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INTRODUCTION 

 

We present a new very high-order finite volume scheme for the shallow-water system based on the local 

Polynomial Reconstruction Operator (PRO-scheme) and the MOOD technique to guaranty the solution 

stability. We detail the design of the scheme and provide two examples with regular solution of wave 

propagation to highlight the scheme capacity to preserve the waves. 
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1.  THE SHALLOW-WATER PROBLEM 

 

The Shallow-water system is very popular to model river or ocean flow for engineering or environmental 

purposes. Producing very efficient numerical schemes to obtain accurate and relevant approximations is a 

constant challenging objective. We here propose a new approach based on two ingredients: a finite 

volume scheme coupled with the Polynomial Reconstruction Operator (PRO-scheme) to achieve a very 

high-order algorithm.  We consider the shallow-water problem             , with   the 

conservative variables,                     the flux vector, and    the source term given by 

 

   
 
  
  
            

  
       

   

           
  
   

       
           

 
      

      
   

 

where       are, respectively, the water height and the two velocity components, and          is the 

bathymetry of the soil with respect to a reference altitude. In the present study we assume a regular 

bathymetry function such that its derivatives are regular enough. 

 

 

2.  A NEW FINITE VOLUME SCHEME  

 

We consider a mesh    of triangle polyhedral cells    and edges          , where     are the outward 

normal vectors,        the index set of the neighbor cells of   . For each    ,    
  are the associated 

Gauss points on the edge (see Figure 1). 

 

 
 

Figure 1 – Mesh notations. 



 

Let us denote by   
  an approximation of the mean value of   over cell    at time   . To provide an 

approximation at time      ,  the generic very high-order finite volume scheme writes: 

 

  
      

        
     

    
       

       
       

         
  

      

 

 

with     the associated weights for the integration quadrature rule over the edge,       and      are the 

length and area respectively. Function        
       

       is the numerical flux evaluated at the Gauss 

points (for instance a Rusanov or HLL flux as presented in LeVeque book) and   
  the source term. The 

point is the calculation of the approximation at the Gauss points.  

To this end, for a given piecewise constant function          , we introduce the polynomial function of 

degree   with           the multi-index and           : 

 

                      
        

      

       

       
 

    
       

        
      

  

  

 

where we determine the coefficients        minimizing the functional 

 

          
 

    
             
  

 

 

 

           

 

 

To achieve a solution, one has to provide a rich enough stencil, i.e. a set of cells around   . We compute 

the polynomial approximation on each cell for variables            and   and we set                 , 

while the source term writes 
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3.  THE MOOD PROCEDURE 

 

It is well-known that numerical solutions for the shallow water problem may present discontinuities, 

hence a very high-order scheme in the vicinity of such discontinuities does not make sense and one has to 

recover the former first-order finite volume scheme to provide stability. To this end, we employ the 

Multi-dimensional Optimal Order Detection procedure (MOOD) to detect the cells where the high-order 

reconstruction is not eligible.  We briefly recall the principle of the method (see Clain et al. 2011).  The 

technique is based on a    a posteriori detection procedure for the eligibility of the solution.  

Assume that we have a numerical solution        
   for time   , we mark each cell    with the current 

polynomial degree    and initialize to the maximum  degree      of the method. We then compute the 

polynomial reconstruction    
       of degree    for the three variables            at time   , 

determine the flux approximation at the Gauss points and at finally we evaluate a candidate solution  

      
   at time     . 

At that point we determine whether the solution is eligible. We introduce the following detector 

procedure:  the solution   
       

       
  is eligible if 

- the solution  is physically admissible, i.e.   
     

- we have a local maximum principle for the height function 
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If the solution on cell    is not eligible, then we decrement the polynomial degree of the reconstruction 

setting         . Note that for      the solution will satisfy the two criteria above since we employ 

a positive preserving flux which respects the maximum principle for the height. When all the cells are 

considered eligible, we set         as the solution at time     . Other more sophisticated detection 

procedure can be found in Clain et al. (2012). 



 

 

 

4.  NUMERICAL SIMULATIONS 

 

To show the performance of the numerical scheme described in the previous section we carried out three 

numerical simulations that we shall refer to as Test 1, Test 2 and Test 3, all of them using reflection 

boundary conditions and a mesh of triangles. The Rusanov flux scheme is used in all simulations and, 

when applicable, the polynomial reconstruction for   is P2. For sake of simplicity, we define        
              as the water height with respect to a reference altitude. We will also denote by     the 

standard    norm. 

