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High-frequency market-making with inventory constraints and

directional bets

Pietro FODRA 12 Mauricio LABADIE 1

May 7, 2012

Abstract

In this paper we extend the market-making models with inventory constraints of Avellaneda and
Stoikov (High-frequency trading in a limit-order book, Quantitative Finance Vol.8 No.3 2008) and
Lehalle, Guéant and Fernandez-Tapia (Dealing with inventory risk, Preprint 2011) to the case of a
rather general class mid-price processes, under either exponential or linear PnL utility functions, and
with an inventory-risk-aversion parameter that penalises the marker-maker if she finishes her day
with a non-zero inventory. This general, non-martingale framework allows a market-maker to make
directional bets on market trends whilst keeping under control her inventory risk. In order to achieve
this, the marker-maker places non-symmetric limit orders that favour market orders to hit her bid
(resp. ask) quotes if she expects that prices will go up (resp. down).

In the case of a mean-reverting mid-price, we show numerically that the market-maker can increase
her PnL between 10% and 25% depending on her buget risk on inventory and PnL distribution (espe-
cially variance, skewness, kurtosis and VaR). Moreover, with this inventory-risk-aversion parameter
the market-maker has not only direct control on her inventory risk but she also has indirect control
on the moments of her PnL distribution. Therefore, this parameter can be seen as a fine-tuning of
the marker-maker’s risk-reward profile.

Keywords: Quantitative Finance, high-frequency trading, market-making, limit-order book, inventory
risk, optimisation, stochastic control, Hamilton-Jacobi-Bellman, PnL distribution.

1 Introduction

Market-makers

A market-maker is a trader who buys and sells assets in a stock exchange via make firm quotes: once she
shows a buying/selling quantity at a certain price price, she is engaged to trade under those conditions.
As liquidity provider, a market-maker receives a compensation: she buys at a lower price (bid) and sells
at a higher price (ask). This difference is called the spread.

A market maker is exposed to two main risks, adverse selection and inventory risk. Adverse selection
means that if the market-maker sells (resp. buys) an asset it is not necessarily good news, it could mean
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that her ask (resp. bid) price is lower (resp. higher) than it should on the current market conditions.
Inventory risk means comes into play by inbalances in the arrival of buying and selling orders: since the
market-maker quotes both bid and ask prices, her net position depends depends on which quotes are
executed and in which quantities. A market maker uses the spread to both control her inventory and
compensate herself from adverse selection. In a nutshell, a market-maker loses money against informed
traders, but she covers that loss by making noise (i.e. un-informed) traders pay the spread on each
transaction.

In order to create a market-making strategy, we need to consider three factors: price, spread and
inventory. The price is often the mid-price, i.e. the average between the current ask and bid prices of the
market. The spread of the market-maker is her only control on her PnL and inventory throughout the
trading day. It is true that the market maker can affect the mid-price by improving the current ask and
bid market quotes, but since that would normally trigger a market order that consumes the offer, in a
first approach we can consider that the mid price cannot be affected by the quotes of the market maker.

Main features of the present article

In this article we extend the current stochastic-control models of market-making, in particular those of
Avellaneda and Stoikov [1] and Lehalle et al [4].

We managed to find closed-form solutions for the optimal ask/bid quotes of a market-making for mid-
price dynamics that are not necessarily martingale, which can be interpreted of directional bets on price
trends. Although our approach is based on optimal stochastic-control and nonlinear-PDE techniques,
the philosophy is very simple: given the utility function we choose a possible form of the solution of the
nonlinear PDE equation (i.e. we make an ansatz ); we plug this ansatz into the equation and compute
the (implicit) optimal controls; we then plug the (implicit)controls and separate the equation into several
simpler ones, normally linear; we then compute explicitly the controls and the solution for the equation.

Sometimes it is impossible to find explicitly the controls for the solution, but for a sub-solution it is
always possible (at least for the class of processes and utility fubnctions we are dealing with). In that
framework, the controls do not optimise the utility function but give a lower bound of the potential losses.
It is worth to mention that, for practitioners, it is better to have explicit controls that miniimise potential
losses (a sub-solution) than highly implicit, numerically-intensive controls that optimise the PnL.

Our approach can be applied to very general utility functions, not only exponential as in Avellaneda
and Stoikov [1] and Lehalle et al [4], which gives flexibility to the market-maker to choose her risk-reward
profile. Of course, choosing a mid-price dynamic determines the class of utility functions that we can
choose from because the utility function has to be finite (a.s.). However, with the most recurrent mid-
price models such as martingales, Brownian motion with drift, Ornstein-Uhlenbeck (resp. Black-Scholes)
a linear (resp. exponential) utility function is finite.

We add a new parameter, which models the inventory-risk aversion of the market-maker. As it will
be shown in the numerical simulations, this parameter guarantees that the trading algorithm will end
the day with a flat inventory, which is the goal of a market-maker. Moreover, it also allows the market
maker to control its directional bets via exposure to price movements intraday.
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We show that the inventory-risk-aversion parameter not only exerces direct control on the inventory
risk directly but it also has some indirect control on the risk in the PnL distribution of the market-maker
(i.e. on the first four moments namely mean, variance, skewness and kurtosis). Moreover, this relation
can be also inverted: the parameter of the exponential utility function has direct control on the PnL
distribution and indirectly controls the inventory risk. This can be interpreted as a high risk - high
reward scenario: big exposure to extreme events, either via fat tails or directional bets, improves the
average PnL.

Organisation of the study

The goal of this study is to find the optimal ask and bid quotes for a high-frequency market-maker that,
under the framework of a directional bet on the market trend, simultaneously maximise her PnL and
minimise her inventory risk. The main inspiration is the paper of Avellaneda and Stoikov [1], who found
via stochastic control the optimal bid and ask quotes for a high-frequency market-maker. The second
inspiration comes from Lehalle et al [4], who formalised the findings of Avellaneda and Stoikov [1]. It
is also worth to mention that the Hamilton-Jacobi-Bellman framework we use was originally set by Ho
and Stoll [5], but in neither of these three articles the effect of a directional market bet on the PnL
distribution was considered.

In Chapter 2 we set the framework under which we will be working, which is stochastic control and
Hamilton-Jacobi-Bellman equations. In Section 3 we completely solve the optimal control problem for
a linear utility function and an arbitrary Markov process by finding explicitly the unique solution. In
Section 4 we perturbate the linear utility function via a quadratic inventory penalty. By using first-order
approximations on the arrival of orders to the limit-order book, we find explicitly the (approximate)
solutions and their corresponding optimal controls, which are perturbations of the closed-form solution
and controls we found in Section 3. In Section 5 we extend the results of Avellaneda and Stoikov [1]
and Lehalle et al [4] for exponential utility functions. We show that their approach can be used to
more general process than arithmetic Brownian motion and with inventory-risk aversion. In Section
6 we perform numerical simulations to show how do directional bets on the market trend affect the
market-making strategies. We also assess the effect of the inventory-risk-aversion parameter on the PnL
distribution and the inventory risk and show that this parameter controls directly the inventory risk and
indirectly the PnL distribution.

2 Stochastic control framework

Setting of the problem

We suppose that the mid-price process S(t) follows an Itô diffusion, i.e.

dS(t) = b(t, S(t))dt+ σ(t, S(t))dW (t) (1)

where W (t) is a standard Brownian motion.

A market-maker can control her ask and bid quotes, which we denote p+(t) and p−(t) respectively.
Instead of working with the market-maker’s prices we will rather work with the market-maker’s spreads,
i.e

δ+(t) := p+(t)− S(t) ≥ 0, δ−(t) := S(t)− p−(t) ≥ 0 .
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The market-maker’s spreads are non-negative because, as a liquidity provider to the market, she covers
her inventory risk with her bid-ask spread δ+ + δ− ≥ 0.

We assume that the market-maker has a utility function φ(s, q, t) and an associated value function

u(t, s, q, x) := Et,s,q,x
[
φ
(
S(T ), Q(T ), X(T )

)]
where t ∈ [0, T ] is the current time, s = S(t) is the current mid-price of the asset, x = X(t) is the current
wealth in cash and q = Q(t) is the current inventory level.

This value function has two components, a continuous term relative to the continuous variable s and
a discrete term coming from the jump variables (q, x).

The Hamilton-Jacobi-Bellman equation

Let us give a heuristic interpretation of the Hamilton-Jacobi-Bellman equation in terms of the two in-
finitesimal operators, one on the continuous variable s and the other on the jump variables (q, x), as well
as of the stochastic controls (δ+, δ−).

First, suppose q and x fixed. Since the continuous variable s follows (1), from Feynmann-Kac repre-
sentation formula we have that if (t, s) 7→ uC(t, s, q, x) satisfies

(∂t + L)uC = 0 , L := b(t, s)∂s +
1

2
σ2(t, s)∂ss , uC(T, s, q, x) = φ(s, q, x) (2)

then (see e.g. Pham [6])

uC(t, s, q, x) = Et,s
[
φ
(
S(T ), q, x)

)]
.

Second, suppose now that s is fixed. We model the arrival of orders to the limit-order Book as two
independent Poisson Process, N+ for the ask quotes and N− for the bid quotes , with intensity λ±

(respectively).

