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Abstract

The full non-linear evolution of the tidal instability is studied numerically

in an ellipsoidal fluid domain relevant for planetary cores applications. Our

numerical model, based on a finite element method, is first validated by re-

producing some known analytical results. This model is then used to address

open questions that were up to now inaccessible using theoretical and exper-

imental approaches. Growth rates and mode selection of the instability are

systematically studied as a function of the aspect ratio of the ellipsoid and as

a function of the inclination of the rotation axis compared to the deformation

plane. We also quantify the saturation amplitude of the flow driven by the

instability and calculate the viscous dissipation that it causes. This tidal

dissipation can be of major importance for some geophysical situations and

we thus derive general scaling laws which are applied to typical planetary

cores.
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numerical simulations

1. Introduction1

Tides are large scale deformations induced by gravitational interactions2

that affect all the layers of a given planet or star. They play an important3

role in geo- and astrophysics and so, many studies are devoted to this subject.4

Their most obvious phenomena are of course the oceanic flows on Earth, but5

tides are also responsible for the intense volcanism on Io for instance. In stars6

but also in liquid planetary cores, tidal forcing induces an elliptical deforma-7

tion of the rotating streamlines that may excite a parametric resonance of8

inertial waves called the elliptical or tidal instability. This instability could,9

for instance, be responsible for the surprising magnetic field in Io (Kerswell10

and Malkus, 1998; Lacaze et al., 2006; Herreman et al., 2009) and for fluc-11

tuations in the Earth’s magnetic field on a typical timescale of 10,000 years12

(Aldridge et al., 1997). It may also have a significant influence on the orbital13

evolution of binary stars (Rieutord, 2003) and moon-planet systems (Le Bars14

et al., 2010).15

As described in the review of Kerswell (2002), the elliptical instability is16

a three-dimensional instability which may grow as soon as a rotating fluid17

possesses elliptical streamlines. As previously stated, it is due to a triadic18

parametric resonance between two inertial waves of the rotating fluid (Kelvin,19

1880) and the underlying strain field responsible for the elliptic deformation20

(Bayly, 1986; Waleffe, 1990). Such an instability has been found in many21

different contexts, including those where the strain field is due to vortex in-22

teractions or to elliptically deformed boundaries. It has thus been the focus23
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of numerous theoretical and experimental studies, devoted to the dynamics24

of two-dimensional turbulent flows (e.g. Widnall et al. (1974); Moore and25

Saffman (1975) or Haj-Hariri and Homsy (1997) for a viscoelastic fluid), to26

the stability of wakes (Leweke and Williamson, 1998a), to the dynamics of27

vortex pairs (Leweke andWilliamson, 1998b; Le Dizès and Laporte, 2002; Me-28

unier et al., 2002), and to the flow inside deformed rotating cylinders (Gledzer29

et al., 1975; Malkus, 1989; Eloy et al., 2000, 2003), ellipsoids (Gledzer and30

Ponomarev, 1977; Kerswell, 1994; Lacaze et al., 2004) and shells (Aldridge31

et al., 1997; Seyed-Mahmoud et al., 2004; Lacaze et al., 2005). More recently,32

magnetohydrodynamical effects of the elliptical instability have been inves-33

tigated, with applications in MHD turbulence (Thess and Zikanov, 2007) or34

in induction processes in planets (Lacaze et al., 2006; Herreman et al., 2009).35

From a numerical point of view, most studies have been devoted to the36

dynamics of deformed two-dimensional vortices in three-dimensional domains37

(e.g. Lundgren and Mansour, 1995; Sipp and Jacquin, 1998; Lacaze et al.,38

2007; Roy et al., 2007). For instance, the seminal paper of Pierrehumbert39

(1986) considered the growth of a perturbation on the planar velocity field as-40

sociated with an elliptical vortex inside a box with zero normal-flow boundary41

conditions, assuming periodicity in the axial direction; the linear eigenvalue42

problem was then solved by spectral methods, and the growth rate of the43

elliptical instability was found. Numerical studies in rotating containers are44

less numerous. Mason and Kerswell (1999) used a non-orthogonal elliptico-45

polar coordinate system in order to solve the flow in an elliptically deformed46

cylinder by spectral methods; the non-linear temporal evolution of two dif-47

ferent modes of the elliptical instability was calculated with no-slip boundary48

3
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conditions on the sidewalls and stress-free conditions on the top and the bot-49

tom of the cylinder. Seyed-Mahmoud et al. (2000) determined numerically50

the frequencies and the growth rates of the instability in both ellipsoid and51

ellipsoidal shell geometries using a linear Galerkin method, projecting the52

flow on a selected number of inertial waves. Finally, Shangli et al. (2007)53

studied the stability of self-gravitating compressible ellipsoidal fluid configu-54

rations and pointed out the occurence of the elliptical instability. However,55

to the best of our knowledge, the full non-linear evolution of the tidal in-56

stability in an ellipsoidal geometry has not yet been simulated numerically.57

This is the purpose of the present work, which aims at completing our pre-58

vious theoretical and experimental investigations (Lacaze et al., 2004, 2006;59

Herreman et al., 2009; Le Bars et al., 2010) in accessing global quantities of60

fundamental importance for planetary applications.61

In this paper, we focus on hydrodynamics only, leaving thermal and mag-62

netic field interactions with the tidal instability for further investigations (e.g.63