 

Test 1: Basin test 

 

The goal of the present test is to check that the steady-state situation (the lake at rest) is preserved. To this 

we have carried out the simulation during the effective time      . 

Figure 2 presents the geometry considered for the basin:              . The initial water level   is 

equal to 1 and the system is at rest, i.e.          , and                     . 
 

 
 

Figure 2 – Test 1 geometry. 
 

Given the initial conditions, we expect that both   and   remain equal to zero along the simulation. 

Figure 3 illustrates the results obtained at       when P0 and P3 polynomials are used for the 

reconstruction of  . 

 

           
 

Figure 3a – Representation of     for P0 (left) and P3 (right) approximations at      .  

 

            
  

Figure 3b – Representation of   for P0 (left) and P3 (right) approximations at      .  



 

           
 

Figure 3c – Representation of   for P0 (left) and P3 (right) approximations at      .  

 

The results clearly show a considerable improvement when the polynomial degree is increased and agree 

with the expected result (steady-state solution). In fact, one has                              and 

                           when P0, P1, P2 and P3 polynomials, respectively, are used for the 

reconstruction. 

 

 

Test 2: Tsunami propagation (flat soil) 

 

In the second test we aim to simulate the wave propagation with a strong initial perturbation of the lake at 

rest (around 10% of the initial height). 

Figure 4 presents the geometry used in this test:              . The initial water level is now given by 

the analytical relation:                          , while we set     and    . 

 

 
 

Figure 4 – Test 2 geometry (cut) and initial   profile. 

 

As in the previews test, we simulated the evolution of the system using P0, P1, P2 and P3 polynomials. 

Given the symmetry of the problem, the initial wave evolve into two waves that are symmetric with 

respect to       . Figure 5 illustrates the results obtained for   at       .  

 

     

 
 



 

Figure 5a – Representation of     for P0 (left) and P1 (right) approximations at       .  

     

 
 

Figure 5b – Representation of     for P2 (left) and P3 (right) approximations at       .  
 

As expected, numerical diffusion “destroys” the wave when P0 polynomials are used and both the wave 

height and shape are progressively recovered as the polynomial degree used increases. In fact, at        

we obtain:                               for P0 to P3, respectively. Another important aspect 

has to do with the use of MOOD procedure, which prevents the appearance of artificial oscillations in the 

solution even when P3 polynomials are used. Figure 6 represents the results obtained for        using a 

P1 approximation if MOOD is not used. The oscillations with respect to the reference level     are 

clearly present. 

 

 
 

Figure 6 – Representation of     at        using a P1 approximation with no MOOD procedure.  

 

 

Test 3: Tsunami propagation (non-flat soil) 

 

The last test concerns the wave propagation on a non-flat soil. 

In this simulation the geometry is the same used in Test 1, but now                         . 
The bathymetry of the soil is the same as in Test 1, but scaled to account for the difference in the domain 

span along the  -direction, i.e.                        . Figure 7 presents the initial situation of 

the system as far as   and   are concerned. 

 



 

 
 

Figure 7 – Test 3 geometry and initial   profile. 

 

We simulated the evolution of the two waves that originate from the initial perturbation up to      . The 

results obtained using P0, P1 and P3 polynomials for the reconstruction are presented in Figure 8 (the P2 

case is very similar to the P1 one and is therefore omitted). 

 
 

Figure 8 – Representation of     for       using P0 (bottom), P1 and P3 (top) polynomials.  

 

Given the bathymetry of the soil, the left wave is expected to travel faster than the right one. That can be 

observed in the simulations independently of the degree of polynomials used. However, as seen in Test 2, 

the numerical diffusion of the lowest order scheme leads to a considerable loss in the amplitude of the 

travelling waves and is not able to reproduce the wave profile correctly (shock almost absent). On the 

contrary, higher order schemes are able to capture the shock in a much clearer way without presenting 

artificial oscillations (especially in the P1 and P2 cases). As far as   is concerned, we obtained    
1=0.088,  0.119,  0.121,  0.134 for the P0 to P3 cases, respectively. 

 

 

5.  CONCLUSIONS 

 

Numerical simulations were carried out to highlight the performance of the numerical scheme to reduce 

the numerical viscosity and provide very accurate solutions. For instance, the scheme manages to handle 

travelling waves during very long times like tsunami. We also verified that the scheme preserves the 

steady-state solution, namely lake at rest.  The coupling of the PRO-scheme with the MOOD technique 

produces very good approximations. Nevertheless, two important tasks remain: a more efficient detecting 

procedure for the MOOD contribution and a wet/dry algorithm to take into account the emerged part of 

the domain. 
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