x))

• A δr-homogeneous norm x→ ‖x‖(r,π) is a map defined by ‖x‖(r,π) =
(∑n

i=1 |xi|
π
ri

) 1
π

To these classical definitions, and for the sake of brevity, we add:

Definition 4.2: Let an event-based controlled δr-homogeneous system of degree (d1, d2)

denote a system of form (1) with an event-based feedback (e, k) such that f(δrλ(x), k(δrλ(m))) =

λd1f(x, k(m)) and e(δrλ(x), δrλ(m)) = λd2e(x,m).

Property 4.3: Consider an event-based controlled δr-homogeneous system of degree (d1, d2),

then the solution exists, is unique and such that x(t; δrλ(x0)) = δrλ(x(λd1t;x0)).

The proof trivially follows from the δr-homogeneity of degree d1 of f(x, k(x)) and using the

relation e(Λrx,Λrm) = λd2e(x,m).

For homogeneous systems, Theorem 4.2 becomes the following. It is actually the event-based

formulation of the smooth homogeneous control proposed in [27] that appears as a particular

case of Theorem 4.2 with an appropriate choice of functions ∆(x) and ω(x).

Theorem 4.4: Assume that f , each gi and the CLF V are δr-homogeneous respectively of

degree df , dgi , and dV , with ∀i ∈ {1, . . . , p}, dgi < df . Then, event-based feedback (8-9) with

θ(x) as in (12), ω(x) = ν ‖x‖df−dV(r,π) , ν > 0 and δi(x) = ‖x‖−2dgi
(r,π) , is given by:

ki(x) := −νbi(x) ‖x‖df−2dgi−dV
(r,π) (13)

For ν sufficiently large, this event-based feedback is such that:

1) the event-based controlled system is δr-homogeneous of degree (df , dV + df )

2) the event-based control is smooth and uniformly MSI

3) the CLF is strictly decreasing for all x ∈ X\ {0}

Proof of Theorem 4.2: We begin the proof establishing γ is smooth on X\ {0}. For this,

consider the algebraic equation:

F (x, p) := b(x)∆(x)b(x)Tp2 − 2a(x)p− θ(x) = 0 (14)

9
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Note first that p = γ(x) is a solution of (14) for all x ∈ X . It is easy to prove that the partial

derivative of F with respect to p is always strictly positive on X\ {0}:

∂F

∂p
:= 2b(x)∆(x)b(x)Tp− 2a(x)

Indeed, when ‖b(x)‖ = 0, equation (6) gives ∂F
∂p

= −2a(x) > 0 and when ‖b(x)‖ 6= 0,

equation (10) gives ∂F
∂p

= 2
√
a(x)2 + θ(x)b(x)∆(x)b(x)T > 0. Therefore ∂F

∂p
never vanishes

at each point of the form {(x, γ(x))|x ∈ X\ {0}}. Furthermore, F is smooth w.r.t. x and p since

so are a, b, θ and ∆. Hence, using the implicit function theorem, γ is smooth on X\ {0}.

The decrease of the CLF is trivial to prove. Indeed, for each xi 6= 0, i ∈ N:

dV

dt
(xi) =

∂V

∂x
(xi)f(xi) +

∂V

∂x
(xi)g(xi)k(xi) = −

√
a(xi)2 + θ(xi)b(xi)∆(xi)b(xi)T < 0

With the updated control, the event function becomes strictly positive:

e(xi, xi) = (1− σ)
√
a(xi)2 + θ(xi)b(xi)∆(xi)b(xi)T > 0

Therefore, by smoothness of V , f and g, it follows that dV
dt

(x(t;xi, ti)) < 0 for all t ∈ [ti, ti+1[,

that is until the next event occurs. ti+1 is necessarily bounded since, if not, V should converge

to a constant value where dV
dt

= 0, which is impossible. The event function precisely prevents

this phenomena detecting dV
dt

is close to vanish and updates the control if it happens.

To prove that the event-based control is MSI, we have to prove that for any initial condition

in a priori given set, the sampling intervals are bounded below. First of all, notice that events

occur only when e becomes negative (with x 6= 0) and therefore from equation (9), on

{x ∈ X | ‖b(x)‖ = 0} \ {0}:

e(x,m) = −a(x)− σ |a(x)| = (1− σ) |a(x)| > 0

It follows that there is no event on the set {x ∈ X | ‖b(x)‖ = 0} ∪ {0}. We hence restrict the

study to the set {x ∈ X |β(x) 6= 0} \ {0} where θ and the δi’s are strictly positive by assumption.

Let us rewrite the time derivative of the CLF along the trajectories:

dV

dt
(x) = a(x) + b(x)k(m)

= −
√
a(x)2 + θ(x)b(x)∆(x)b(x)T + b(x)(k(m)− k(x)) (15)
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Let us define for m ∈ S, the level ϑm := V (m) and the set Vϑm := {x ∈ X |V (x) ≤ ϑm}. Then

in equation (15), it follows from the choice of the event function that x belongs to Vϑx ⊂ Vϑm .

