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Time properties are key requirements for the reliability of Safety Critical Real-Time Systems (RTS). UML and MARTE are standardized modelling languages widely accepted by industrial designers for the design of RTS using Model-Driven Engineering (MDE). However, formal verification at early phases of the system lifecycle for UML-MARTE models remains mainly an open issue. In this paper 1 , we present a time properties verification framework for UML-MARTE safety critical RTS. This framework relies on a propertydriven transformation from UML architecture and behaviour models to executable and verifiable models expressed with Time Petri Nets (TPN). Meanwhile, it translates the time properties into a set of property patterns, corresponding to TPN observers. The observer-based model checking approach is then performed on the produced TPN. This verification framework can assess time properties like upper bound for loops and buffers, Best/Worst-Case Response Time, Best/Worst-Case Execution Time, Best/Worst-Case Traversal Time, schedulability, and synchronization-related properties (synchronization, coincidence, exclusion, precedence, sub-occurrence, causality). In addition, it can verify some behavioural properties like absence of deadlock or dead branches. This framework is illustrated with a representative case study. This paper also provides experimental results and evaluates the method's performance.

Introduction

Safety Critical Real-Time Systems (RTS) have strong timing requirements concerning system's reliability. Model-Driven Engineering (MDE) allows verifying system's properties since the early phases of system lifecycle and iteratively improving the models according to the verification results. One important issue is how to assess the properties for semi-formal models. UML [START_REF]OMG Unified Modeling Language TM , Superstructure[END_REF] and its profile for modelling non-functional concerns, MARTE [START_REF]UML profile for MARTE: modeling and analysis of real-time embedded systems version 1[END_REF] are standardized modelling languages widely accepted by industrial designers for RTS. However, to our knowledge, no formal specification for the whole language is currently available. Thus, before verification, UML models must be transformed to executable and verifiable models, supported by state-of-the-art model checkers. Meanwhile, time properties must also be transformed to verifiable time assertions. A key issue in the use of model checkers is to avoid the combinatorial explosion of state space and to guarantee the verification method's performance. Combemale et al. have proposed in [START_REF] Combemale | A propertydriven approach to formal verification of process models[END_REF] to design Property-driven formal verification tools to handle many different kinds of properties for complex system models. The translation is thus dedicated to each kind of properties to improve verification performance. This work follows the same approach to design a time property verification toolset for UML-MARTE models of safety critical RTS.

This paper presents the resulting verification framework that can assess time properties like upper bounds for loops and buffers, Best/Worst-Case Response Time (B/WCRT), Best/Worst-Case Execution Time (B/WCET), Best/Worst-Case Traversal Time (B/WCTT), schedulability, and synchronization-related properties (synchronization, coincidence, exclusion, precedence, sub-occurrence, causality). In addition, it can verify some behavioural properties like absence of deadlock or dead branches. The framework relies on three steps.

Firstly, the property-driven transformation from UML-MARTE to Time Petri Nets (TPN). This method translates semi-formal UML models into executable TPN models for verification purpose. TPN [START_REF] Merlin | Recoverability of communication protocols-implications of a theoretical study[END_REF] is selected as the verification model, as it allows expressing and verifying time properties under both logical and chronometric time models. This framework uses the TINA toolset [START_REF] Berthomieu | The tool tina -construction of abstract state spaces for petri nets and time petri nets[END_REF] as model checker. in TPN are extended with a time constraint that controls the firing time. For example, transition T 1 is attached with time constraint [19,27]. When the token arrives at place P 1 , the local timer of T 1 starts. Between 19 and 27 time units, T 1 can be fired. This transformation covers UML architecture models (using the full Composite Structure Diagram) and behaviour models (using the full State Machine Diagram and a major subset of Activity Diagram). It is property-driven in order to limit the state space during model checking. Property-driven means that the transformation of some UML elements can be different depending on the assessed property; meanwhile the transformation does not conserve all the information in UML, but only those concerning the property verification. Another issue is raised from TPN theoretical limits. As model checking and reachability are undecidable in TPN when using stopwatch [START_REF] Berthomieu | Reachability problems and abstract state spaces for time petri nets with stopwatches[END_REF], the transformation method should avoid using stopwatches.