Cébron et al., 2010a). In section 2, the system and the numerical method64

are presented. The numerical model is validated by comparison with the65

theoretical results found in the literature, regarding the flow in a rotating66

sphere submitted to a small and fixed elliptical deformation. In section 3,67

we then study the influence of three additional complications of fundamental68

importance for geophysical applications: (i) the influence of the length of the69

ellipsoid along its rotation axis compared to the mean equatorial radius (i.e.70

the body oblateness in geophysical terms), (ii) the influence of a background71

rotation, corresponding to the orbital motion of the companion body respon-72

sible for the tidal deformation, and (iii) the influence of the inclination of73
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the rotation axis compared to the deformation plane (i.e. the obliquity). In74

section 4, we quantify systematically two large-scale quantities relevant for75

planetary applications, namely (i) the amplitude of the instability at satura-76

tion, and (ii) the power dissipated by the instability. General laws in terms77

of dimensionless numbers are derived and applied to typical planetary cores78

in section 5.79

2. Numerical model and its validation80

2.1. Definition of the system and description of the numerical method81

The present study takes place in direct continuity of our experimental82

studies of the elliptical instability in a deformed spheroid (Lacaze et al.,83

2004, 2006; Herreman et al., 2009; Le Bars et al., 2010). In these experi-84

ments, a hollow sphere of radius R, molded in a silicone cylinder, is filled85

with liquid and set in rotation at a constant angular velocity Ω about its86

axis (Oz), while it is slightly compressed by a quantity s along the axis87

(Ox), perpendicular to the rotation axis. The geometry is then a triaxial88

ellipsoid of axes (a, b, c) = (R − s, R + s, R), with an equatorial ellipticity89

ε = b2−a2

a2+b2
and a constant tangential velocity along the deformed boundaries,90

equal to ΩR at the equator. Such a configuration is a model for a liquid91

planetary core with no solid inner core (e.g. like the jovian moon Io or the92

early Earth), surrounded by a deformable mantle with a constant tangential93

velocity. Similarly, our numerical model studies the rotating flow inside an94

ellipsoid of axes (a, b, c) related to the frame (Ox,Oy,Oz), with a constant95

tangential velocity all along the boundary in each plane perpendicular to the96

rotation vector Ω (see the sketch in figure 1). In order to extend our previous97
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experimental study, the length c of the ellipsoid can be chosen independently98

of the other lengths a and b (with b > a). Moreover, the rotation axis of the99

ellipsoid can be inclined compared to the c-axis. Note however that in this100

paper, unless otherwise specified, we choose c equal to the mean equatorial101

radius Req = (a+ b)/2 and a rotation axis along (Oz), as in the experimental102

setup. In all simulations, the fluid is initially at rest and we suddenly impose103

at time t = 0 a constant angular rate Ω such that the tangential velocity104

along the deformed boundaries in each plane perpendicular to the rotation105

axis, is equal to Ω a′+b′

2
, where a′ and b′ are the axes of the elliptic bound-106

ary in this plane. In the following, results are non-dimensionalised using the107

mean equatorial radius Req as the length scale and Ω−1 as the time scale.108

Then five dimensionless numbers are used to fully describe the system: the109

Ekman number E = ν
Ω R2

eq

, where ν is the kinematic viscosity of the fluid,110

the ellipticity ε = b2−a2

a2+b2
of the elliptical deformation, the aspect ratio c/b111

which quantifies the oblateness of the ellipsoid, and finally the inclination θ112

and declination φ of the rotation axis. The problem numerically solved is113

then described by the following system of dimensionless equations:114

∂u

∂t
+ u · ∇u = −∇p+ E △ u− 2 Ω∗

c
× u, (1)

115

∇ · u = 0. (2)

where the no-slip boundary conditions are used for the fluid. Note that we116

work is the reference frame where the ellipsoidal shape is at rest, which is the117

inertial frame of reference in most of the paper. The Coriolis force −2 Ω∗

c
×u118

is only used in section 3.2 where the whole triaxial ellipsoid is submitted to119

a global rotation at Ω∗
c ez.120

6
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Usually, numerical studies of planetary cores benefit from their spherical121

geometry to use fast and precise spectral methods. In our case however,122

there is no simple symmetry. Our computations are thus performed with123

a standard finite element method widely used in engineering studies, which124

allows to deal with complex geometries, such as our triaxial ellipsoid, and125

to simply impose the boundary conditions. Note that a very efficient finite126

element method was recently introduced by Chan et al. (2010), but it is127

up to now restricted to spheroidal geometries (a = b). Using a commercial128

software1, an unstructured mesh with tetrahedral elements was created. The129

mesh element type employed is the standard Lagrange element P1 − P2,130

which is linear for the pressure field but quadratic for the velocity field. Note131

that no stabilization techniques have been used in this work. We use the so-132

called Implicit Differential-Algebraic solver (IDA solver), based on backward133

differencing formulas (Hindmarsh et al., 2005). At each time step the system134

is solved with the sparse direct linear solver PARDISO2.135

The elliptical instability induces a three-dimensional destabilization of the136

initial two-dimensional elliptical streamlines. To study its global properties,137

it thus seems natural to introduce the mean value of the vertical velocity138

W = 1
V

∫∫∫

V
|w| dτ , with w the dimensionless vertical velocity and V the139

volume of the ellipsoid. The typical evolution of W as a function of time is140

shown in figure 2 (a) for E = 1/500 and ε = 0.317. At t = 0, the fluid is at141

rest in the ellipsoid, and the no-slip condition at the boundary proceeds to142

set the fluid in rotation. The first peak in W, just after t = 0, is due to the143