• For the ask quote, we assume that λ+ depends on the distance to the mid-price s, i.e. λ+ = λ+(δ+).
Moreover, since buying market orders favour ask quotes with the smallest spread δ+, it is natural
to assume that δ+ 7→ λ+(δ+) is increasing, i.e. the probability of execution for the market-maker
decreases as she moves her ask quote further away from the mid price.

• Analogously, for the bid quote we have λ− = λ−(δ−) and δ− 7→ λ−(δ−) increasing.

The jump variables (q, x) are related via the arrival of market orders that hit the quotes of the
market-maker:

• Suppose a buying market order of one share of S hits the ask quote of the market-maker. It follows
then that x 7→ x+ (s+ δ+) and q 7→ q − 1.

• Analogously, if a selling market order of one share hits her bid quote then x 7→ x + (s − δ−) and
q 7→ q + 1.
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Under this framework, we have that the value function of the jump (q, x) 7→ uD(t, s, q, x) satisfies

∂tuD + λ+(δ+)
[
uD(t, s, q − 1, x+ (s+ δ+))− uD(t, s, q, x)

]
(3)

+λ+(δ+)
[
uD(t, s, q + 1, x− (s− δ−))− uD(t, s, q, x)

]
= 0 .

u(T, s, q, x) = φ(s, q, x) .

Third, let us now put together the continuous and jump dynamics (2)-(3). Suppose that the market-
maker’s spread quotes (δ+, δ−) are known (i.e. deterministic), the value function u(t, s, q, x) satisfies has
the following infinitesimal generator (see e.g. Ho and Stoll [5]):

(∂t + L)u+ λ+(δ+)
[
u(t, s, q − 1, x+ (s+ δ+))− u(t, s, q, x)

]
(4)

+λ+(δ+)
[
u(t, s, q + 1, x− (s− δ−))− u(t, s, q, x)

]
= 0 .

u(T, s, q, x) = φ(s, q, x) .

Fourth, notice that (4) is valid only when the spread quotes (δ+, δ−) are known, but in the current
case they are part of the set of unknowns of the problem. In consequence, from the stochastic control
theory it follows that the value function u(t, s, q, x) with unknown controls (δ+, δ−) is solution of the
Hamilton-Jacobi-Bellman equation

(∂t + L)u+ max
δ+

λ+(δ+)
[
u(t, s, q − 1, x+ (s+ δ+))− u(t, s, q, x)

]
(5)

+ max
δ−

λ+(δ+)
[
u(t, s, q + 1, x− (s− δ−))− u(t, s, q, x)

]
= 0 ,

u(T, s, q, x) = φ(s, q, x) .

In general we should use sup instead of max in (5), but if we assume that b(t, s) and σ(t, s) are Lipschitz
and that the jump dynamic (3) is bounded then the supremum is attained and the solution u(t, s, q, x) is
unique, as in the particular cases we will consider here.

Fifth, Avellaneda and Stoikov [1] showed that, given the empirical evidence provided by the current
research in Econophysics e.g. Potters and Bouchaud [7], we can assume that λ±(δ) = Ae−kδ. Under this
framework, the Hamilton-Jacobi-Bellman (5) becomes

(∂t + L)u+ max
δ+

Ae−kδ
+ [
u(t, s, q − 1, x+ (s+ δ+))− u(t, s, q, x)

]
(6)

+ max
δ−

Ae−kδ
− [
u(t, s, q + 1, x− (s− δ−))− u(t, s, q, x)

]
= 0 ,

u(T, s, q, x) = φ(s, q, x) ,

Solving the Hamilton-Jacobi-Bellman equation

Equation (6) is the one we will consider in the rest of the present work. The steps to solve it are as
follows:

1. Based on the utility function φ(s, q, x) we make an ansatz, i.e. we guess the general form of the
solution of the on Hamilton-Jacobi-Bellman equation. For example, if

φ(s, q, x) = x+ ϕ(s, q)
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we will use
u(t, s, q, x) = x+ v(t, s, q) . (7)

2. We substitute the ansatz on the HJB in order to find an easier HJB equation for v. We use this
new HJB equation to find the optimal controls (δ+∗ , δ

−
∗ ) that maximize the jump. With the ansatz

(7) the optimal controls are

δ+∗ =
1

k
− s+ v(t, s, q)− v(t, s, q − 1) , δ−∗ =

1

k
+ s− v(t, s, q + 1) + v(t, s, q) .

3. We substitute the optimal controls on the HJB equation: the resulting equation is called the
verification equation. In our case it is

(∂t + L) v +
A

k

(
e−kδ

+
∗ + e−kδ

−
∗

)
= 0 ,

v(T, s, q) = ϕ(s, q) ,

which is highly nonlinear because δ±∗ = δ±∗ (v).

4. We solve the verification equation via the Feynmann-Kac representation formula in order to find
an explicit expression of the optimal controls. Indeed, for an equation of the form

(∂t + L)w + f(δ+∗ , δ
−
∗ , t, s, q, x) = 0 ,

w|t=T = g(δ+∗ , δ
−
∗ , s, q, x) ,

where (δ+∗ , δ
−
∗ ) do not depend on w, the (unique) solution is (see e.g. Pham [6])

w(t, s, q, x) = Et,s,q,x

[∫ T

t

f(δ+∗ , δ
−
∗ , ξ, S(ξ), q, x)dξ + g(δ+∗ , δ

−
∗ , S(T ), q, x)

]
,

where Et,s,q,x is the conditional expectation given S(t) = s, Q(t) = q and X(t) = x

5. Alternatively, we could express the optimal quotes in terms of the market-maker’s bid-ask spread

ψ∗ := δ+∗ + δ−∗

and the mid-point of the spread (called the indifference price)

r∗ :=
1

2

(
p+∗ + p−∗

)
= s+

1

2

(
δ+∗ − δ−∗

)
.

Notice that if δ+ = δ− then r∗(t) = s = S(t). Therefore, r∗− s measures the level of asymmetry of
the quotes with respect to the mid-price s.

3 Linear utility function

Let us suppose that the utility function is linear, i.e.

φ(s, q, x) = x+ qs .
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Then the corresponding value function is

u(t, s, q, x) = max
(δ+,δ−)

Et,s,q,x[X(T ) +Q(T )S(T )] , (8)

where X(t) is the cash process, Q(t) the inventory process, S(t) the price process and Et,s,q,x is the con-
ditional expectation given S(t) = s, Q(t) = q and X(t) = x. Alternatively, this corresponds to choosing
the final condition as φ(s, q, x) = x+ qs.

X(T ) +Q(T )S(T ) is the final value of the market-maker’s portfolio, and corresponds to the final PnL
of the market-maker. Indeed, X(T ) the cash she holds whilst Q(T )S(T ) the cash value of her inventory:
she holds Q(T ) assets and clears them at (unitary) price S(T ) on the close auction.

Ansatz

From the final condition (i.e. the utility function) φ(s, q, x) = x+ qs we will search a solution of the form

u(t, s, q, x) = x+ θ0(t, s) + qθ1(t, s) . (9)

Plugging (9) into (6) yields

(∂t + L) (θ0 + qθ1) + max
δ+

Ae−kδ
+ [
s+ δ+ − θ1

]
+ max

δ−
Ae−kδ

− [
−s+ δ− + θ1

]
= 0 ,

θ0(T, s) = 0 ,

θ1(T, s) = s .

Computing the optimal controls

Define

f+(δ+) := Ae−kδ
+ [
s+ δ+ − θ1

]
.

Using Calculus we obtain that the maximum is attained at

δ+∗ =
1

k
− s+ θ1 .

Analogously, if

f−(δ−) := Ae−kδ
− [
−s+ δ− + θ1

]
then

δ−∗ =
1

k
+ s− θ1 .

In consequence, the optimal quotes (δ+∗ , δ
−
∗ ), spread ψ∗ and indifference price r∗ are

δ±∗ =
1

k
± (θ1 − s) , ψ∗ = δ+∗ + δ−∗ =

2

k
, r∗ = θ1 .
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Solving the verification equation

Since

f+(δ+∗ ) =
A

ek
e−k(θ1−s) , f+(δ+∗ ) =

A

ek
ek(θ1−s)

it follows that the ansatz θ0 + qθ1 solves the verification equation

(∂t + L) (θ0 + qθ1) +
2A

ek
cosh [k(θ1 − s)] = 0 (10)

θ0(T, s) = 0 .

θ1(T, s) = s .

We separate (10) in terms of the powers of q, one equation for q0 = 1 and another for q1 = q. With
this procedure we obtain two coupled equations,

(∂t + L) θ0 +
2A

ek
cosh [k(θ1 − s)] = 0 (11)

θ0(T, s) = 0 ,

and

(∂t + L) θ1 = 0 (12)

θ1(T, s) = s .

Applying the Feynman-Kac formula to (12) and recursively to (11) yields, respectively (see e.g. Pham
[6]),

θ1(t, s) = Et,s[S(T )] , θ0(t, s) =
2A

ek
Et,s

{∫ T

t

cosh
[
k
(
θ1(ξ, S(ξ))− S(ξ)

)]
dξ

}
.

In consequence,

δ±∗ =
1

k
± (Et,s[S(T )]− s) , ψ∗ =

2

k
, r∗ = Et,s[S(T )]

and

u(t, s, q, x) = x+
2A

ek
Et,s

{∫ T

t

cosh
[
k
(
θ1(ξ, S(ξ))− S(ξ)

)]
dξ

}
+ qEt,s[S(T )] .

