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A FINITE VOLUME SCHEME FOR THE SHALLOW-WATER SYSTEM WITH THE POLYNOMIAL RECONSTRUCTION

INTRODUCTION

We present a new very high-order finite volume scheme for the shallow-water system based on the local Polynomial Reconstruction Operator (PRO-scheme) and the MOOD technique to guaranty the solution stability. We detail the design of the scheme and provide two examples with regular solution of wave propagation to highlight the scheme capacity to preserve the waves.
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THE SHALLOW-WATER PROBLEM

The Shallow-water system is very popular to model river or ocean flow for engineering or environmental purposes. Producing very efficient numerical schemes to obtain accurate and relevant approximations is a constant challenging objective. We here propose a new approach based on two ingredients: a finite volume scheme coupled with the Polynomial Reconstruction Operator (PRO-scheme) to achieve a very high-order algorithm. We consider the shallow-water problem , with the conservative variables, the flux vector, and the source term given by where are, respectively, the water height and the two velocity components, and is the bathymetry of the soil with respect to a reference altitude. In the present study we assume a regular bathymetry function such that its derivatives are regular enough.

A NEW FINITE VOLUME SCHEME

We consider a mesh of triangle polyhedral cells and edges , where are the outward normal vectors, the index set of the neighbor cells of . For each , are the associated Gauss points on the edge (see Figure 1). Let us denote by an approximation of the mean value of over cell at time . To provide an approximation at time , the generic very high-order finite volume scheme writes: with the associated weights for the integration quadrature rule over the edge, and are the length and area respectively. Function is the numerical flux evaluated at the Gauss points (for instance a Rusanov or HLL flux as presented in LeVeque book) and the source term. The point is the calculation of the approximation at the Gauss points. To this end, for a given piecewise constant function , we introduce the polynomial function of degree with the multi-index and :

where we determine the coefficients minimizing the functional To achieve a solution, one has to provide a rich enough stencil, i.e. a set of cells around . We compute the polynomial approximation on each cell for variables and and we set , while the source term writes .

THE MOOD PROCEDURE

It is well-known that numerical solutions for the shallow water problem may present discontinuities, hence a very high-order scheme in the vicinity of such discontinuities does not make sense and one has to recover the former first-order finite volume scheme to provide stability. To this end, we employ the Multi-dimensional Optimal Order Detection procedure (MOOD) to detect the cells where the high-order reconstruction is not eligible. We briefly recall the principle of the method (see [START_REF] References S. Clain | A high-order polynomial finite volume method for hyperbolic system of conservation laws with Multi-dimensional Optimal Order Detection (MOOD)[END_REF]). The technique is based on a a posteriori detection procedure for the eligibility of the solution. Assume that we have a numerical solution for time , we mark each cell with the current polynomial degree and initialize to the maximum degree of the method. We then compute the polynomial reconstruction of degree for the three variables at time , determine the flux approximation at the Gauss points and at finally we evaluate a candidate solution at time . At that point we determine whether the solution is eligible. We introduce the following detector procedure: the solution is eligible if -the solution is physically admissible, i.e.

-we have a local maximum principle for the height function .

If the solution on cell is not eligible, then we decrement the polynomial degree of the reconstruction setting . Note that for the solution will satisfy the two criteria above since we employ a positive preserving flux which respects the maximum principle for the height. When all the cells are considered eligible, we set as the solution at time . Other more sophisticated detection procedure can be found in [START_REF] Clain | Computers & Fluids[END_REF].

NUMERICAL SIMULATIONS

To show the performance of the numerical scheme described in the previous section we carried out three numerical simulations that we shall refer to as Test 1, Test 2 and Test 3, all of them using reflection boundary conditions and a mesh of triangles. The Rusanov flux scheme is used in all simulations and, when applicable, the polynomial reconstruction for is P2. For sake of simplicity, we define as the water height with respect to a reference altitude. We will also denote by the standard norm.

Test 1: Basin test

The goal of the present test is to check that the steady-state situation (the lake at rest) is preserved. To this we have carried out the simulation during the effective time .

Figure 2 presents the geometry considered for the basin:

. The initial water level is equal to 1 and the system is at rest, i.e.

, and .

Figure 2 -Test 1 geometry.

Given the initial conditions, we expect that both and remain equal to zero along the simulation. Figure 3 illustrates the results obtained at when P0 and P3 polynomials are used for the reconstruction of . The results clearly show a considerable improvement when the polynomial degree is increased and agree with the expected result (steady-state solution). In fact, one has and when P0, P1, P2 and P3 polynomials, respectively, are used for the reconstruction.

Test 2: Tsunami propagation (flat soil)

In the second test we aim to simulate the wave propagation with a strong initial perturbation of the lake at rest (around 10% of the initial height). Figure 4 presents the geometry used in this test:

. The initial water level is now given by the analytical relation:

, while we set and .

Figure 4 -Test 2 geometry (cut) and initial profile.

As in the previews test, we simulated the evolution of the system using P0, P1, P2 and P3 polynomials.

Given the symmetry of the problem, the initial wave evolve into two waves that are symmetric with respect to . Figure 5 illustrates the results obtained for at . As expected, numerical diffusion "destroys" the wave when P0 polynomials are used and both the height and shape are progressively recovered as the polynomial degree used increases. In fact, at we obtain: for P0 to P3, respectively. Another important aspect has to do with the use of MOOD procedure, which prevents the appearance of artificial oscillations in the solution even when P3 polynomials are used. Figure 6 represents the results obtained for using a P1 approximation if MOOD is not used. The oscillations with respect to the reference level are clearly present. The last test concerns the wave propagation on a non-flat soil.

In this simulation the geometry is the same used in Test 1, but now . The bathymetry of the soil is the same as in Test 1, but scaled to account for the difference in the domain span along the -direction, i.e.

. Figure 7 presents the initial situation of the system as far as and are concerned. We simulated the evolution of the two waves that originate from the initial perturbation up to . The results obtained using P0, P1 and P3 polynomials for the reconstruction are presented in Figure 8 (the P2 case is very similar to the P1 one and is therefore omitted). Given the bathymetry of the soil, the left wave is expected to travel faster than the right one. That can be observed in the simulations independently of the degree of polynomials used. However, as seen in Test 2, the numerical diffusion of the lowest order scheme leads to a considerable loss in the amplitude of the travelling waves and is not able to reproduce the wave profile correctly (shock almost absent). On the contrary, higher order schemes are able to capture the shock in a much clearer way without presenting artificial oscillations (especially in the P1 and P2 cases). As far as is concerned, we obtained 1=0.088, 0.119, 0.121, 0.134 for the P0 to P3 cases, respectively.

CONCLUSIONS

Numerical simulations were carried out to highlight the performance of the numerical scheme to reduce the numerical viscosity and provide very accurate solutions. For instance, the scheme manages to handle travelling waves during very long times like tsunami. We also verified that the scheme preserves the steady-state solution, namely lake at rest. The coupling of the PRO-scheme with the MOOD technique produces very good approximations. Nevertheless, two important tasks remain: a more efficient detecting procedure for the MOOD contribution and a wet/dry algorithm to take into account the emerged part of the domain.
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