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Abstract 

We present a new finite volume scheme based on the Polynomial Reconstruction Operator (PRO-scheme) for the 

linear convection diffusion problem with structured and unstructured meshes. We first design the numerical 

scheme for generic two-dimensional cells and introduce two kinds of polynomial reconstructions. Numerical 

experiences are carried out to prove the stability and the effectiveness of the method where a 6th-order 

convergence is reached.   
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1 INTRODUCTION 

 

Numerical approximations of steady-state convection-diffusion problem are a constant challenge, namely the 

design of robust and efficient numerical schemes, whatever the Peclet number is (pure convection or pure 

diffusion). Classical and popular method such as the finite element or the finite difference methods are usually 

adopted to perform numerical approximation and their efficiency is well-known. Nevertheless, such methods 

suffer of several withdraws. First, since we evaluate point-wise approximations or its representation on a finite 

element basis, continuity of the solution is mandatory. In the finite volume framework, discontinuous solutions 

are also available since we consider mean values on cells. Another important aspect is the conservation property; 

the finite volume method has the built-in local conservation property whereas such a property is not guaranteed 

in the finite element or finite difference context.  

Finite volume method has been mainly developed for hyperbolic problems as Euler system, Shallow Water, pure 

convection problems. Since the early eighties, the book of Patankar [1] was a constant reference in the 

framework of finite volume methods for structured meshes. In the two last decades, efforts have been done to 

propose efficient scheme for elliptic or parabolic problems where the conservation property is mandatory. 

Techniques such as the Diamond Cell method [2] and the DDFV method [3, 4] have been introduced, and a 

mathematical analysis of such method is done in [5]. Unfortunately, most of the schemes are at most second-

order scheme and suffer of strong numerical diffusion reducing the approximation accuracy. Very few methods 

in the elliptic context reach very high accuracy [6, 7] (we mean more than the second-order). We propose a new 

class of numerical schemes to provide very high-order approximation for the steady-state convection diffusion 

problem with two-dimensional geometries and unstructured meshes. The two ingredients are, on the one hand, a 

polynomial reconstruction operator [8, 9] which produces local polynomial representations of degree 5 for each 

cell, and on the other hand, a finite volume method based on the local polynomial representations. The technique 

has been successfully tested for one-dimensional geometry [10] and we generalize it for the more complex 2D 

situation. 

The paper is structured as follows. Section 2 presents the convection-diffusion problem we shall deal with and 

the geometrical ingredients we need to build the scheme. Section 3 is devoted to the Polynomial Reconstruction 

Operator which is the key-point of the method. We present in Section 4 the finite volume scheme. Numerical 

tests are presented in Section 5 to show the effectiveness of the method.   
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2 THE NUMERICAL PROBLEM 

Let consider an open bounded domain      with boundary         . We consider the classical 

convection diffusion problem  

 

                                                          , 

 

where        stands for the diffusion coefficient,                represents the velocity and   the outward 

normal vector on the boundary (see Fig. 1).  

 

 

 
Figure 1 – Computational domain with Neumann and Dirichlet condition on the boundary. 

 

Let us denote by   a mesh constituted of polyhedral cells   and by        the edge which shares two cells   

and   .  We introduce the sets   and   as the collection of all the cells and all the edges respectively. Sets   ,    

and    represent the inner edges and the edges on    and   , respectively. For each cell  , we denote by  

 

                     

 

In the same way, we denote by      a collection of cells associated to the generic cell   named the stencil. Note 

that       is different of      but we shall require that           for the sake of consistency. In the same way, 

for any edge     ,      is a stencil constituted of cells belonging to the neighborhood of edge  . To conclude 

the section, we highlight that in the finite volume framework the number of unknowns is equal to the number of 

cells, namely       and we shall denote by     an approximation of the mean value on cell   ,         . 

 

3 THE POLYNOMIAL RECONSTRUCTION OPERATOR (PRO) 

 

For a given function   defined on domain  ,          and        , we denote by       the mean value of   

on cell  , by        the mean value of the Dirichlet condition on edge     , and by       the mean value 

of the Neumann condition on edge      . In particular, for any cell     of centroid   or any edge      of 

midpoint  , we define the mean values of the polynomial function              
        

   of degree 

          on the cell or on the edge by 

 

          
 

   
                           
 

 
 

   
               
 

 

 

respectively, where      is a parameterization of edge  , and     and     stand for the measure of the cell and the 

edge, respectively. We shall consider two kinds of polynomial reconstruction: the conservative and the non-

conservative one. 