In particular, since cosh(α) ≥ 1 and cosh(α) = 1 ⇐⇒ α = 0 we obtain that

u(t, s, q, x) ≥ u(t, s, q, x) := x+
2A

ek
(T − t) + qEt,s[S(T )]

and u(t, s, q, x) = u(t, s, q, x) ⇐⇒ θ1(ξ, S(ξ)) = S(ξ) for all ξ ∈ [t, T ]. Since t ∈ [0, T ] is arbitrary then
taking ξ = t we have that u(t, s, q, x) = u(t, s, q, x) ⇐⇒ s = Et,s[S(T )], i.e. if and only if S(t) is a
martingale.
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Results

Let us summarise all our findings.

Theorem 1 Consider the Hamilton-Jacobi-Bellman problem

(∂t + L)u+ max
δ+

Ae−kδ
+ [
u(t, s, q − 1, x+ (s+ δ+))− u(t, s, q, x)

]
+ max

δ−
Ae−kδ

− [
u(t, s, q + 1, x− (s− δ−))− u(t, s, q, x)

]
= 0 ,

u(T, s, q, x) = x+ qs ,

which corresponds to a linear utility function φ(s, q, x) = x+ qs, value function

u(t, s, q, x) = max
(δ+,δ−)

Et,s,q,x[X(T ) +Q(T )S(T )]

and stochastic controls (δ+, δ−). Then:

1. The optimal controls (δ+∗ , δ
−
∗ ), spread ψ∗ and indifference price r∗ (i.e. the centre of the spread) of

the market-maker are

δ±∗ =
1

k
± (Et,s[S(T )]− s) ψ∗ = δ+∗ + δ−∗ =

2

k
, r∗ = Et,s[S(T )] .

2. The (unique) solution of the HJB problem is

u(t, s, q, x) = x+
2A

ek
Et,s

{∫ T

t

cosh
[
k
(
θ1(ξ, S(ξ))− S(ξ)

)]
dξ

}
+ qEt,s[S(T )]

where θ1(t, s) = Et,s[S(T )].

3. The solution u(t, s, q, x) is bounded from below by

u(t, s, q, x) := x+
2A

ek
(T − t) + qEt,s[S(T )]

and
u(t, s, q, x) = u(t, s, q, x) ⇐⇒ s = Et,s[S(T )] ,

i.e. if and only if S(t) is a martingale and r∗(t) = S(t).

Remarks

• The worst price dynamic for the PnL-based utility function (8) is a martingale, in the sense that
with any other price dynamic the PnL is greater. But observe that the optimal spread ψ∗ is centred
around r∗ = Et,s[S(T )] and not around s = S(t). In consequence, if the market-maker considers that
the current mid-price s has deviated from its fundamental value r∗ then she can make directional
bets via her bid-ask quotes, which yields a higher PnL than the martingale assumption if the bet
is correct.
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• Applying perturbation methods on the variable q of the form

u(t, s, q, x) = x+ θ0(t, s) + qθ1(t, s) + q2θ2(t, s) + · · · ,

is a very rough approximation, to say the least. Indeed, as Lehalle et al [4] pointed out, q is an
integer, i.e. discrete and not small, and as such a perturbation method on q cannot be performed.
However, once the ansatz is shown to solve the verification equation, then by uniqueness it coincides
with the solution of the original problem. Therefore, the separation of the equation into two terms,
one with q0 and another with q1, is justified a posteriori via the maximum principle (i.e. existence
and uniqueness) for the Hamilton-Jacobi-Bellman equation, and as such it does not rely at all on
perturbation methods, as Avellaneda and Stoikov [1] suggested.

• In Theorem 1 we have implicitly assumed that the value function u(t, s, q, x) is finite when we
applied the Fenmann-Kac formula. However, this is valid if and only if

Et,s

{∫ T

t

cosh
[
k
(
θ1(ξ, S(ξ))− S(ξ)

)]
dξ

}
<∞ , θ1(t, s) = Et,s[S(T )] . (13)

If S(t) is a martingale then (13) holds trivially. For a non-martingale mid-price process S(t), two
sufficient conditions for (13) to hold are (i) the difference Et,s[S(T )]− s is affine on s and (ii) the
moment-generating function MZ(λ) = E [exp{λS(t)}] is finite for all λ ∈ R. This is the case for
any Gaussian Markov process, e.g. an arithmetic Brownian motion with drift and the Ornstein-
Uhlenbeck process. However, (13) does not hold for the geometric Brownian motion with drift.

4 Linear utility function with inventory penalty

With the linear utility function there is no penalty if at the end of the trading day the market-maker
carries a huge inventory. In order to force a liquidation of the inventory before the end of the day, we
propose the following utility function,

φ(s, q, x) = x+ qs− ηq2 , η ≥ 0 ,

which is the PnL with a quadratic penalty on the inventory. The associated value function is

u(t, s, q, x) = max
(δ+,δ−)

Et,s,q,x[X(T ) +Q(T )S(T )− ηQ2(T )] , (14)

A quadratic penalty function for a market-maker is already known in the literature (see e.g. Stoll [8]).

Ansatz

Given the form of the utility function, we will search a solution of the form

u(t, s, q, x) = x+ θ0(t, s) + qθ1(t, s)− ηq2θ2(t, s) . (15)
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Plugging (15) into (6) yields

(∂t + L) (θ0 + qθ1 − ηq2θ2) + max
δ+

Ae−kδ
+ [
s+ δ+ − θ1 − η(1− 2q)θ2

]
+ max

δ−
Ae−kδ

− [
−s+ δ− + θ1 − η(1 + 2q)θ2

]
= 0 ,

θ0(T, s) = 0 ,

θ1(T, s) = s .

θ2(T, s) = 1 .

Computing the optimal controls

As in the previous section, if

f+(δ+) := Ae−kδ
+ [
s+ δ+ − θ1 − η(1− 2q)θ2

]
then

δ+∗ =
1

k
− s+ θ1 + η(1− 2q)θ2 .

On the other hand, if

f−(δ−) := Ae−kδ
− [
−s+ δ− + θ1 − η(1 + 2q)θ2

]
then

δ−∗ =
1

k
+ s− θ1 + η(1 + 2q)θ2 .

In consequence, the optimal quotes (δ+∗ , δ
−
∗ ), spread ψ∗ and indifference price r∗ are

δ±∗ =
1

k
+ ηθ2 ± (θ1 − s− 2qηθ2) , ψ∗ = δ+∗ + δ−∗ =

2

k
+ 2ηθ2 , r∗ = θ1 − 2ηqθ2 .

Solving the equation with linear jumps

We fix q ∈ Z and define the jump function as Jq : R2 → R as

Jq(δ
+
∗ , δ

−
∗ ) :=

A

ek

(
e1−kδ

+
∗ + e1−kδ

−
∗

)
,

whose first-order Taylor expansion of aproximation of Jq is

Jq(δ
+
∗ , δ

−
∗ ) =

A

ek

(
4− k(δ+∗ + δ−∗ )

)
+O

(
|δ+∗ |2 + |δ−∗ |2

)
=

A

ek
(2− kηθ2) +O

(
|δ+∗ |2 + |δ−∗ |2

)
.

Since at first order the jumps are independent of q, it follows that

θ(t, s, q) = θ0(t) + qθ1(t, s)− ηq2θ2(t)
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solves

(∂t + L) (θ0 + qθ1 + q2θ2) +
A

ek
(2− kηθ2) = 0

θ(T, s, q) = qs− ηq2 .

We separate (16) in terms of the powers of q, one equation for q0 = 1 and another for q1 = q. With
this procedure we obtain three coupled equations,

∂tθ0 +
A

ek
(2− kηθ2) = 0 (16)

θ0(T ) = 0 ,

(∂t + L) θ1 = 0 (17)

θ1(T, s) = s ,

and

∂tθ2 = 0 (18)

θ2(T ) = 1 .

In consequence,

θ2 = 1 , θ1(t, s) = Et,s[S(T )] , θ0(t) =
A

ek
(2− kη) (T − t) .

Finding a sub-solution

Since
A

ek

(
e1−kδ

+
∗ + e1−kδ

−
∗

)
≥ A

ek

(
4− k(δ+∗ + δ−∗ )

)
then the solution of the equation with linear jump (i.e. first-order Taylor) is a sub-solution of the original
problem with exponential jump. In other words, if we define

u(t, s, q, x) := x+ θ0(t) + qθ1(s, t)− ηq2θ2(t) ,

where θ0(t), θ1(s, t) and θ2(t) are defined as above then

u(t, s, q, x) ≤ u(t, s, q, x) ,

i.e. it is a sub-solution of the HJB equation.

Results

Let us summarise all our findings.
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Theorem 2 Consider the Hamilton-Jacobi-Bellman problem

∂tu+ Lu+ max
δ+

Ae−kδ
+ [
u(t, s, q − 1, x+ (s+ δ+))− u(t, s, q, x)

]
+ max

δ−
Ae−kδ

− [
u(t, s, q + 1, x− (s− δ−))− u(t, s, q, x)

]
= 0 ,

u(T, s, q, x) = x+ qs− ηq2 ,

which corresponds to a linear utility function with quadratic inventory penalty φ(s, q, x) = x + qs − ηq2,
value function

u(t, s, q, x) = max
(δ+,δ−)

Et,s,q,x
[
X(T ) +Q(T )S(T )− ηQ2(T )

]
and stochastic controls (δ+, δ−). Then:

1. If u(t, s, q, x) is the (unique) solution of the HJB equation then

u(t, s, q, x) := x+
A

ek
(2− kη) (T − t) + qEt,s[S(T )]− ηq2

is a sub-solution of the HJB equation and u(t, s, q, x) ≤ u(t, s, q, x).