Secondly, the translation from time properties into time property patterns. Time properties are expressed using MARTE. These expressions cannot be directly verified by TPN model checker. The proposed method translates them into a set of verifiable property patterns, which are quantitative. Their values can be computed in our proposal by iterative use of the model checker relying on dichotomy search. The time property patterns are independent of both the user modelling language and the verification language, making the method reusable in other verification frameworks. To make our method practical for end users, we focus on the time properties at both the event and the task levels. For the synchronization-related properties, we introduce the concept of time tolerance, because two simultaneous events cannot be measured without errors in the real world. The related work CCSL [START_REF] André | Specification and verification of time requirements with ccsl and esterel[END_REF] focuses only on more symbolic time constraints at the event level without time tolerance.

Finally, the verification of time property patterns. The usual methods for verifying time properties in TPN rely mostly on LTL (Linear Time Logic), CTL (Computation Tree Logic) and µ-calculus. First, end users are not accustomed to their use. Second, these languages are not always powerful enough for some quantitative properties, in terms of both their semantic expressiveness and computation resource consummation. This issue is reduced by using the observerbased model checking. For one property pattern, an additional TPN structure extends the original TPN, then the reachability graph is generated using the highest abstraction. Complex LTL assertions become marking existence assertions, which can be cheaply computed. The observers do not change the original TPN's behaviour. This observer-based verification method relying on TPN is independent of the user modelling language, making it reusable.

This paper is structured as follows: Section 2 compares this proposal with the related works; Section 3 briefly presents the verification framework for UML-MARTE; Section 4 introduces a representative case study; Section 5 presents the property-driven transformation method from UML-MARTE models to the target TPN models; Section 6 proposes the time property translation method and the time property patterns verification method based on observers in TPN; Section 7 evaluates the proposed framework by verifying the time property in the case study and analyses the method's performance; Finally, comments on conclusion and further works are discussed in Section 8.

Related Works

Some works are also aimed to verify the properties in UML. The difference lies in the type of verification model and the capacity of the verification methods. Lilius and Paltor use the PROMELA language in [START_REF] Lilius | vuml: a tool for verifying uml models[END_REF] to specify UML models and exploit the SPIN model checker. This method did not involve LTL verification and the author thought SPIN is not the most efficient solution. André and Mallet use Esterel in [START_REF] André | Specification and verification of time requirements with ccsl and esterel[END_REF] as verification language. Although its time constraint specification language CCSL covers logical and chronometric constraint in UML, its verification approach only supports logical constraints so far to our understanding. Gagnon et al. translate UML diagrams into Maude language and verify deadlock property using LTL in [START_REF] Gagnon | Applying model checking to concurrent uml models[END_REF]. This work does not handle other time properties. In terms of performance, this work denotes that they still need to test this approach on larger examples. Knapp1 and Wuttke transform UML to a special class of timed automaton in [START_REF] Knapp | Model checking of uml 2.0 interactions[END_REF], then translate them to concrete programs for model checkers SPIN. It verifies the consistency between different system descriptions. This work does not concern the time aspect. Medina and Cuesta present in [START_REF] Medina | From composable design models to schedulability analysis with uml and the uml profile for marte[END_REF] MARTE2MAST, a tool that enables the extraction of schedulability analysis models and their direct analysis using MAST [START_REF] Gonzalez Harbour | Mast: Modeling and analysis suite for real time applications[END_REF]. It supports analysis by using simulation tool and static analysis techniques. It defines a complete package for system analysis including the scheduling algorithms. However, as the simulation is not exhaustive, it cannot prove the correctness in all possible cases. Shousha et al. describe in [START_REF] Shousha | A uml/marte model analysis method for uncovering scenarios leading to starvation and deadlocks in concurrent systems[END_REF] a search-based UML-MARTE model analysis method for starvation and deadlock detection. It uses genetic algorithms to search through the state space. As the genetic search method cannot ensure the building of the full state space including all the final states, this method cannot guarantee that the whole space will be exhaustively searched. It can detect errors but cannot prove their absence, which is a significant drawback for safety critical systems.