1COMSOL Multiphysicsr

2www.pardiso-project.org
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Ekman pumping which appears during the spin-up stage, which typically144

takes place over the Ekman time tE = E−1/2 Ω−1, much faster than the145

viscous time scale tv = R2
eq/ν = E−1 Ω−1 (Benton and Clark, 1974). For146

instance, in the case shown on figure 2 (a), the dimensionless Ekman time147

gives Ω tE ≈ 22, which agrees with the numerical results. After this initial148

stage, the fluid is essentially in solid body rotation. From this state, the149

exponential growth of the instability can be seen, before an overshoot and150

a stationary saturation. Having defined the growth rate σ of the elliptical151

instability as the time constant of the exponential growth, a convergence152

study on this growth rate is given in the figure 2 (b). The number of degrees153

of freedom (DoF) used in most of the simulations of this work ranges between154

4 · 104 DoF and 7 · 104 DoF, depending on the ellipticity and the Ekman155

number, in order to reach a compromise between a good convergence (see156

figure 2 (b)) and a reasonable CPU time.157

2.2. Validation of our numerical simulations158

A first visual validation is done on the shape of the flow in comparing the159

experimental visualisation on figure 3 (a) with the numerical simulation on160

figure 3 (b). As can be seen, we recover the classical S-shape of the spin-over161

mode, which induces an additional solid body rotation of the fluid around the162

axis of maximum strain, i.e. perpendicular to the imposed rotation axis (Oz)163

and at an angle of about 45o compared to the deformation axis (Ox) (Lacaze164

et al., 2004). In order to quantitatively validate the numerical model, the165

evolution of the growth rate of the instability is compared in figure 4 to the166

8
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linear theory given in Lacaze et al. (2004) for small ellipticities :167

σ

ε
=

1

2
−K

√
E

ε
, (3)

where K is a constant equal to K = 2.62 in the limit of small ε (Hollerbach168

and Kerswell (1995); Lacaze et al. (2004)). Note that the second term on169

the right hand side of the equation 3 corresponds to the viscous damping of170

the growth rate due to the presence of Ekman layers near boundaries (see171

Kudlick, 1966; Hollerbach and Kerswell, 1995). The expression (3) allows to172

define a critical Ekman number for the onset of the instability equal to173

Ec =
( ε

2 K

)2

. (4)

Close to the threshold, the numerical results closely follow the linear analysis,174

for values of ellipticity as large as ε ≈ 0.5. Note in particular that all curves175

for various (ε, E) superimpose providing that σ/ε is expressed as a function of176

√
E/ε. This is especially interesting in order to apply our results to planets,177

whose very small E are not directly accessible by our numerical tool, but can178

be compensated for by large ε in simulations.179

Finally, for very large ellipticities (ε > 0.5), figure 4 shows that the growth180

rate decreases toward zero. The elliptical instability finally disappears for181

ellipticities greater than a critical value which depends on the Ekman number.182

The position of the maximum for the variation of σ with the ellipticity is183

around ε = 0.5, whatever the Ekman number is. This indicates that the184

decrease is probably due to geometrical effects related to the large value of185

ε, rather than to any viscous attenuation.186

9
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3. Systematic numerical studies of geophysical complexities187

3.1. Influence of the length of the ellipsoid along the rotation axis188

Having validated our numerical code, we can investigate the influence of189

the aspect ratio c/b on the instability for a given ellipticity in the equatorial190

plane and a given rotation rate around the axis (Oz). This is directly re-191

lated to geo- and astro-physical flows as oblateness of planets, like the Earth192

for instance, is most of the time much stronger than its tidal deformation,193

meaning that the rotation axis is also the smallest one. The situation is even194

more pronounced in certain stars, as for instance Regulus A whose diame-195

ter is about 32% greater at the equator than the distance between its poles196

(McAlister et al., 2005).197

Early theoretical work on this aspect was done by Kerswell (1994), who198

considered the inertial wave basis of an oblate spheroid (a = b) and calculated199

the first 60 subharmonic exact resonances and their growth rate for small200

ellipticities depending on the value of c (see also Kerswell and Malkus, 1998,201

for a special application to the case of Io). An explicit theoretical answer202

for the growth rate has also been found by Gledzer and Ponomarev (1992),203

starting from the base flow204

ub = −a

b
y ex +

b

a
x ey, (5)

and looking for inviscid perturbations that are linear in space variables, cor-205

responding to the classical spin-over mode. Here, ex and ey are respectively206

the unit vectors of (Ox) and (Oy). In an open domain, the base flow (5)207

corresponds to elliptical streamlines with an ellipticity ε = b2−a2

b2+a2
as in our208

numerical model, but with a variable tangential velocity. As shown in figure209

10
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5, this base flow is a very good approximation of our configuration where we210

impose a constant tangential velocity on the elliptical boundary, outside a211

small boundary layer close to the external wall where recirculation cells take212

place. For such a flow, the inviscid growth rate determined by Gledzer and213

Ponomarev (1992) is:214

σ =

√

(b2 − c2)(c2 − a2)