2. With the linear aproximation of the jumps, or equivalently using the HJB of the sub-solution u, the
optimal controls (δ+, δ−), spread ψ∗ and indifference price r∗ are

δ±∗ =
1

k
+ η ± (Et,s[S(T )]− s− 2qη) , ψ∗ = δ+∗ + δ−∗ =

2

k
+ 2η , r∗ = Et,s[S(T )]− 2ηq .

General inventory penalties

Suppose that the utility function is now

φ(s, q, x) = x+ qs− ηq2π(s) , η ≥ 0 ,

where s 7→ π(s) is continuous and for s ≥ 0 it is non-decreasing and non-negative. For example, if π ≡ 1
we recover the previous case whilst if π(s) = s2 we recover the classical mean-variance PnL criterion.
The associated value function is

u(t, s, q, x) = max
(δ+,δ−)

Et,s,q,x[X(T ) +Q(T )S(T )− ηQ2(T )π(S(T ))] . (19)

With the ansatz
u(t, s, q, x) = x+ θ0(t, s) + qθ1(t, s)− ηq2θ2(t, s) (20)

it can be shown that the functions θ0 − θ2 solve the equations

(∂t + L) θ0 +
A

ek
(2− kηθ2) = 0 (21)

θ0(T ) = 0 ,
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(∂t + L) θ1 = 0 (22)

θ1(T, s) = s ,

and

(∂t + L) θ2 = 0 (23)

θ2(T ) = π(s) ,

whose explicit solutions are

θ2(t, s) = Et,s[π(S(T ))] , θ1(t, s) = Et,s[S(T )] , θ0(t, s) =
2A

ek
(T − t)− ηA

e
Et,s

[∫ T

t

θ2(ξ, S(ξ))dξ

]
.

In the light of these results, we have the following extension of Theorem 2 to a general penalty function
π.

Theorem 3 Consider the Hamilton-Jacobi-Bellman problem

∂tu+ Lu+ max
δ+

Ae−kδ
+ [
u(t, s, q − 1, x+ (s+ δ+))− u(t, s, q, x)

]
+ max

δ−
Ae−kδ

− [
u(t, s, q + 1, x− (s− δ−))− u(t, s, q, x)

]
= 0 ,

u(T, s, q, x) = x+ qs− ηq2π(s) ,

which corresponds to a linear utility function with quadratic inventory penalty φ(s, q, x) = x+qs−ηq2π(s),
value function

u(t, s, q, x) = max
(δ+,δ−)

Et,s,q,x
[
X(T ) +Q(T )S(T )− ηQ2(T )π(S(T ))

]
and stochastic controls (δ+, δ−). Then:

1. If u(t, s, q, x) is the (unique) solution of the HJB equation then

u(t, s, q, x) := x+
2A

ek
(T − t)− ηA

e
Et,s

[∫ T

t

θ2(ξ, S(ξ))dξ

]
+ qEt,s[S(T )]− ηq2θ2(t, s) ,

where θ2(t, s) = Et,s[π(S(T ))], is a sub-solution of the HJB equation and u(t, s, q, x) ≤ u(t, s, q, x).

2. With the linear aproximation of the jumps, or equivalently using the HJB of the sub-solution u, the
optimal controls (δ+, δ−), spread ψ∗ and indifference price r∗ are

δ±∗ =
1

k
+ η ± (Et,s[S(T )]− s− 2qηEt,s[π(S(T ))]) , ψ∗ = δ+∗ + δ−∗ =

2

k
+ 2η ,

r∗ = Et,s[S(T )]− 2ηqEt,s[π(S(T ))] .
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Remarks

• The optimal controls depend on the ansatz we make on the utility function u(t, s, q, x), i.e. on
the functions θ1(t, s) and θ2(t). However, without the linear aproximation of the jumps our ansatz
cannot give the solution: in fact, there is no solution with the chosen ansatz. That said, given that
the sub-solution u is explicit, and by definition it provides a lower bound on the real solution u, we
can consider that the optimal quotes we have found maximise the sub-solution, and as such they
may be seen as conservative estimates of the real optimal quotes.

• If η = 0 we recover the optimal controls and the sub-solution of the linear case without inventory
penalty, i.e. Theorem 1. Therefore, our linear approximation of the jumps is consistent, in the
sense that it provides a perturbation of the optimal quotes in terms of the ”inventory-risk” or
”risk-aversion” parameter η.

• When η > 0 the spread ψ∗ widens and the indifference price r∗ shifts downwards (resp. upwards)
if the inventory is positive (resp. negative), which is in line with the intuition on the inventory
risk. Indeed, if the net position of the market-maker is long (resp. short) then she will improve the
current ask (resp. bid) quote to lure buyers (resp. sellers), and simultaneously she will try to hide
her bid (resp. ask) quote deep into the limit-order Book to deter sellers (resp. buyers). By doing
so, she favours the probability of being executed in the direction that makes her to go back to zero.

• Notice that since the linear approximation of the jumps does not depend on q, the solution u
of the approximate verification equation does not rely on perturbation methods and asymptotic
expansions on q. Of course, the solution u to the verification equation with exponential jumps will
indeed depend on q, and as such an approach similar to Lehalle et al [4] is needed in order to deal
with the discrete variable q.

• For Theorems 2 and 3 we are assuming that the corresponding value function u(t, s, q, x) is finite in
order to apply the Feynmann-Kac formula. In the current framework, given a mid-price dynamic
we choose the penalty function π such that u(t, s, q, x) is finite. In that spirit, if S(t) is Gaussiann
(e.g. arithmetic Brownian motion or Ornstein-Ulenbeck) or a martingale (even with jumps) then
π ≡ 1 suffices, whilst if S(t) is a geometric Brownian motion then π(s) = s2 is a viable candidate.

5 Exponential utility function

This case has been entirely solved by Avellaneda and Stoikov [1] and Lehalle et al [4] when the mid-price
is a Brownian motion. In this section we show that their approach can be easily extended to several other
mid-price dynamics, e.g. Ornstein-Uhlenbeck.

Let us suppose that the utility function is exponential φ(s, q, x) = − exp{−γ(x + qs)}, whose core-
sponding value function is

u(t, s, q, x) = max
(δ+,δ−)

Et,s,q,x
[
− exp

{
−γ
(
X(T ) +Q(T )S(T )

)}]
, (24)



16 Pietro FODRA · Mauricio LABADIE

Ansatz

From the form of the utility function we will search a solution of the form

u(t, s, q, x) = − exp{−γ(x+ θ(t, s, q)} , θ(t, s, q) = θ0(t) + qθ1(t, s) + q2θ2(t) . (25)

Plugging (25) into (6) yields the Hamilton-Jacobi-Bellman for θ(t, s, q), i.e.

(∂t + L) θ − 1

2
σ2γ (∂sθ)

2
+
A

γ
max
δ+

e−kδ
+ [

1− exp{−γ(s+ δ+ − θ1 + (1− 2q)θ2)}
]

+
A

γ
max
δ−

Ae−kδ
− [

1− exp{−γ(−s+ δ− + θ1 + (1 + 2q)θ2)}
]
] = 0 , (26)

θ(T, s) = x+ qs ,

Computing the optimal controls

For the function

f+(δ+) :=
A

γ
e−kδ

+ [
1− exp{−γ(s+ δ+ − θ1 + (1− 2q)θ2)}

]
its maximum is attained at

δ+∗ =
1

γ
log
(

1 +
γ

k

)
− s+ θ1 − (1− 2q)θ2 .

Analogously, if

f−(δ−) :=
A

γ
max
δ−

Ae−kδ
− [

1− exp{−γ(−s+ δ− + θ1 + (1 + 2q)θ2)}
]

then

δ−∗ =
1

γ
log
(

1 +
γ

k

)
+ s− θ1 − (1 + 2q)θ2 .

In consequence, the optimal quotes (δ+∗ , δ
−
∗ ), spread ψ∗ and indifference price r∗ are

δ±∗ =
1

γ
log
(

1 +
γ

k

)
− θ2 ± (θ1 − s+ 2qθ2) , ψ∗ =

2

γ
log
(

1 +
γ

k

)
− 2θ2 , r∗ = θ1 + 2qθ2 . (27)

Solving the equation with linear jumps

For q ∈ Z fixed we define the jump function as Jq : R2 → R as

Jq(δ
+
∗ , δ

−
∗ ) :=

A

k + γ

(
e−kδ

+
∗ + e−kδ

−
∗

)
. (28)

The first-order Taylor expansion of aproximation of Jq is

Jq(δ
+
∗ , δ

−
∗ ) =

A

k + γ

(
2− k(δ+∗ + δ−∗ )

)
+O

(
|δ+∗ |2 + |δ−∗ |2

)
=

2A

k + γ

(
1− k

γ
log
(

1 +
γ

k

)
+ kθ2

)
+O

(
|δ+∗ |2 + |δ−∗ |2

)
.
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Therefore, at first order we have that Jq = J0 for all q ∈ Z, i.e. the jumps are independent of q. In
consequence,

θ(t, s, q) = θ0(t) + qθ1(t, s) + q2θ2(t)

solves

(∂t + L) (θ0 + qθ1 + q2θ2)− 1

2
q2σ2γ (∂sθ1)

2
+

2A

k + γ

(
1− k

γ
log
(

1 +
γ

k

)
+ kθ2

)
= 0

θ(T, s, q) = qs .