Note that if m belongs to S, this is not necessarily the case for x that can escape from this set.

First see that for t = ti (recall the ti’s denote the time instant when an event occurs), x = m

and therefore, since i) θ(x) is such that a(x)2 + θ(x)b(x)∆(x)b(x)T > 0 for all nonzero x in S,

and ii) a(x) is necessarily nonzero on the frontier of S (except possibly at the origin):

dV

dt
(x) = −

√
a(m)2 + θ(m)b(m)∆(m)b(m)T

≤ − inf
m∈S

s.t. V (m)=ϑm

√
a(m)2 + θ(m)b(m)∆(m)b(m)T =: −χ(ϑm) < 0

Considering now the second time derivative of the CLF:

V̈ (x) =

(
∂a

∂x
(x) + k(m)T

∂bT

∂x
(x)

)
(f(x) + g(x)k(m))

By continuity of all the involved functions, both terms can be bounded for all x ∈ Vϑm by the

following upper bounds %1(ϑm) and %2(ϑm):

%1(ϑm) := sup
m∈S s.t. V (m)=ϑm

x∈Vϑm

∥∥∥∥∂a∂x(x) + k(m)T
∂bT

∂x
(x)

∥∥∥∥
%2(ϑm) := sup

m∈S s.t. V (m)=ϑm
x∈Vϑm

‖f(x) + g(x)k(m)‖

Therefore, V̇ is strictly negative at any event instant ti and can not vanish until a certain time

τ(ϑm) is elapsed and this minimal sampling is only depending on the level ϑm of the CLF in

m (and hence of the radius of any ball inside):

τ(ϑm) ≥ χ(ϑm)

%1(ϑm)%2(ϑm)
> 0 (16)

which ends the proof, the event-based feedback (8-9) is semi-uniformly MSI.
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To prove the continuity of k at the origin, we only need to consider the points in S since we

already have k(x) = 0 if ‖b(x)‖ = 0. We have:

‖k(x)‖ ≤
|a(x)|+

√
a(x)2 + θ(x)b(x)∆(x)b(x)T

b(x)∆(x)b(x)T
∥∥∆(x)b(x)T

∥∥
≤ 2 |a(x)|

b(x)∆(x)b(x)T
∥∥∆(x)b(x)T

∥∥+

√
θ(x)√

b(x)∆(x)b(x)T

∥∥∆(x)b(x)T
∥∥

≤ 2 |a(x)|
b(x)∆(x)b(x)T

∥∥∆(x)b(x)T
∥∥+

√
θ(x) ‖∆(x)‖

With the small control property, for any ε > 0, there is µ > 0 such that for any x ∈ B(µ)\ {0},

there exists some u with ‖u‖ ≤ ε such that a(x) + b(x)u < 0 and therefore |a(x)| < ‖b(x)‖ ε.

It follows:

‖k(x)‖ ≤
2ε ‖b(x)‖

∥∥∆(x)b(x)T
∥∥

b(x)∆(x)b(x)T
+
√
θ(x) ‖∆(x)‖

Since the function (v1, v2)→ ‖v1‖‖v2‖
vT1 v2

is continuous w.r.t its two variables at the origin where it

equals 1, since θ and ∆ are also continuous, since θ(x) ‖∆(x)‖ vanishes at the origin, for any

ε′, there is some µ′ such that ∀x ∈ B(µ′)\ {0}, ‖k(x)‖ ≤ ε′ which ends the proof of continuity.

Finally, with θ as in (12), the control becomes ki(x) = −bi(x)δi(x)w(x) which is obviously

smooth on X .

Proof of Theorem 4.4: Take ν such that:

ν > sup
x∈{x∈X|‖x‖(r,π)=1,a(x)≥0}

a(x)∑p
i=1 bi(x)2 ‖x‖df−2dgi−dV

(r,π)

(17)

As in [27], k is δr-homogeneous of degree df−dg and the system is therefore δr-homogeneous of

degree df . In addition e clearly satisfies e(δrλ(x), δrλ(m)) = λdV +df e(x,m). Item 1 of Theorem 4.4

therefore holds.

On
{
x ∈ X | ‖x‖(r,π) = 1, a(x) ≥ 0

}
, equation (17) gives ω(x)b(x)∆(x)b(x)T − a(x) > 0.

Since the right-hand side of the inequality is δr-homogeneous of degree dV + df , the same

inequality holds for all x 6= {0} such that a(x) ≥ 0. Using (6), it follows that this inequality is

valid for x in S\ {0}. Therefore, equation (11) holds with the above choice of ω. Since θ given

by equation (12) is homogeneous of degree 2df and using the property dgi < df that holds for

all i ∈ {1, . . . , p}, it follows that limx→0 θ(x) ‖∆(x)‖ = 0. Thanks to Theorem 4.2, item 3 holds

and the control is smooth and semi-uniformly MSI.
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To finish the proof, remains to establish that the event-based feedback is uniformly MSI.