Petri Nets are powerful models for describing system behaviour and for verifying the properties. In [START_REF] Andrade | A methodology for mapping sysml activity diagram to time petri net for requirement validation of embedded real-time systems with energy constraints[END_REF] Andrade et al. map SysML Activity to ETPN (extended TPN with energy constraints) to estimate the energy consumption and the execution time of system. Compared with this work, the advantages of our work lie in 3 aspects: for the time property scope, we verify a large scope of time properties, while [START_REF] Andrade | A methodology for mapping sysml activity diagram to time petri net for requirement validation of embedded real-time systems with energy constraints[END_REF] covers only the execution time; for the transformation method, we propose the property-driven transformation method and consider both the architecture and the behaviour models, while [START_REF] Andrade | A methodology for mapping sysml activity diagram to time petri net for requirement validation of embedded real-time systems with energy constraints[END_REF] only considers the behaviour model; for the verification method, we propose a novel observer-based TPN verification method.

Overview of UML-MARTE Verification Framework

The objective of the UML-MARTE verification framework (Fig. 2) is to verify whether the design of UML-MARTE RTS Model satisfies the expected Time Property. The System Model consists of both Behaviour Model and Architectural Model. The former defines how the system will act and response to the outside world, while the latter describes the interconnection relation between sub-components of the system. In practice, the behaviour model is described 

Case study

We use a classical asynchronous RTS model, IMA-based airborne system, to present the application of the proposed methods. According to the general asynchronous message-driven pattern, the sender will regularly distribute data to the two receivers through the communication networks that have transfer delays and jitters. The receivers will do some computation. Fig. 3 The AFDX only guarantees the communication delay upper bound, which means that the delay varies in [t min , t max ]. Thus, it is obvious that the computation of calculators A and B are coincident only if the time tolerance is superior to (t max -t min ), which is twice of the network jitter. In some cases, however, we need to design some supplementary protocol between the receivers to decrease the coincidence time window in order to get better system robustness.

The designer implements a naive protocol relying on the hand shake paradigm of Fig. 4, in which the two receivers are distinguished by respectively setting as active and passive modes (Fig. 5). The active one, after getting the data from the sender, sends an asynchronous notification to the passive one and automatically waits for a fixed time duration to launch its computation. The passive one will start its redundant computation once it gets the notification from its active master. As the notification message is also passed by the same AFDX network, the designer could wonder if this protocol really solves the tolerance-reduction requirement. By modifying the wait time of the active receiver and the network jitter, the designer can use the proposed methods to verify whether the computations are still coincident under the new protocol, and then refine his design according to the verification results. In this case study, we illustrate how our approach helps verifying time properties and assists the protocol designer with guaranteed correctness and performance. We present the principles of the UML transformation method and illustrate the transformation for a significant subset of UML elements of both the architecture and behaviour models. Due to page limits, the complete transformation rules for UML Activity Diagram can be consulted in [START_REF] Ge | Time properties dedicated transformation from umlmarte activity to time petri net[END_REF]. The description of the UML State Machine Diagram transformation will be submitted later on.

Principles

The transformation approach is property-driven, aiming to limit the state space of model checking. The approach respects the following 6 principles:

1. The framework verifies each time property in one state space generation. This means one transformation keeps only the information for one property to be verified. 2. The transformation of one UML element may be different according to the time property.

3. For some UML elements not influencing time properties, the target TPN semantics can be standardized and homogeneous for all the properties. 4. The transformation should guarantee the consistency between high-level and lower-level models. However, a correct transformation here does not imply a 100% semantic preservation, but rather to ensure the semantics necessary for the property verification are preserved through the transformation. 5. The target TPN models should ensure high performance verification, especially for large-scale asynchronous applications. 6. The patterns resulted from each element transformation should be easy to assemble. This may degrease the verification performance. But it can be compensated later by a model optimization phase that eliminates the elements irrelevant to the verification.

Architecture Model Transformation

The architecture parts in the model aim to connect the different parts to build a whole system, using communication media or shared resource. The transformation method aims to replace each component of the architecture part by its relevant behaviour part, respecting a correct instance-mapping, context-based naming and their connection relationship. In the Composite Structure Diagram (CSD) from the case study, the significant elements are Part, Port and Connector. The others remain important, but due to page limits, we only describe the mapping rules for Part and Port in this paper.