We separate (29) in terms of the powers of q, one equation for q0 = 1 and another for q1 = q. With
this procedure we obtain three coupled equations,

∂tθ0 +
2A

k + γ

(
1− k

γ
log
(

1 +
γ

k

)
+ kθ2

)
= 0 (29)

θ0(T ) = 0 ,

(∂t + L) θ1 = 0 (30)

θ1(T, s) = s ,

and

∂tθ2 −
1

2
σ2γ (∂sθ1)

2
= 0 (31)

θ2(T ) = 0 .

Applying the Feynman-Kac formula to (30) we find

θ1(t, s) = Et,s[S(T )] .

Integrating (31) we obtain

−θ2(t) =
1

2
γ

∫ T

t

σ2(ξ, S(ξ))
(
∂sθ1(ξ, S(ξ))

)2
dξ .

However, the ansatz we have made implies that θ2 is independent of s. Therefore, in order to solve (31)
we need to assume the following conditions on the price process S(t):

σ = σ(t) , Et,s[S(T )] = α(t, T ) + sβ(t, T ) .

In consequence,

θ2(t) = −1

2
γ

∫ T

t

σ2(ξ)β2(ξ, T )dξ .

Finally, integrating (30) yields

θ0(t) =
2A

k + γ

(
1− k

γ
log
(

1 +
γ

k

))
(T − t)− kγA

k + γ

∫ T

t

{∫ T

ζ

σ2(ξ)β2(ξ, T )dξ

}
dζ .
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Finding a sub-solution

Since
A

k + γ

(
e−kδ

+
∗ + e−kδ

−
∗

)
≥ A

k + γ

(
2− k(δ+∗ + δ−∗ )

)
then the solution of the equation with linear jump (i.e. first-order Taylor expansion)is a sub-solution of
the original problem with exponential jump. In other words, if we define

u(t, s, q, x) := − exp
{
−γ
(
x+ θ0(t) + qθ1(s, t) + q2θ2(t)

)}
,

where θ0(t), θ1(s, t) and θ2(t) are defined as above then

u(t, s, q, x) ≤ u(t, s, q, x) .

Adding a quadratic inventory penalty

We modify the exponential utility function (24) by adding a quadratic inventory penalty:

u(t, s, q, x) = max
(δ+,δ−)

Et,s,q,x
[
− exp

{
−γ
(
X(T ) +Q(T )S(T )− ηQ2(T )

)}]
. (32)

Under this new penalty framework, the computations are exactly the same as before. The only thing
that changes is the equation solved by θ2(t), i.e.

∂tθ2 −
1

2
σ2γ (∂sθ1)

2
= 0 (33)

θ2(T ) = −η ,

whose solution is

θ2(t) = −η − 1

2
γ

∫ T

t

σ2(ξ)β2(ξ, T )dξ .

This has an impact on θ0(t), which has the new form

θ0(t) =
2A

k + γ

(
1− k

γ
log
(

1 +
γ

k

)
− kη

)
(T − t)− kγA

k + γ

∫ T

t

{∫ T

ζ

σ2(ξ)β2(ξ, T )dξ

}
dζ ,

as well as on the optimal quotes, spread and indifference price (27).

Results

Let us summarise all our findings.

Theorem 4 Consider the Hamilton-Jacobi-Bellman problem

∂tu+ Lu+ max
δ+

Ae−kδ
+ [
u(t, s, q − 1, x+ (s+ δ+))− u(t, s, q, x)

]
+ max

δ−
Ae−kδ

− [
u(t, s, q + 1, x− (s− δ−))− u(t, s, q, x)

]
= 0 ,

u(T, s, q, x) = − exp{−γ(x+ qs− ηq2)} ,
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which corresponds to an exponential utility function φ(s, q, x) = − exp{−γ(x+ qs− ηq2)}, value function

u(t, s, q, x) = max
(δ+,δ−)

Et,s,q,x
[
− exp

{
−γ
(
X(T ) +Q(T )S(T )− ηQ2(T )

)}]
,

and stochastic controls (δ+, δ−). Assume further that the mid-price process

dS(t) = b(t, S(t))dt+ σ(t)dW (t)

satisfies
Et,s[S(T )] = α(t, T ) + sβ(t, T ) , ∀(t, s) .

Then:

1. With the linear approximation of the jumps, or equivalently using the HJB of the sub-solution u,
the optimal controls (δ+, δ−), spread ψ∗ and indifference price r∗ are

δ±∗ =
1

γ
log
(

1 +
γ

k

)
− θ2 ± (θ1 − s+ 2qθ2) , ψ∗ =

2

γ
log
(

1 +
γ

k

)
− 2θ2 , r∗ = θ1 + 2qθ2 ,

where

θ0(t) =
2A

k + γ

(
1− k

γ
log
(

1 +
γ

k

)
− kη

)
(T − t)− kγA

k + γ

∫ T

t

{∫ T

ζ

σ2(ξ)β2(ξ, T )dζ

}
dξ ,

θ1(t, s) = Et,s[S(T )] ,

θ2(t) = −η − 1

2
γ

∫ T

t

σ2(ξ)β2(ξ, T )dξ .

2. If u(t, s, q, x) is the (unique) solution of the HJB equation then

u(t, s, q, x) := − exp
{
−γ
(
x+ θ(t, s, q)

)}
, θ(t, s, q) = θ0(t) + qθ1(t, s) + q2θ2(t)

is a sub-solution of the HJB equation and u(t, s, q, x) ≤ u(t, s, q, x).

Remarks

• The linear approximation of the jumps turns out to be independent of q, although for higher orders
this is no longer true. This means that we are not performing perturbation methods and asymptotic
expansions on the (discrete) variable q when we solved the approximate verification equation. Of
course, if we want to solve the real HJB problem then we need to take into account the discrete
variable q, which leads to an infinite system of equations as in Lehalle et al [4].

• In the case of η = 0 the inventory penalty tends to zero as t→ T . This implies that the penalisation
is not stong enough to force the market-maker to finish her day with a flat inventory, as it will be
shown in the numerical simulations. Therefore, it was necesary to add an ”inventory-risk” parameter
η > 0 in order to ensure a flat inventory at the end of the day.
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Examples

• If S(t) is an arithmetic Brownian motion with drift, i.e.

dS(t) = bdt+ σdW (t)

then
Et,s[S(T )] = s+ b(T − t) ,

which implies that

θ1 = s+ b(T − t) , θ2 = −η − 1

2
γσ2(T − t) .

In consequence, the optimal controls are

δ±∗ =
1

γ
log
(

1 +
γ

k

)
+ η +

1

2
γσ2(T − t)±

(
b(T − t)− q[2η + γσ2(T − t)]

)
,

ψ∗ =
2

γ
log
(

1 +
γ

k

)
+ 2η + γσ2(T − t) ,

r∗ = s+ b(T − t)− q
(

2η + γσ2(T − t)
)
.

In particular, if b = η = 0 we recover the results of Avellaneda and Stoikov [1].

• If S(t) is an Ornstein-Uhlenbeck process, i.e.

dS(t) = a(µ− S(t))dt+ σdW (t)

then
Et,s[S(T )] = se−a(T−t) + µ

(
1− e−a(T−t)

)
,

which implies that

θ1 = se−a(T−t) + µ
(

1− e−a(T−t)
)
, θ2 = −η − γσ2

4a

(
1− e−2a(T−t)

)
.

In consequence, the optimal controls are

δ±∗ =
1

γ
log
(

1 +
γ

k

)
+ η +

γσ2

4a

(
1− e−2a(T−t)

)
±

(
(µ− s)

(
1− e−a(T−t)

)
− q

[
2η +

γσ2

2a

(
1− e−2a(T−t)

)])
,

ψ∗ =
2

γ
log
(

1 +
γ

k

)
+ 2η +

γσ2

2a

(
1− e−2a(T−t)

)
,

r∗ = se−a(T−t) + µ
(

1− e−a(T−t)
)
− q

(
2η +

γσ2

2a

(
1− e−2a(T−t)

))
.
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Solving the nonlinear equation: Lehalle’s approach

Assuming that S(t) is a Brownian motion, Lehalle et al [4] found that the solution u(t, s, q, x) of the
nonlinear problem can be explicitly found, but that study can be easily extended to aritmetic Brownian
motions with time-dependent volatility and drift.

Suppose that the mid-price process is of the form

dS(t) = b(t)dt+ σ(t)dW (t) ,

where b(t) and σ(t) are uniformly bounded in [0, T ]. Let η > 0 and make the ansatz

u(t, s, q, x) = − exp{−γ(x+ qs− ηq2)}vq(t)−γ/k ; vq ∈ C1(0, T ) , q ∈ Z . (34)

Following Lehalle et al [4] it can be shown that the optimal quotes are

δ+∗ =
1

γ
log
(

1 +
γ

k

)
+

1

k
log

(
vq(t)

vq−1(t)

)
,

δ−∗ =
1

γ
log
(

1 +
γ

k

)
− 1

k
log

(
vq+1(t)

vq(t)

)
,

where (vq(t))q∈Z solves the (infinite) ODE system

v′q(t) =

(
kγq2

2
σ2(t)− γqb(t)

)
vq(t)−

(
A

(
1 +

k

γ

)−1−k/γ)(
vq+1(t) + vq−1(t)

)
, (35)

vq(T ) = e−kηq
2

.