For this, we invoke the homogeneity of the Lyapunov level sets Vϑm together with the relation

x(t; δrλ(x0)) = δrλ(x(λd1t;x0)), that gives for all ϑm > 0, τ(ϑm) = τ(1) that ends the proof of

item 2.

V. EXAMPLES

A. Linear time invariant systems

Consider the linear time-invariant system ẋ = Ax + Bu. Take P , a positive definite matrix

solution of the Riccati equation PA + ATP − 4εPBBTP = −P . Then V (x) := xTPx is a

CLF for the system since for all x, u = −2εBTPx renders V̇ strictly negative for x 6= 0. Since

a(x) = xT (PA + ATP )x, b(x) = 2xTPB and β(x) = 4xTPBBTPx, the Riccati takes the

form of equation (11) with ω(x) := ε and δi := 1 for all i ∈ {1, . . . , p}. Therefore, taking θ(x)

according to (12), the control is smooth everywhere and linear: k(x) = −εb(x)T .

B. Nonlinear system

We consider next the nonlinear system proposed in [21]:

ẋ1 = −x3
1 + x1x

2
2

ẋ2 = x1x
2
2 − x2

1x2 + u
(18)

that admits V (x) = 1
2
x2

1 + 1
2
x2

2 as CLF with a(x) = −x4
1 +x1x

3
2, b(x) = x2. We first take δi := 1

for all i ∈ {1, . . . , p}, θ(x) = b(x)2 and σ = 0.9. The time evolution of x, V (x), k(x) and the

event function e is depicted in Figure 1 for x0 = (0.1, 0.4).

Considering ω(x) = x1x2 + 1
2
x2

1 + 1
2
x2

2 satisfies inequality (11) on S\ {0}:

ω(x)b(x)∆(x)b(x)T − a(x) =
1

2
x2

1x
2
2 +

1

2
x4

2 + x4
1 > 0

it follows that taking θ(x) as in (12), the control is smooth everywhere. The resulting trajectory

with σ = 0.9 is represented in Figure 1.

In both cases, event occurs twice in the 40 s of time horizon (the initial event is included).

With the discontinuous control, the convergence is faster but the control value is also almost ten

times larger. When compared to [21] with the same initial condition and the parameter σ = 0.9

(the higher σ is, less frequent events are), 117 events are obtained with a maximum value of

13
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Fig. 1. System (18) under non smooth (left) and smooth (right) event-based control. The red dots represents the events.

the control power of −0.08, that is higher than the −0.05 with the smooth control. Moreover,

the decrease of the CLF is slower than with the smooth and non smooth control proposed here

as illustrated in Figure 2. In this example, with the same system, the same CLF, the proposed

control and control update policy seems more efficient (faster convergence, smaller control, fewer

events).
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Time evolution of CLFs

 

 

Discontinuous control

Smooth control

Anta&Tabuada (2009)

Self triggered implementation

Continuous time implementation

Fig. 2. Time evolution of the CLF using the non smooth and smooth version of the proposed control law compared to [21]
and a continuous time implementation.
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VI. CONCLUSION

In this paper, we proposed an extension of the universal formula for feedback stabilization to

event-based controlled systems. A modification of the original formula is necessary to ensure

that there is a minimal sampling time between two consecutive events avoiding zeno phenomena

like accumulation points. As in the original work, if the Control Lyapunov Function fulfils the

small control property, then the control is continuous at the origin. With additional homogeneity

assumptions, the control can be proved to be smooth everywhere and the minimal inter-sampling

time bounded below for all initial conditions.
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[8] K.-E. Årzén, “A simple event-based PID controller,” in Preprints of the 14th World Congress of IFAC, Beijing, P.R. China,

1999.

[9] J. Sandee, W. Heemels, and P. van den Bosch, “Event-driven control as an opportunity in the multidisciplinary development

of embedded controllers,” in Proc. of the IEEE American Control Conference (ACC), 2005, pp. 1776–1781.

[10] S. Durand and N. Marchand, “Further results on event-based PID controller,” in Proc. of the European Control Conference

(ECC), 2009.

[11] J. Sánchez, M. Guarnes, S. Dormido, and A. Visioli, “Comparative study of event-based control strategies: An experimental

approach on a simple tank,” in Proc. of the European Control Conference (ECC), 2009.

[12] J. Sánchez, M. Guarnes, and S. Dormido, “On the application of different event-based sampling strategies to the control

of a simple industrial process,” Sensors, vol. 9, pp. 6795–6818, 2009.
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