(b2 + c2)(a2 + c2)
(6)

Note that this theoretical growth rate is valid for a ≤ c ≤ b only and is zero215

for c = b or c = a. Then the maximal theoretical growth rate σmax = b−a
a+b

is216

obtained for c =
√
ab. One can notice that expression (3) leading to σ = ε

2
217

in the inviscid case is recovered with a = Req + s and b = Req − s in the limit218

ε → 0. Note also that the experimental choice c = a+b
2
, equivalent to c =

√
ab219

for small ellipticities, results in the growth rate remaining very close to the220

maximum; for instance, even for an ellipticity of 0.7, the difference between221

the growth rate calculated for c = a+b
2

and the maximum value is only 2%.222

The numerical results are presented in figure 6. In order to compare them223

with the inviscid analytical prediction (6), a viscous damping term −K
√
E is224

added to the expression of the inviscid growth rate, similarly to the classical225

expression (3). Excellent agreement is then found for a ≤ c ≤ b, again226

validating our approach. However, a slightly different constant K = 2.5227

(instead of 2.62 in (6), valid in the limit of small ε) allows a better fit of228

our data. For strong deformations, this constant clearly depends on the229

considered ellipticity; for instance, a similar study performed at ε = 0.42230

implies K = 2.78. Nevertheless, one can notice that K always remains231

about the same order of magnitude. One can also notice that because of the232

11
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scattering in the numerical results presented in figure 4 (a), such a constant233

K = 2.5 works equally well. Hence in the following, we systematically use234

K = 2.5.235

In addition to the verification of the theoretical law of Gledzer and Pono-236

marev (1992), we are now in the position of exploring the range outside237

a ≤ c ≤ b, where other modes may grow that are not necessarily linear in238

space variables. As shown in figure 6, different modes of the elliptical insta-239

bility, characterized by their main frequency of oscillation, appear depending240

on the ratio c/b. In this view, the variation of the oblateness is similar to the241

variation of the aspect ratio in the case of an elliptically deformed cylinder242

(Eloy et al., 2003). Since the elliptical instability comes from the parametric243

resonance of two inertial waves of azimuthal wave number m and m+2 with244

the underlying strain field, the corresponding mode is written (m,m + 2)245

and is related to a pulsation of frequency ωmode = m + 1. For instance, the246

spin-over mode corresponds to the stationary mode (−1, 1) with half a wave-247

length along the axis of rotation. According to figure 6 (b), the mode (1,3)248

can be observed when c < b and the mode (0,2) when c > a. For even larger249

aspect ratio, the mode (-1,1) with a larger wavenumber than the spin-over250

takes place. Note however that because of the geometrical confinement, no251

stationary mode can be excited for c < b.252

3.2. Influence of a background rotation253

In geo- and astrophysics, the tidal deformation of a given body (planet,254

moon or star) is also in rotation because of the orbital motion of the com-255

panion body. The influence of this background rotation on the develop-256

ment of the elliptical instability has been studied theoretically, using short-257

12



Page 13 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

wavelength analysis (Craik, 1989; Leblanc and Cambon, 1997; Le Dizès, 2000)258

or normal mode analysis (Gledzer and Ponomarev, 1992; Kerswell, 1994),259

and also numerically for specific vortices such as Stuart vortices (Leblanc260

and Cambon, 1998; Potylitsin and Peltier, 1999) or Taylor-Green vortices261

(Sipp et al., 1999). It has been studied experimentally in deformed cylinders262

(Vladimirov et al., 1983; Le Bars et al., 2007) and ellipsoids (Boubnov, 1978;263

Le Bars et al., 2010). All these works show that the background rotation has264

a stabilizing effect on cyclones and a destabilizing effect on anticyclones, ex-265

cept when the background rotation almost compensates for the flow rotation,266

in which case the elliptical instability disappears.267

The theoretical expression of the growth rate for perturbations that are268

linear in space variables (i.e. corresponding to the classical spin-over mode)269

can be readily obtained by following the same method as Gledzer and Pono-270

marev (1992), but taking into account an additional Coriolis force coming271

from the background rotation at a given angular velocity Ωc = Ω∗
cΩ:272

σ =

√

(b2 − c2 + 2 Ω∗
c a b)(c2 − a2 − 2 Ω∗

c a b)

(b2 + c2)(a2 + c2)
. (7)

Actually, this is a particular case of the more general stability analysis de-273

tailled in Cébron et al. (2010b) for a precessing triaxial ellipsoid. The ex-274

istence range of this mode is now between c = b
√

1 + 2Ω∗
ca/b and c =275

a
√

1 + 2 Ω∗
c b/a and the maximal theoretical growth rate is now exactly ob-276

tained for c2

a b
= Ω∗

c +
√

1 + Ω∗
c (a/b+ b/a + Ω∗

c). In our numerical model,277

the addition of such a Coriolis force is straightforward and numerical results278

are presented in figure 7 (a). Again, they compare well with the theoretical279

prediction, providing that the viscous damping term, −2.5
√
E, found in sec-280

13
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tion 3.1 is added to the inviscid expression (7). Other modes are selected by281

the Coriolis force outside of the spin-over mode resonance band, as already282

observed experimentally by Le Bars et al. (2010).283

Finally, we can investigate how the oblateness and the background rota-284

tion interact with each others. Considering for instance an oblate ellipsoid285

with a ratio c/b such as the mode (1, 3) is selected in absence of background286

rotation, the spin-over mode is recovered when decreasing Ωc, as shown in287

figure 7 (b). More generally, we find that the (−1, 1) mode is the most un-288

stable one in the anticyclonic domain up to a value Ωc/Ωtot . −1 where the289

flow restabilises, in agreement with the conclusions of Le Bars et al. (2010).290