Lehalle et al [4] used a constructive proof to show that (35) has a unique, strictly positive solution in

C∞
(

[0, T )); `2(Z)
)

. However, this result can be easily proven in a non-constructive fashion.

Let E be a Banach space and consider a system on E of the form

v′q(t) = Fq(t, v(t)) , (36)

vq(T ) = vq,T > 0 ,

where F (t, v) = (Fq(t, v))q∈Z : [0, T ] × E → E is Lipshitz in v uniformly in t ∈ [0, T ]. Applying the

Cauchy-Picard Theorem and the maximum principle for ODEs on the Banach space C1
(

[0, T );E
)

yield

existence, uniqueness and positivity of the solution v of (35) (see e.g. Brézis [2]). Unfortunately, since
the linear function F corresponding to (35) is proportional to q2, we cannot apply the Cauchy-Picard
Theorem directly. However, if we define

E = `∞(Z) , F :=

{
v ∈ E : sup

q∈Z
q2vq < +∞

}
, (37)

then for t fixed we have that F (t, ·) : F → E is linear and bounded, and the bound is uniform in t.
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Therefore, F (t, v) is Lipschitz in v, uniformly in t. In consequence, we can now apply the Cauchy-Picard
Theorem to ensure that there exists a unique positive solution of (35).

Remarks on Lehalle’s approach

• If instead of the Banach spaces in (37) we use the Hilbert spaces

E = `2(Z) , F :=

v ∈ E :
∑
q∈Z

q2vq < +∞

 , (38)

we recover the framework of Lehalle et al [4].

• Our proof is non-constructive, which implies that we cannot provide explicit asymptotic estimates
of the solution v = (vq)q∈Z. Lehalle et al [4], on the contrary, constructed the operator explicitly,
and thus they were able to show the asymptotic behaviour of v based on the spectrum of the linear
operator.

• From the ansatz (34) we see that the coefficients in the ODE system (35) cannot depend on s. This
rules out mid-price processes whose drift and volatility depend on s, e.g. Ornstein-Uhlenbeck and
geometric Brownian Motion. However, arithmetic Brownian motions with time-dependent drift and
volatility can be used.

6 Numerical Simulations and sample paths

We performed several simulations of the optimal market-making strategy, i.e. the spread ψ∗ and the
indifference price r∗, under an Ornstein-Uhlenbeck mid-price process, i.e. a mean-reverting price dynamic
of the form

dS(t) = a(µ− S(t))dt+ σdW (t) .

We considered four strategies: linear/exponential utility and mean-reverting /martingale market-making
assumption. This allows us to assess the effect of the directional bet µ on the PnL of the market-making
strategy. The parameters we used are k = 100, A = 1500, T = 1 (which corresponds to one trading day),
n = 1000 (which corresponds to 1000 trades per day, approx. one every 30 seconds), S(0) = 1, σ = 0.05
(daily volatility of 5%), a = 1 and η = 0.0001 (which is a very small inventory-risk aversion but enough
to force the inventory to end the day flat in average). Under this parameters we have a constant linear
spread of ψ∗ = 0.0202 whilst the exponential spread is time-dependent.

We chose three different values of µ: 0.98, 1.00 and 1.02. This corresponds, respectively, to a bet
that the price will go down by 2%, will oscillate around its open price or go up by 2%. We used the
linear utility function with inventory penalty and two strategies, a mean-reverting strategy (Ornstein-
Uhlenbeck) with the correct directional bet, and the martingale strategy (aritmetic Brownian motion)
with no directional bet. The martingale strategy performs a pure market-making strategy under inventory
constraints. On the other hand, the mean-reverting strategy performs the same market-market strategy
than the martingale but it also places directional bets, which can be seen not only in the agressiveness
of the ask and bid quotes but also in the fact that the algorithm can place market orders.
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Figure 1. Simulation of the market-making strategy under a mean-reverting mid-price dynamic with
(asymptotic) mean µ = 0.98. Upper-Left: mid-price (black), optimal ask quote for the market-maker

(dark blue), optimal bid quote (light green), µ (light blue). Lower-Left: Inventory for the
mean-reverting process (black) vs the inventory for the martingale (blue). Upper-Right: cash.

Lower-Right: PnL of the mean reverting process (black) compared with the benchmark, i.e. the PnL
of the martingale strategy (blue).

In Figure 1 we have plotted a realisation of the market-making strategy for µ = 0.98, i.e. assuming
that the price will go down by 2% at the end of the day. If the market mid-price –black line– is above
(resp. below) the optimal ask quote –dark blue– (resp. the optimal bid quote –light green–) then the
market-maker sells (resp. buys) at market price, which we assume to coincide with the mid-price.

• The mid-price starts at s = 1.00, it goes up to s = 1.03 at t = 0.1 and stays above s = 1.01 up
to t = 0.2. Since the bet is that the price will converge down to µ = 0.98, the market-maker sells
the asset at market price. At t = 0.2 the market-maker has an inventory of q = −170 and a PnL
below the martingale benchmark: as she sold her assets at the market price (mid-price), she paid
the spread to mount her directional bet.

• During the time interval (0.20, 0.50) the market-maker buys back her position via limit-orders. In
order to favour the arrival of selling orders and deter buying orders she plays very aggressive bid
quotes and very conservative ask quotes, hence the mid-price is closer to her bid quote than her
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ask quotes. The strategy paid well because at t = 0.5 the mid-price converged to µ = 0.98, her
inventory went back to zero and her PnL outperformed the martingale benchmark.

• On (0.50, 1.00) the market-maker does not make any directional bet, she only plays the bid-ask
spread because the mid-price oscillates around µ = 0.98. As it can be seen, her bid and ask quotes
are rather symmetric with respect to the mid-price, i.e. during all this non-directional period the
strategy makes the same PnL than the martingale benchmark because both lines are almost parallel.

Figure 2. Simulation for µ = 1.00.

In Figure 2 the market-maker assumes that the price will oscillate around µ = 1.00. Therefore,
her quotes are symmetric near this threshold and are tilted when the prices wander far from it (i.e. she
makes mean-reverting bets). Therefore, her inventory oscillates from positive on (0.00, 0.2) to negative
on (0.25, 0.45), then back to positive and negative again. On (0.85, 1.00) there is a huge drop in the
mid-price, which in absence of inventory risk would imply a consequent positive inventory due to the
mean-reverting dynamic. However, the inventory-risk-aversion forces her to avoid a directional bet at the
end of the day, and as such her strategy is similar to the martingale case. It is worth to mention that
the mid-price finished the day below the target of 1.00. In consequence, the market-making strategy is
insensitive to peaks at the end of the day.
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Figure 3. Simulation for µ = 1.02.

In Figure 3 the market-maker assumes that the price will converge to µ = 1.02. On (0.00, 0.10)
she mounts an inventory of q = 50 because she bets the mid-price will hit µ = 1.02. She eliminates
her inventory during (0.20, 0.40) using limit-orders with generous ask prices and not-very competitive
bid prices, which translates into a greater flow of buying orders than selling orders. At t = 0.20 we can
see that her directional bet has beaten the martingale benchmark. On (0.40, 0.70) the mid-price rises
from µ = 1.02 and comes back, and since the market-maker is betting for a mean-reverting dynamic
she builds up an inventory of q = −90 at t = 0.55. On (0.85, 1.00) the mid-price falls, but instead of
making a U-turn in her inventory and turn it positive, as a mean-reverting dynamic suggests, she rather
eliminates slowly her negative inventory by tilting her quotes towards the buying side. By doing so the
market-maker avoids directional bets and minimises her market impact at the end of the trading day.