Part There are two patterns for Part: hierarchical and primitive (Fig. 6). The behaviour is described, for the former, by the Part's inner structure, and, for the later, by the Part's associated behaviour model. For the hierarchic pattern, the architecture model is considered as a tree-like structure, and the mapping approach is applied recursively. Port Port is used to connect outside structure and inner behaviour. MARTE Alloc::Allocated profile is used to map the logical PIN in behaviour model and the physical Port in architectural model. Port is transformed to an empty TPN place to represent a data buffer concept. In a bad designed system, data quantity may overfill the buffer size, it is thus important to detect this undesired property before doing the verification, as this may cause an undecidable boundedness problem in TPN verification. In order to avoid a non-terminating verification problem, a supplementary structure is added (Fig. 7). It ensures that if the buffer is overfilled, it will raise an overflow. The overflow is represented by an ever-large marking that cannot exist in normal system. As TINA can detect on-the-fly any marking exceeding the pre-set threshold and stop state graph generation at once, this transformation method guarantees that all verification will finally terminate. 

No Explicit Inner Structure

Behaviour Model Transformation

A general transformation pattern is defined (see Fig. 8) to automate the assembly of the TPNs generated from the behaviour model. For all non-link elements in UML, the generated TPN must contain some C_IN transitions to connect with other predecessors in static model structure. In the same manner, some C_OUT places must exist to connect with its structural successors. The main elements in the UML Activity Diagram (AD) are related to control, action, resource, object, and connection. We present the transformation for OpaqueAction for system with single and multiple clocks (see later). An action is the fundamental unit of executable behaviour. It takes a set of inputs and converts them into a set of outputs. Depending on the abstraction level, an action could represent either a complex processing flow or a primitive one carrying out a computation. In UML-AD, there are 55 kinds of actions. Each kind covers a certain range of semantics for different usage. In order to focus on the core semantics related to time properties, we generalize the concept using the OpaqueAction.

Action Transformation Pattern

The transformation method is illustrated by Fig. In our study, we use strictly the physical time notion as the exact reference for both mono and multi-clock base system. As the method assumes each component has independent clock, the drawback is that it can be too strict for those devices that share a clock. We still decide to choose this abstraction paradigm, because in the verification viewpoint, this will only lead to a false-violation. It means that if a time property is satisfied under independent-clock hypothesis, it must be also satisfied in a shared-clock system. This sufficient but not necessary condition may only cause a performance tradeoff in practice, but never gives out a wrong verification result when property's proof is positive.

Mono-Clock Action

Translation and Verification of Time Property

The time properties should be translated into TPN-compatible analyzable formalism. In our case study, the property is the coincidence between two tasks. We illustrate the property translation and verification methods for this property. The translation for all the synchronization-related properties can be consulted in [START_REF] Ge | Verification of synchronization-related properties for uml-marte rtes models with a set of time constraints dedicated formal semantic[END_REF]. The verification of other properties will be presented in other papers.

Translation of Coincidence Property

Definition (Task Level Coincidence). Task X and Y are coincident if f. the n th occurrence of X occurs simultaneously with the n th occurrence of Y , n ∈ N. As shown in Fig. 10, the coincidence between two tasks is determinated by the coincidence between the Event start and the Event end of tasks. For the n th occurrence of task X and Y, if the two Event start are coincident and the two Event end are coincident within time tolerant δ, task X and Y are coincident. Formally, task coincidence is translated into the following 3 equivalent assertions.

X[i] X[i+1] Y[i] Y[i+1] Coincidence(X,Y, ) = true X Y X[i] X[i+1] Interleave Coincidence(X,Y, ) = false Y[i] Y[i+1]
Coincidence(X, Y, δ)

≡ ∀t ∈ R + : (|O(X t s ) -O(Y t s )| < 2) ∧ (|O(X t e ) -O(Y t e )| < 2) (1) 
∀t ∈ R + : (|T (X t s ) -T (Y t s )| < δ) ∧ (|T (X t e ) -T (Y t e )| < δ) (2) ∀i ∈ N * : (T (X i e ) + δ < T (Y i+1 s )) ∧ (T (Y i e ) + δ < T (X i+1 s )) (3) 
In the above assertions, X represents task; X a the inner event a of task X, particularly X s for start event, X e for end event; X i a the i th occurrence of inner event of task X; X t a the occurrence of X a which is the nearest (forward or backward) to the time instant t; T (X i a ) the occurring time instant of X i a ; T (X t a ) the occurring time instant of X t a ; O(X t a ) the occurrence count for X a at time t; and δ is the time tolerance for coincidence. There are 4 time property patterns in the assertions (Table 2). The task-level property is then represented by a set of event-level property patterns. To assess the time property, the observer pattern is added into the original TPN, and then the TINA model checker is used to verify the observer-dedicated LTL/CTL/Marking assertions for the TPN. As model checking significantly consumes time and memory resource, we use the following 2 approaches to ensure the verification performance.