3.3. Influence of the obliquity of the ellipsoid291

In planetary cores, tidal deformations are aligned with the orbital plane292

rather than with the equatorial plane, which means that they are not or-293

thogonal to the rotation axis. Previous works do not take into account this294

phenomenon, even though the obliquity can be significant, e.g. 23◦26′ for295

the Earth. In this section, we thus investigate the effect of obliquity for the296

first time and consider that, as a first approximation, the shape of the body297

remains a triaxial ellipsoid.298

In the numerical model, the rotation axis is tilted and oriented along the299

unit vector kc = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)), where φ is its azimuth300

angle and θ its colatitude angle in spherical coordinates (fig. 1). In assuming301

for example that the rotation axis is tilted in the (Oxz) plane (i.e. φ = 0), we302

can study how the development of the elliptical instability changes depending303

on the obliquity θ. For θ = 0, one recovers the usual configuration with ε =304

b2−a2

b2+a2
and an aspect ratio c/b. For θ = π/2, one recovers results from section305
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3.1 in exchanging a and c, i.e. ε = |b2−c2|
b2+c2

and the aspect ratio is now a/b.306

In between, streamlines in planes perpendicular to the rotation axis are also307

elliptical, but their centers are not located along the rotation axis anymore,308

except in the equatorial plane z = 0. Besides the effective ellipticity measured309

in each plane now depends on z, the maximum being reached in the equatorial310

plane z = 0. Seen from this equatorial plane, the apparent length of the311

ellipsoid along the rotation axis is c̃ = ( sin
2 θ

a2
+ cos2 θ

c2
)
− 1

2 , whereas the great312

and small axes of the elliptical streamlines are respectively b̃ = b and ã =313

( cos
2 θ

a2
+ sin2 θ

c2
)
− 1

2 . One can then estimate the growth rate of the instability314

using formulas (3) or (6) with these apparent lengths. Numerical results for315

the spin-over mode compared with these approximations are presented in316

figure 8. Results agree well for obliquity up to θ ∼ 20◦. Then, the numerical317

growth rate significantly differs, probably because the geometry is very far318

from an apparent ellipsoid in rotation around one of its principal axes. It319

remains however between the two expressions proposed. Note that for the320

Ekman number studied here, we do not see the tidal instability reappearing321

around θ ∼ 90◦, which will however be the case at smaller Ekman number:322

as seen in section 3.1, in this case other modes could appear because of the323

modified oblateness.324

4. Scaling laws for global quantities of geophysical interest325

4.1. Scaling law for the amplitude of the flow driven by the instability326

The amplitude of the flow driven by the instability at saturation remains327

up to now an open question, mainly because it is determined by strong non-328

linear interactions. It is however an important quantity for geo- and astro-329
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physical applications, since it allows us to evaluate the influence of elliptical330

aspects compared to the other relevant ingredients of planetary dynamics,331

such as convection. In order to study the amplitude of the flow driven by the332

instability at saturation, we define the amplitude A∗ by the maximum value333

over the volume V :334

A∗ = max
V

||u− ub|| (8)

where u is the dimensionless velocity field and ub is the theoretical base335

flow defined in section 3.1. The evolution of A∗ as a function of the Ekman336

number is shown in figure 9 (a) for various ellipticities: it can be seen that337

A∗ is not zero below the threshold of the elliptical instability because of338

the differences around the outer bound between the theoretical base flow339

and the flow numerically obtained (see figure 5). Actually, the difference340

is maximal on the boundary, along the smallest equatorial axis where the341

theoretical velocity is maximal. There, the corresponding amplitude λ(ε) can342

be calculated theoretically :343

λ(ε) =
b

a+b
2

− 1 =
2

1 +
√

1−ε
1+ε

− 1 (9)

which only depends on ε. One then defines the amplitude of the flow driven344

by the instability by A = A∗ − λ(ε), which is equal to 0 below the threshold345

(fig. 9 (b)).346

Far from threshold, a secondary instability appears, which induces a sec-347

ondary dynamics superimposed on the primary state : e.g. typically, for348

ε = 0.317, E = 1/1500, c = a+b
2
, the spinover mode is no more stationary,349

and the flow is slightly oscillating around the spinover mean flow, at a pul-350

sation ωsec ≈ 1.4. Note that this is in agreement with Kerswell (2002) which351
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predicts that the primary elliptical instability should saturate and be stable352