7 Statistics of the PnL distributions

Comparing linear and exponential utility strategies

We performed 100,000 simulations with η ∈ {0, 0.0001, 0.001}, γ = 1 and µ ∈ {0.98, 1.00, 1.02}. The rest
of the parameters have the same values as for the previous simulations.
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linear ABM linear MR exp ABM exp MR
PnL mean 11.039 14.290 10.668 11.084

std dev 1.013 13.678 0.356 0.520
skewness 0.075 -0.550 0.026 -1.008
kurtosis 5.721 4.692 3.043 6.176

Jarque Bera 30947.9 16970.7 19.1 58949.6
VaR 5% 9.430 -10.909 10.086 10.177
VaR 1% 8.346 -25.726 9.842 9.465

Inv mean 0.087 -333.297 0.004 -3.311
std dev 33.258 418.200 7.672 15.227
skewness -0.005 0.622 0.003 0.007
kurtosis 2.981 2.346 3.001 3.010

Jarque Bera 1.8 8232.0 0.2 1.3
Q(T) 90% [-55,55] [-847,463] [-13,13] [-28,22]

Table 1A. Statistics of the PnL distribution. µ = 0.98, η = 0.

linear ABM linear MR exp ABM exp MR
PnL mean 10.982 11.576 10.607 10.945

std dev 0.412 1.541 0.347 0.444
skewness 0.023 -2.164 0.038 -0.605
kurtosis 3.016 11.418 3.007 4.460

Jarque Bera 10.2 373263.9 24.7 14982.6
VaR 5% 10.308 8.640 10.041 10.183
VaR 1% 10.026 5.794 9.809 9.691

Inv mean -0.020 -1.739 0.008 -0.785
std dev 5.025 8.428 4.574 5.696
skewness 0.006 0.004 -0.001 -0.003
kurtosis 3.024 2.995 2.965 3.000

Jarque Bera 3.0 0.4 5.2 0.2
Q(T) 90% [-8,8] [-16,12] [-8,8] [-10,9]

Table 1B. Statistics of the PnL distribution. µ = 0.98, η = 0.0001.
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linear ABM linear MR exp ABM exp MR
PnL mean 10.435 10.494 10.000 10.234

std dev 0.336 0.364 0.324 0.342
skewness 0.023 -0.158 0.037 -0.034
kurtosis 3.013 3.306 3.021 3.073

Jarque Bera 9.5 806.5 24.3 41.2
VaR 5% 9.886 9.889 9.470 9.672
VaR 1% 9.659 9.594 9.252 9.426

Inv mean -0.001 -0.018 0.005 -0.020
std dev 1.667 1.680 1.674 1.673
skewness -0.011 -0.014 -0.010 -0.001
kurtosis 3.004 3.030 3.022 3.029

Jarque Bera 2.2 7.1 3.6 3.5
Q(T) 90% [-3,3] [-3,3] [-3,3] [-3,3]

Table 1C. Statistics of the PnL distribution. µ = 0.98, η = 0.001.

linear ABM linear MR exp ABM exp MR
PnL mean 11.030 13.457 10.670 11.039

std dev 0.992 11.708 0.356 0.501
skewness 0.014 -0.676 0.022 -0.864
kurtosis 5.666 5.176 2.996 5.632

Jarque Bera 29607.8 27355.7 8.4 41315.1
VaR 5% 9.460 -8.180 10.086 10.167
VaR 1% 8.368 -22.205 9.850 9.524

Inv mean -0.021 0.055 -0.013 0.031
std dev 33.126 468.213 7.682 15.245
skewness -0.009 0.000 0.007 0.007
kurtosis 2.990 1.849 3.024 2.988

Jarque Bera 1.8 5523.2 3.2 1.5
Q(T) 90% [-55,55] [-732,731] [-13,13] [-25,25]

Table 2A. Statistics of the PnL distribution. µ = 1.00, η = 0.
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linear ABM linear MR exp ABM exp MR
PnL mean 10.982 11.453 10.606 10.913

std dev 0.411 1.317 0.345 0.433
skewness 0.029 -2.070 0.036 -0.554
kurtosis 3.031 10.934 2.992 4.443

Jarque Bera 17.7 333649.4 22.1 13802.7
VaR 5% 10.312 8.956 10.043 10.178
VaR 1% 10.037 6.601 9.813 9.699

Inv mean -0.006 -0.046 0.016 -0.018
std dev 5.034 8.378 4.570 5.664
skewness -0.003 0.006 0.008 -0.001
kurtosis 2.992 2.974 3.008 2.969

Jarque Bera 0.5 3.4 1.5 4.0
Q(T) 90% [-8,8] [-14,14] [-7,8] [-9,9]

Table 2B. Statistics of the PnL distribution. µ = 1.00, η = 0.0001.

linear ABM linear MR exp ABM exp MR
PnL mean 10.436 10.483 10.000 10.226

std dev 0.335 0.356 0.325 0.338
skewness 0.031 -0.097 0.031 -0.023
kurtosis 3.001 3.162 2.988 3.069

Jarque Bera 15.5 266.4 16.5 28.6
VaR 5% 9.888 9.889 9.469 9.668
VaR 1% 9.658 9.623 9.246 9.431

Inv mean -0.011 -0.009 0.005 0.006
std dev 1.673 1.684 1.672 1.676
skewness 0.006 -0.004 -0.001 0.002
kurtosis 3.026 2.992 3.025 3.026

Jarque Bera 3.6 0.5 2.7 3.0
Q(T) 90% [-3,3] [-3,3] [-3,3] [-3,3]

Table 2C. Statistics of the PnL distribution. µ = 1.00, η = 0.001.
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linear ABM linear MR exp ABM exp MR
PnL mean 11.038 14.230 10.670 11.081

std dev 1.011 13.653 0.356 0.522
skewness 0.015 -0.554 0.021 -0.987
kurtosis 5.638 4.702 2.986 5.941

Jarque Bera 29009.6 17181.5 8.0 52288.0
VaR 5% 9.435 -10.866 10.084 10.168
VaR 1% 8.332 -26.196 9.849 9.451

Inv mean 0.045 335.118 -0.013 3.297
std dev 33.253 417.302 7.641 15.295
skewness 0.008 -0.626 -0.003 0.006
kurtosis 3.004 2.358 3.024 2.992

Jarque Bera 1.2 8241.5 2.5 0.9
Q(T) 90% [-55,55] [-459,847] [-13,13] [-22,28]

Table 3A. Statistics of the PnL distribution. µ = 1.02, η = 0.

linear ABM linear MR exp ABM exp MR
PnL mean 10.982 11.581 10.605 10.945

std dev 0.412 1.517 0.345 0.446
skewness 0.031 -2.074 0.028 -0.647
kurtosis 3.052 10.611 3.011 4.642

Jarque Bera 27.2 313076.3 13.9 18207.8
VaR 5% 10.308 8.659 10.039 10.182
VaR 1% 10.026 5.977 9.807 9.662

Inv mean -0.003 1.712 0.005 0.795
std dev 5.024 8.420 4.574 5.681
skewness 0.001 -0.005 0.010 0.008
kurtosis 3.006 2.976 2.993 2.980

Jarque Bera 0.2 2.8 1.9 2.8
Q(T) 90% [-8,8] [-12,16] [-7,8] [-9,10]

Table 3B. Statistics of the PnL distribution. µ = 1.02, η = 0.0001.
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linear ABM linear MR exp ABM exp MR
PnL mean 10.436 10.495 10.000 10.234

std dev 0.335 0.365 0.326 0.342
skewness 0.038 -0.154 0.033 -0.061
kurtosis 3.004 3.348 2.990 3.103

Jarque Bera 24.0 901.2 18.5 106.9
VaR 5% 9.890 9.889 9.468 9.669
VaR 1% 9.666 9.598 9.252 9.414

Inv mean 0.006 0.022 -0.006 0.018
std dev 1.678 1.677 1.672 1.671
skewness 0.002 -0.001 -0.018 -0.001
kurtosis 3.001 3.030 3.027 3.023

Jarque Bera 0.0 3.8 8.5 2.2
Q(T) 90% [-3,3] [-3,3] [-3,3] [-3,3]

Table 3C. Statistics of the PnL distribution. µ = 1.02, η = 0.001.

In Tables 1A-3C we see that for η = 0 the ABM case has an intrinsic inventory control: its mean
is zero and the Jarque-Bera test cannot reject the normality hypothesis. However, the MR case has a
very strong inventory risk: the market-maker ends with more than 300 shares on her pocket at the end
of the day, in the direction she anticipated the market would trend. Moreover, the parameter η is very
effective in controlling the inventory risk. Indeed, from η = 0 to η = 0.0001 and η = 0.001, in the case of
a directional bet the inventory goes from ±335 to ±2 and 0, respectively.

It is important to remark that none of the the PnL distributions are not normal, but in all cases the
inventory distributions can be considered as Gaussian because of their low Jarque-Bera scores.

The effect of η on the linear-utility strategy

From the previous section it was not clear the role of η on the PnL distribution. We tested here the
hypothesis that η must have some indirect control on the PnL distribution. In order to prove our claim
we performed 20,000 Monte-Carlo simulations for µ = 1.00. The rest of the parameters are as before.
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Figure 4. Histogram of PnL as function of η for linear utility function (µ = 1.00). Blue: Linear
martingale. Red: Linear MR. Upper-Left: η = 0, Lower-Left: η = 0.0001, Upper-Right: η = 0.0004,

Lower-Right: η = 0.001.

Martingale η = 0 η = 0.0001 η = 0.0004 η = 0.001
mean 11.035 13.386 11.452 10.930 10.474

std dev 1.002 11.800 1.320 0.473 0.356
skewness 0.009 -0.645 -2.037 -0.810 -0.131
kurtosis 5.754 5.153 10.346 5.100 3.189

Jarque-Bera 6,322.0 5,250.2 58,797.2 5,863.1 86.6
VaR 5% 9.447 -8.343 9.001 10.115 9.882
VaR 1% 8.306 -22.297 6.435 9.502 9.599
Q(T) 90% [-55,56] [-730,732] [-14,14] [-4,4] [-3,3]

Table 5. Statistics of the PnL distribution for linear MR as a function of η.

From Figure 4 and Table 5 we see that our guess was correct: as η > 0 increases, the PnL distribution
has smaller mean, smaller standard deviation, skewness closer to zero and bigger 1% and 5% quantiles
(the VaR). The case η = 0 seems to break this monotone behaviour in the skewness and kurtosis, but
this is only due to the fact that the standard deviation is too big compared with any of the cases with
η > 0. In fact, both the standard deviation and the VaR are gigantic when compared to the cases η > 0.