-When doing the model checking, the TPN shall perform the highest possible abstraction to unfold the reachability graph. This high abstraction model should preserve the desired time property. The model-checking is on-the-fly. -Each assertion's verification is independent in terms of reachability graph generation, so a parallel computation is possible.

We choose one of the property patterns, |T (a t ) -T (b t )| < δ, to illustrate the verification method. The principle of deciding whether two events are always occurring in a given bound is to find out whether one could advance another by time δ.

An observer pattern (Fig. 11) is added in the original TPN. The middle transition will always instantly neutralize the tokens from the places Occ A and Occ B except when one token waits for a time longer than δ that leads to the firing of Pass transition. To guarantee the termination of model checking, the pattern is extended by adding a large overflow number on the tester's incoming arc. We use places tester A and tester B to detect this exception. In the generated reachability graph, it only requires to verify if tester A or tester B has marking. The assertion is:

♦(testerA = 1) ∨ ♦(testerB = 1)
Once it is known how to verify |T (a t ) -T (b t )| < δ, it is possible to change δ to compute a near optimal tolerance. If |T (a t ) -T (b t )| < δ + 1 is verified as true, but false for |T (a t ) -T (b t )| < δ, then the near optimal tolerance is δ + 1. In order to improve the computation efficiency, a dichotomy search is used to reduce the complexity from O(N ) to O(log N ). In the case study, the designer aims to design a protocol relying on our verification framework, and then evaluate the system performance. The designer alters the wait time of the active receiver and the jitter, selects the network average delay and computes the coincidence tolerance. The result is shown in Fig. 12. Different coloured lines represent the result with different jitters. The variation is regular and linear because the modelled system is conceptually simple without resource sharing. It is obvious that the best wait time of the protocol is 1600ms.

Then the user aims to evaluate this protocol by verifying the coincidence property. In the verification result (see Table 3), comparing the minimum co-incidence tolerance in original system and that in the protocol system, it is obvious that the protocol succeeds in decreasing the tolerance value. We can say the system is more robust than the original. 

Verification Performance Analysis

The performance of model checking is a very important issue for the end user.

In this verification framework, we have used property-driven transformation, observer-based verification in highest abstraction mode and parallel computation methods to avoid the explosion of state space problem and to ensure a high performance. To validate the performance, we focus on two aspects: efficiency and scalability. The objective is to find out that within an acceptable time range for rapid system prototyping (less than 1 minute), the framework is able to verify the coincidence property of system with a scale of 2 senders, 2 routers, and 1-20 pairs of active-passive receivers which is representative of current avionics systems. The performance evaluation result (Fig. 13) shows both the efficiency and the scalability of the performance. The efficiency is shown by the verification's computation time. For a system with 20 pairs of receivers, the original reachability graph generation time is less than 1000ms on a common computer; the computation time proving that the property is true is less than 16000ms, and the computation time proving that the property is false is about 6000ms. It is straightforward that proving a property false needs less time than the truth proof, because once a violation is detected the checking terminates. The scalability is shown by the linear relation between the time-over-cost of verification and the system's scale. When the increasing ratio is constant, it guarantees that if the original system reachability graph could be generated, then all the verifications of its time properties using our framework will take an appropriate time.

Conclusion and Further Works

In this paper, we propose a time property verification framework for UML-MARTE safety critical RTS. This verification framework can assess time properties like upper bound for loops and buffers, B/WCRT, B/WCET, B/WCTT, schedulability and synchronization-related properties (synchronization, coincidence, exclusion, precedence, sub-occurrence, causality). In addition, it can verify some behavioural properties like the absence of deadlock or dead branches. We evaluate the framework with a representative case study focusing on the property of coincidence between two tasks. The verification result demonstrates this framework can not only verify the time properties, but also assist the system's design at early phases of the lifecycle. The performance test and analysis illustrate the efficiency and scalability of the framework. Due to page limits, we will present the other properties' verification in other contributions.