only in a small strain window ε− εc = O(E). Thus, the amplitude A has to353

be averaged in time to smooth out the small scale fluctuations. Since those354

small-scale fluctuations take place on a typical time scale comparable to one355

revolution 2π/Ω, whereas the characteristic time for the tidal instability is356

the inverse of the growth rate, i.e. (Ω ε/2)−1, the averaging is performed357

about a typical time Ω−1
√

4π/ε corresponding to the geometrical mean of358

these two extreme values.359

With this definition, figure 9 (b) shows that all results collapse on the360

same generic law above the threshold providing that we use the variable361

Ec/E − 1. Far from threshold, the amplitude seems to saturate around 1,362

which means that the velocities generated by the tidal instability are com-363

parable to the imposed boundary rotation.364

One can notice that near the threshold, a square root A ≈ 0.6
√

Ec/E − 1365

fits the results, which is in agreement with a pitchfork bifurcation. Actually,366

this scaling law can be obtained analytically, starting from the simple model367

used in Lacaze et al. (2004) to describe the viscous non-linear evolution of the368

spinover mode. This model, first introduced by Hough (1895) and Poincaré369

(1910) for an inviscid solid-body rotation in a spheroid, reduces to:370

ω̇x = −α (1 + ωz) ωy − νso ωx (10)
371

ω̇y = −β (1 + ωz) ωx − νso ωy (11)
372

ω̇z = ε ωx ωy − νec ωz + νnl (ω
2
x + ω2

y) (12)

where ω is the rotation vector of the spinover mode, α = ε
2−ε

and β =373

ε
2+ε

. The damping terms are given by theory (no adjustable parameter):374
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νso = 2.62
√
E is the linear viscous damping rate of the spinover mode (first375

calculated by Greenspan (1968)), νec = 2.85
√
E is the linear viscous damping376

of axial rotation and νnl = 1.42
√
E is the viscous boundary layer effect on377

the non-linear interaction of the spinover mode with itself (see Greenspan378

(1968)). Even if this model does not take into account all the viscous terms379

of O(
√
E) or the non-linear corrections induced by the internal shear layers,380

it satisfyingly agrees with experiments, regarding the growth rate as well as381

the non-linear saturation (Lacaze et al., 2004). Thus, this model can be used382

with confidence to describe the viscous non-linear evolution of the spinover383

mode.384

After little algebra, we obtain a non-trivial stationary state for ε > 2νso,385

given by:386

ωx = ±
√

νec [
√
αβ − νso]

β ε− νnl [
√
αβ + β2/

√
αβ]

≈ ±
√

νec [ε− 2 νso]

ε2 − 2 νnl ε
(13)

387

ωy = ∓
√

νec [
√
αβ − νso]

α ε− νnl [
√
αβ + α2/

√
αβ]

≈ ∓
√

νec [ε− 2 νso]

ε2 − 2 νnl ε
≈ ∓ ωx (14)

388

ωz =
νso
ε

√
4− ε2 − 1 ≈ 2 νso

ε
− 1 (15)

where approximations are done assuming ε ≪ 1. Now, the amplitude A389

corresponds to the norm of the flow ω × r driven by the spinover mode.390

Then, near the threshold (ε ≈ 2 · 2.62
√
Ec and Ec/E − 1 ≪ 1), we obtain:391

A ≈
√

νec
2 (νso − νnl)

(

Ec

E
− 1

)

≈ 1.1

√

Ec

E
− 1 (16)

which is in good agreement with the numerical fit.392
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4.2. Scaling law for the viscous dissipation by the instability393

As explained for instance in Rieutord (2003) or in Le Bars et al. (2010),394

the energy dissipated by tides is a primordial quantity which directly influ-395

ences the orbital evolution and rotational history of a binary system during396

its synchronization. It is however poorly known (e.g. Williams, 2000; Touma397

and Wisdom, 1994). In most traditional models, fluid dissipation in the plan-398

etary core is supposed to be negligible. However this may not be the case399

when the elliptical instability is excited at a rather large amplitude, inducing400

important shears between the bulk of the fluid and the boundary. Our pur-401

pose here is to systematically quantify the variation of this dissipation with402

the ellipticity and the Ekman number.403

The dissipated power balance of the incompressible flow in the ellipsoid404

is given by:405

∫∫∫

V

∂

∂t

(

ρ
ũ2

2

)

dτ =

∫∫

S

(¯̄σv · n) · ũ ds−
∫∫∫

V

¯̄σv : ∇ũ dτ (17)

where ¯̄σv = η (∇ũ+ t∇ũ) is the viscous stress tensor of the newtonian406

fluid, S the surface of the ellipsoid, ũ = Ω Req u is the dimensionalized407

velocity field, ρ the volumic mass and η the dynamic viscosity of the fluid.408

In this section, we focus on the stationary spinover mode and then the two409

terms on the right side of equation (17) balance each others: the first one410

allows to maintain the rotation of the fluid by the no-slip conditions on the411

boundary while the second one is the volume dissipation P of the fluid. In412

the following, we use as a power scale the dissipated power during the spin-413

down stage of the equivalent sphere of radius Req and moment of inertia I∆414

(I∆ = 2/5MR2 for an homogeneous sphere of massM and radius R), i.e. the415
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kinetic energy of rotation Ec =
1
2
I∆ Ω2 divided by the Ekman time tE. Note416