In summary, η controls directly the inventory but it also has indirect control on the PnL distribution.
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The effect of γ on the exponential-utility strategy

We wanted to see if γ can control directly the PnL distribution, as it is expected from an exponential
utility function due to its variance-reduction features. In order to assess the effect of γ separately from
η, we performed 20,000 Monte-Carlo simulations for η = 0 and µ = 1.00. The rest of the parameters are
as before.

Figure 5. Histogram of the PnL as a function of γ for an exponential utility function (µ = 1.00). Blue:
Linear martingale. Red: Exponential MR. Upper-Left: γ = 0.1, Lower-Left: γ = 0.3, Upper-right:

γ = 0.7, Lower-Right: γ = 1.0.

Martingale γ = 0.1 γ = 0.3 γ = 0.7 γ = 1
mean 11.023 12.609 11.581 11.193 11.039

std dev 0.977 3.862 1.230 0.611 0.493
skewness 0.055 -2.348 -1.881 -1.254 -0.808
kurtosis 5.411 13.242 10.143 6.939 5.185

Jarque-Bera 4,853.1 105,790.2 54,307.3 18,172.4 6,154.9
VaR 5% 9.421 6.225 9.273 10.044 10.186
VaR 1% 8.330 0.658 7.277 9.106 9.572

Q(T) 90% [-55,55] [-205,209] [-73,73] [-34,34] [-25,25]

Table 6. Statistics of the PnL distribution for exponential MR as a function of γ (η = 0).

From Figure 5 and Table 6 we see that our claim was correct: as γ increases, the PnL distribution
has smaller mean, smaller standard deviation, skewness closer to zero and bigger 1% and 5% quantiles
(the VaR). However, if we compare Tables 5 and 6 we see that the linear MR with η > 0 seems to have



High-frequency market-making with inventory constraints and directional bets 33

a better control on the standard deviation, skewness, kurtosis and VaR.

In summary, γ controls directly the PnL distribution and also has indirect control on the inventory,
but the effect of η seems to be stronger in both risk factors.

Comparing η = 0.0001 and γ = 0.3

From Figures 4-5 we have that the linear MR with η = 0.0001 and the exponential MR with γ = 0.3 seem
to have the same mode than the bechmark linear martingale. Here we compare these two distributions.
We performed 20,000 Monte-Carlo simulations for µ = 1.00 and kept the other parameters unchanged.

Figure 6. Comparing the PnL histograms for linear MR (η = 0.0001) and exponential MR (γ = 0.3).
Blue: Linear MR. Red: Exponential MR.

γ = 0.3 η = 0.0001 % change
mean 11.629 11.452 -0.0153

std dev 1.235 1.320 0.0691
skewness -1.832 -2.037 0.1121
kurtosis 10.165 10.346 0.0178

Jarque-Bera 53967.9 58797.1 0.0895
VaR 5% 9.305 9.001 -0.0327
VaR 1% 7.281 6.435 -0.1163
Q(T) 90% [-72,74] [-14,14] -0.808

Table 7. Statistical comparison between linear MR η = 0.001 and exponential γ = 0.3. The % change is
the variation of the linear MR with respect to the exponential MR, i.e. ”η/γ − 1”.

As we can see in Table 7, when we compare linear MR with exponential MR it seems that exponential
MR has better control on the PnL distribution: higher mean; smaller standard deviation, skewness and
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kurtosis; and higher quantiles at 1% and 5% (VaR). However, the inventory of exponential MR is way
too high compared with linear MR, around 5 times bigger.

8 Conclusions

On the market-making model

• In Theorem 4 we generalised the Avellaneda and Stoikov [1] approach for an exponential utility to
any Markov process, provided its conditional expectation Et,s[S(T )] is affine in s, which includes
processes like arithmetic Brownian motion with drift or Ornstein-Uhlenbeck process. This allowed
us to assess the effect of directional bets on the market mid-price on the PnL distribution of a
high-frequency market-maker. Moreover, we also showed that the results of Lehalle et al [4] can
be generalised to arithmetic Brownian motions with time-dependent drift and volatility, and that
their approach cannot be extended further due to the choice of the ansatz.

• If instead of an exponential utility function we choose a linear utility function with inventory
constraints, in Theorems 1-3 we showed that using the same stochastic-control approach we can
find the optimal controls (i.e. the market-maker bid and ask quotes) for very general Markov
processes, even with jumps (e.g. Lévy processes), provided the inventory-risk penalty π(s) is chosen
appropriately to ensure the boundedness of the value function u(t, s, q, x). Moreover, the optimal
controls in the linear case are independent of the volatility of the asset, which is very hard to
estimate for high-frequency data, and as such the linear case is easier to calibrate with real data
than the exponential case.

• Our approach, although based on optimal-control and nonlinear-PDE techniques, is very intuitive:
choose the right ansatz for the solution, compute the (implicit) controls, plug them into the equation,
separate the equation into smaller and easier parts and solve them all to have the explicit form of
the solution and the controls. Moreover, if the full equation is not explicitly solvable, approximate
the jump part due to inventory: the resulting control is thus optimal for a sub-solution, and as
such we are controlling the PnL utility function from below, which translates into optimal quotes
to reduce losses.

On the role of the parameters η and γ

• If η increases then the inventory risk decreases and eventually becomes negligeable. This was
expected because the parameter η was added as an inventory penalty. However, as a nice side effect
we have that η also reduces the risk on the PnL, in the sense that the variance and the kurtosis
of the PnL distribution decrease as η increases. In other words, η controls perfectly the inventory
risk, and by doing so it indirectly controls the PnL distribution.

• For γ we have the a similar effect, but the other way around. As γ increases the risk on the PnL
distribution decrease, in particular the first four moments and the VaR. Moreover, as a side effect
the inventory risk decreases as well. This implies that γ directly controls the PnL distribution and
indirectly controls the inventory risk.

• This mirror-like, intertwined role of η and γ highlights a intimate relation between inventory risk
and the risk on the PnL distribution: if one decreases then necessarily the other has to do the
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same. This implies that a market-maker who chooses to reduce the risk on her PnL distribution
necessarily reduces her inventory risk; conversely, a market-maker who reduces her inventory risk
also reduces the risk on her PnL distribution. However, this risk reduction also implies a reduction
on the average PnL.

• It seems that the control provided by η on the linear MR is better than the control provided by
γ on the exponential MR. However, this claim has to be taken with a grain of salt because, for
η = 0.0001 and γ = 0.3 (where qualitatively both distributions are comparable to the martingale
benchmark) the linear MR is less risky in terms of inventory whilst the exponential MR is less risky
in terms of PnL distribution. That said, our numerical simulations show that an increase on η
(from 0.0001 to 0.001) renders a more drastic reduction on inventory risk and stronger structural
changes on PnL distribution than an increase on γ of the same order of magnitude (from 0.1 to 1).

On the directional bets and the risk profiles

As we have shown in our simulations, there is a clear (and expected) relation between risk and reward.

• When the market-maker makes a directional bet she improves her PnL up to 25% with respect to
the martingale benchmark. However, by doing so she has to accept more risk, either on her PnL
distribution (measured in terms of variance, skewness and kurtosis) or on her inventory.

• After a directional bet, the market maker can trade some of her excess PnL (over the martingale
benchmark) for a direct control on her risks. If she chooses to gain direct control on her PnL
distribution directly (resp. inventory risk) then she gains some reduction on her inventory risk
(resp. PnL distribution), but the latter cannot be controlled directly. In that spirit, the market-
maker can choose to use an exponential MR strategy if she prices more dearly her risk on the PnL
distribution and a linear MR strategy if her biggest concern is the inventory risk.

• In summary, directional bets enhance the PnL of the market-maker but add extra risk on her
inventory and PnL distribution; both risks are positively correlated, so if she reduces one directly
the other is indirectly reduced as well. Therefore, a market-maker in practice has to assess three
factors, i.e. PnL increase, inventory risk and PnL distribution, in order to choose her optimal
trading strategy because, in the current set-up at least, there is no strategy that is optimal in all
three factors.

Further developments

• In our model there are no market orders, just limit orders. For the simulations we assumed that if
δ+∗ ≤ 0 (resp. δ−∗ ≤ 0) then the market-maker sends a selling (resp. buying) market order that is
executed at the mid-price, i.e. we assumed that the market spread is zero and the impact of market
orders on the PnL is half the market-maker’s spread.

• For a detailed market-impact analysis, we should add the market spread as another state variable
and consider that the market-maker’s limit orders affect both the market spread and the mid-price.
For example, if she improves the best ask (resp. bid) then she reduces the market spread by one
tick and pushes down (resp. up) the mid-price by half a tick.
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• Another possibility is to incorporate market orders directly into the model, making a clear dis-
tinction between them and limit orders. However, the current framework does not seem to be
easily extended for that purpose, which suggests that a new framework is needed. We are currently
working on that direction.

• We have assumed that the mid-price is continuous, which can be interpreted in the discretisation
for our simulations as assuming that the bid-ask spread of the market-maker is large with respect
to small changes on the mid-price. This is true for equities, but not for futures where the bid-ask
spread is in average 1-2 ticks, and in consequence the smallest price move can make our quotes
cross the spread. Therefore, another framework is necessary to deal with assets whose spread and
tick size are comparable. We will address this feature in a future work.
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