One contribution is the proposition of the property-driven transformation, time property translation and observer-based verification methods. The time property translation method is independent of both the design modelling language and the verification language; the observer-based verification method is independent of the design modelling language. This independence allows these methods to be integrated in other verification frameworks. Another contribution is the approaches for reducing the state space combinatorial explosion problem, including the property-driven transformation, the highest abstraction on-the-fly model checking, and the parallel computation.

In the future, we will focus on extending this framework. On the technical side, we will optimize the TPN models by finding some reducible structural patterns without influencing the property. On the methodological side, we will experiment with other kind of properties, like the functional property, to improve the Property-driven approach to DSML (Domain Specific Modelling Language) model verification that started in the TOPCASED project.
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  Coincidence Property (ms) Performance Test Case (1-20 Receivers) Orignal COINCIDE(A,B,2)=false COINCIDE(A,B,4)=false COINCIDE(A,B,6)=false COINCIDE(A,B,8)=false COINCIDE(A,B,10)=false COINCIDE(A,B,20)=true COINCIDE(A,B,30)=true COINCIDE(A,B,40)=true
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  presents the architecture model. The sender represents a data-collecting sensor. The router represents a virtual link of Avionics Full DupleX (AFDX). The two receivers represent two identical calculators that provide redundant control. The input data of computation is sent by the sender through the router.The elements from MARTE in Table1are used to describe time specification. The redundant controller design requires that the output of the two calculators must be available at the same time in each working cycle; otherwise, the servo

		Air data sensor : Sender	
		<<Allocated>>in	
		ADFX virtual link : Router	
	<<Allocated>>sig	<<Allocated>>out_1	<<Allocated>>out_2	<<Allocated>>sig
	calculator A : Receiver			calculator B : Receiver
		Table 1. MARTE Profile Usage	
	MARTE Profile		Time Specification
	GRM::ResourceUsage	task's execution time
	GRM::CommunicationMedia	communication delay
	Alloc::Allocated	mapping the soft data pin to the hard data port

<<Allocated>>output Figure 3. IMA-based Airborne Architecture Model of the corresponding actuator cannot correctly unify the redundant command.

In this case, we need to verify the coincidence of computation tasks between calculators A and B. As it is impossible to respect a strict simultaneous timing with an explicit local synchronisation, a time tolerance is defined. Once the two time instants fall into the same time window (size of window equals to tolerance), they are considered as coincident.

  Multi-Clock Action For multi-clock actions, the execution time is specified by the expected physical time. Before integrating this time into a multi-clock based system, first we need to translate the expected physical time into tick numbers. Then its real physical time can be deduced by associating the clock's drift. We use the same example as the previous one. Let clock A and B tick theoretically every 1 us, and their backward and forward drift are both 1%, therefore action A's tick number is [3400, 4700] and B's is [78.9, 463.5]. As tick number must be integer, a rounding strategy must be taken, without introducing unreasonable conversion error. In our study, we use the floor function for t min and ceiling function for t max . Therefore, we have A for [3400, 4700] and B for [78, 464] as tick numbers after the rounding.

For mono-clock actions, the execution time is directly used after a global normalization of the time units. For example, if action A takes [3.4 ms, 4.7 ms] and actions B [78.9 us, 463.5 us], the correspondent min time and max time on the TPN transition is [34000, 47000] and [789, 4635] respectively, with the common unit of 0.1 us.

Table 2 .

 2 Time Property Patterns Verification of Time Property Pattern |T (a t ) -T (b t )| < δ

	Time Property Pattern	Definition
	X i+k s		Representation of event X i+k s
	|O(X t a ) -O(Y t a )| < δ Occurrence difference between events X t a and Y t a
	|T (X t a ) -T (Y t a )| < δ	Relative Tmax between events X t a and Y t a
	T (X i e ) + δ < T (Y i+1 s	)	Relative Tmin between events X t a and Y t b
	6.2		

Table 3 .

 3 Verification Result: Independence with Designed Hand shake Protocol (ms)

	Network Average Delay Network Jitter Time Window	Min Coincidence tolerance
				Original System Protocol System
	1600	100	200	685	617
	1600	300	600	1085	817
	1600	500	1000	1485	1017
	1600	700	1400	1885	1217
	1600	900	1800	2285	1417
	1600	1100	2200	2685	1617
	1600	1300	2600	3085	1817
	1600	1500	3000	3485	2017
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