that most of the dissipated power comes naturally from the boundary layers:417

its determination is thus a challenging task from a numerical point of view,418

and extra care must be taken regarding the convergence of the simulations,419

as shown for instance in figure 2 (b).420

Below the threshold, the dissipated power is not zero because of the re-421

circulation patterns of our base flow (see figure 5). This dissipation is due422

to the flow driven by the ellipticity, which scales as ε ΩR for small elliptici-423

ties. Then, the dimensionalized dissipated power below the threshold simply424

scales as425

∫∫∫

V

¯̄σv : ∇ũ dτ ∼ η ε2 Ω2 R3 (18)

which is confirmed by the dissipated power measured in our numerical sim-426

ulations below the threshold.427

Far from threshold, the model proposed by Le Bars et al. (2010) considers428

that the spin-over mode simply corresponds to a supplementary solid body429

rotation ΩSO outside the outer viscous boundary layer of thickness h =430

ξ
√

ν/ΩSO, ξ being a constant of order 1. Then, the dissipation is only431

located in this boundary layer, where the fluid rotation has to match the432

imposed velocity conditions at the outer boundary. With this simple model,433

the torque of the container on the fluid is Cm/c = −2 M ν R
h
ΩSO, and the434

power dissipated by the system is P = −2 M ν R
h
ΩSO

2, which can also be435

written P = −2
ξ
M R

√
ν Ω5/2 A5/2, where A is the dimensionless spin-over436

mode amplitude studied in the previous section. The dimensionless power437
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given by this model can finally be stated as438

Pdissip =
|P |

1
2
I∆ Ω3

√
E

=
10

ξ
A5/2, (19)

where, according to the previous section, A is about 1 in the small Ekman439

number limit studied here.440

The evolution of Pdissip measured in our numerical model is shown in fig-441

ure 10. It confirms the behavior predicted by (19) with a saturation far from442

threshold and ξ ≈ 1. This behavior is especially interesting for planetary443

applications, as will be studied in the following section.444

5. Orders of magnitude for planetary applications445

From a geophysical point of view, the results from the previous sections446

can be used to derive the orders of magnitude involved in planetary cores.447

Regarding the jovian moon Io, which is clearly unstable to the tidal instability448

and where the strong tidal dissipation is a topical question (Lainey et al.,449

2009), our numerical study confirms the first trends given by Le Bars et al.450

(2010), with however a numerically determined scaling factor of the order451

1/ξ ≈ 1 in the power dissipation estimates. Moreover, the most important452

result comes from the oblateness effects. Indeed, according to the data given453

in Kerswell and Malkus (1998), c/b ∼ 0.995 and a/b > 0.999, which means454

that the excited mode of the tidal instability in Io cannot be the spin-over455

mode, but has to be oscillatory. Note that this result is not modified when456

the background rotation is taken into account.457

A similar analysis can be done for the early Earth, with a Moon two458

times closer than today. In this case, the length of the day was around459
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10 hours according to Touma and Wisdom (1994) and the lunar tides were460

around eight times stronger, whereas the solar tides were about the same.461

Then, the actual tidal amplitude of 50 cm allows to estimate the ellipticity462

of the early Earth: ε ∼ 10−6. In considering a similar but totally molten463

core, we estimate Ec/E − 1 ∼ 70, which means that the early Earth’s core464

was clearly unstable to tidal instability, and that the tidal instability was465

then at saturation. Moreover, with an orbital period for the Moon (1/2)3/2466

shorter than the actual moon (Kepler’s Third Law), the dissipated power467

given by the model was around P ∼ 1018 W . This estimation seems huge468

in comparison with the present dissipation by tidal friction (∼ 3.75 · 1012 W469

according to Munk (1998)) but actually, it simply suggests that the Earth-470

Moon system was then in rapid evolution. Once again, the possible mode471

of the tidal instability was not the spin-over mode neither any stationary472

(−1, 1) mode, considering that the oblateness of the rapidly rotating early473

Earth was larger than the actual oblateness. In fact, we expect stationary474

modes to be only marginally excited in geophysical systems, limited to very475

peculiar configuration regarding the oblateness and the rotation of the tidal476

bulge.477

Note that computations similar to the ones presented here for an ellip-478

soidal geometry have been performed for an ellipsoidal shell in order to study479

the influence of a solid inner planetary core. Similar conclusions are then480

found regarding the physics of the tidal instability. Only a slightly larger481

dissipation term due to the presence of an inner viscous boundary layer has482

to be taken into account.483
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6. Conclusion484

This paper presents the first systematic numerical study of the tidal in-485

stability in a rotating ellipsoid. The numerical approach is a powerful tool to486

complete the knowledge derived from previous theoretical and experimental487

studies. The effects of oblateness, background rotation and obliquity, which488

lead to the selection of various instability modes, have been studied. We489

have also defined scaling laws regarding the amplitude of the flow driven by490

the instability and its viscous dissipation, which confirm the primordial role491

played by tidal effects at a planetary scale.492

Another fundamental geophysical issue regarding the elliptical instability493

is whether or not it can drive a planetary dynamo. The results presented494

herein show that the numerical approach is able to faithfully capture the495

physics of the hydrodynamic elliptical instability. Thus, the present work496

provides a solid basis to study the full MHD problem encountered in plane-497

tary core flows undergoing tidal instability. These flows can only be studied498

numerically due to their inherent complexity. Therefore, a next step will be499

to introduce the effects of a magnetic field in our model.500
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Figure 1: Sketch of the problem under consideration : a rotating flow inside a triaxial

ellipsoid of axes (a, b, c) related to a frame (Ox,Oy,Oz) with a constant tangential velocity

all along the boundary in each plane perpendicular to the rotation vector Ω.
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Figure 2: Simulations performed at E = 1/500 and ε = 0.317 for c = a+b
2

. (a) Time

evolution of the mean value of the vertical velocity, showing the spin-up phase (Ω tE ≈ 22),

the exponential growth of the tidal instability (see also in dotted line the exponential fit with

a growth rate σ = 0.352) and its saturation. (b) Convergence with the number of degrees

of freedom (DoF) of the growth rate σ and of the dissipated power Pdissip at saturation.

Results presented in (a) are computed for 42459 DoF.
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(a)

(b)

Figure 3: Validation of the numerical simulations. (a) Kalliroscopic visualization of the

spin-over mode in the meridional plane of maximum shear for E = 1/4000 and ε = 0.16.

The typical S shape of the rotation axis is due to the combination of the main rotation

imposed by the boundary and the spin-over mode. (b) Slices of the velocity field ||u||
and surface of iso-value ||u|| = 0.15 at saturation of the tidal instability for E = 1/344,

ε = 0.317, c = a+b
2

, and 49900 DoF. The classical S-shape of the spin-over mode is

recovered.
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Figure 4: Validation of the numerical simulations. (a) Evolution of the growth rate for

(E ≥ 1/2000, ε ≤ 0.95, c = a+b
2

) and comparison with the linear theory indicated by a

dashed line. The coefficient 2.62 comes from Lacaze et al. (2004) and is valid in the limit

of small ellipticity. Good agreement is found for values of ε up to 0.5. (b) Evolution of the

growth rate depending on the ellipticity for two values of the Ekman number E = 1/344

and E = 1/800 (ε ≤ 0.8, c = a+b
2

). As also seen in (a), the growth rate agrees with the

linear analytical analysis close to the threshold and then decreases for large values of the

ellipticity.
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Figure 5: Azimuthal velocity vθ for E = 1/95, ε = 0.1, c = a+b
2

. (a) Slice along (Oy)

at x = 0. (b) Slice along (Ox) at y = 0. (c) Slice in the equatorial plane of the vertical

component of the vorticity. Dashed lines in (a) and (b) correspond to the theoretical base

flow (5), which presents a variable tangential velocity along elliptical streamlines. Good

agreement is found with the numerical results, except in the small outer viscous boundary

layer, where recirculation cells take place to match the imposed constant velocity along the

boundary. Note in particular that the maximum velocity is not reached at the boundary

but within this viscous boundary layer.
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Figure 6: Influence of the length of the ellipsoid along the rotation axis on the mode

selection of the tidal instability (E = 1/688, ε = 0.317). (a) Variation of the growth rate.

(b) Variation of the main frequency of the selected mode determined by Fourier analysis

of its saturation state.
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Figure 7: Evolution of the growth rate in the presence of a background rotation for a

fixed ellipticity ε = 0.317 and a fixed value of the total Ekman number Etot =
ν

Ωtot R2
eq

=

10−3, where Ωtot takes into account the background rotation and the fluid rotation, i.e.

Ωtot = Ωc + Ω. (a) c = (a + b)/2, i.e. c/b = 0.86: the spin-over mode is then excited in

the absence of background rotation. Good agreement is found around this value with the

analytical solution (7). Further decreasing Ωc, other modes with smaller wavelength along

the rotation axis appear. (b) c/b = 0.65: the (1, 3) mode is then excited in the absence of

background rotation. Other modes can be excited: • represent the (1, 3) mode, N the spin-

over mode, � represent the (−1, 1) mode with one wavelength along the axis of rotation,

and ∗ are other modes. 37
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Figure 8: Evolution of the growth rate with the obliquity θ for E = 1/600 (fixed angular

rate) and two values of the ellipticity ε = 0.317 and ε = 0.42. The dashed dotted line and

the dashed line correspond to expression (6), taking into account the values of apparent axes

seen from the equatorial plane, whereas the dotted line and the continuous line correspond

to expression (3), simply considering the apparent value of the ellipticity seen from the

equatorial plane. The coefficient K for viscous corrections is determined at θ = 0◦ and

then kept constant.

38



Page 39 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1/E

A
*

 

 

ε = 0.21
ε = 0.32
ε = 0.42
ε = 0.6

(a)

−2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

E
c
 / E − 1

A

 

 

ε = 0.21
ε = 0.32
ε = 0.42
ε = 0.6
Eq. (16)

A ≈ 0.6
√

Ec/E − 1

(b)

Figure 9: Variation of the saturation amplitude of the flow driven by the elliptical instability

depending on the Ekman number, for various values of the ellipticity. (a) Maximum value

of the difference between the actual velocity and the theoretical base flow (5). (b) Maximum

amplitude of the tidal instability, corresponding to the previous values corrected to take into

account recirculation cells: all curves then superimpose when computed as a function of

Ec/E − 1.
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Figure 10: Viscous dissipation by the tidal instability, as a function of the distance from

threshold. The results collapse on a generic law and seem to converge towards a saturation

value far from threshold.
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