 

3.1 Conservative reconstruction 

 

Let us give a set of values   ,        . We present two conservative reconstructions, one for the cells and the 

other for the edges. Let     be a reference cell and      the associated stencil. We consider the generic 

conservative polynomial reconstruction of degree   on cell    

 

                      
        

      

       

 

 

where           and             . The term conservative comes from the fact that by construction 

one has           which means that we preserve the mean value over the reference cell. 

Coefficients    are determined by a least squares method with respect to the mean values on neighboring cells 

providing polynomial function         . To this end we introduce the functional 

 

               
 

    
             
  

 

 

       

 

 

where     are the positive weights associated to the functional and denote by     the coefficients of the 

polynomial which minimizes      . From a practical point of view, one has to solve an over-determined system 

where the matrix is only composed of geometrical issues performing a QR Householder decomposition to 

quickly solve the underlying least square problem. 

We proceed in the same way with the edge.  Let      be a reference edge and      the associated stencil, we 

consider the generic conservative polynomial reconstruction of degree   on cell   

  

                         
        

      

       

  

 

which preserves the mean value on the edge and introduce the similar functional  

  

               
 

    
             
  

 

 

 

       

 

 

Coefficients    are determined by a least squares method with respect to the mean values on neighboring cells 

as before.  

3.2 Non-conservative reconstruction 

Let      be an inner edge. Since we do not compute any approximation on the edge (except for the Dirichlet 

condition), the conservative polynomial reconstruction does not make sense in this case since no mean value 

should be associated to edge  . Consequently,  we introduce the non-conservative form namely 

 

                   
        

   

       

  

 

Note that the sum start at 0 since the constant term is also an unknown. As previously, we determine the 

coefficients minimizing the functional 

 



 

                
 

    
             
  

 

 

       

 

 

and we denote by      the coefficients of the polynomial which minimizes       . Note that in both cases, one 

must have       and       greater than 
      

 
 to obtain an over-determined system. 

4 THE FINITE VOLUME SCHEME 

 

Based on the polynomial reconstruction operator, we define the numerical convective and diffusive fluxes on 

edges     where we denote by   
  the Gauss points on the edge and    the associated weight,        . We 

warn the reader to well-distinguish conservative reconstruction    with the non-conservative one   .  We have to 

distinguish three situations with regard the the inner or boundary edges. 

 If          , we define the flux from cell   toward cell   (direction     ) as 

 

            
        

 
      

        
        

 
      

       
         

         

 

 If      in an edge of cell  , we define outward the flux from cell    (direction   ) as 

 

          
        

 
     

        
        

 
      

       
         

         

 

Note that we use the Dirichlet condition for the inflow contribution and the conservative reconstruction 

for the diffusive part. 

 If      in an edge of cell  , we just set          
    

 

To define the finite volume scheme we introduce the    operator. Consider a vector               where each 

component    is an approximation of the mean-value on cell   , we then built all the associated polynomial 

reconstructions presented in the previous section and we define the operator   

 

                  

       

            

       

            
  

           
    

          
 

    
    

       

 

 

Note that the known contribution (source term and Neumann condition) are introduced with the minus sign since 

we put all the balance equation terms on the left-side. Therefore, for a given vector     , we define the affine 

operator                       and the steady-state solution    satisfies the equation         .  

Since the operator is affine, there exists a matrix    and a vector   such that           . Note that we do 

not know explicitly the associated matrix   and the right-hand side term   since we deal with a constructive 

procedure: form   we compute the polynomial reconstruction, then the fluxes, then operator      . To solve the 

system, we consider two ways. A first approach consists in computing numerically the matrix and the right-hand 

side noting that         and             where     is the vector of the canonical basis with i-component 

equal to 1. Such a way is computational heavy but provides the full matrix and allows the eigenvalues analysis 

(positivity) and the conditioning number calculation. The alternative consists in applying an iterative routine 

such as GMRES, since the method only requires the computation of the residual which is exactly operator 

     . 

 

 

 



 

5 NUMERICAL TESTS 

 

To check the numerical schemes effectiveness, we have carried out several numerical tests to compute the 

convergence rate of the method. The academic unit square   domain is meshed with cells (triangles or 

quadrilaterals) to provide a discretization    with respect to number   of cells. For a given solution  , we denote 

by    the mean value approximation on cell    while      
 is the exact mean value. We introduce two types of 

errors: the    and    errors given by 

 

      
    

         
                         

     

    

  

 

5.1 A pseudo-1D test 

 
We first consider a problem where we impose the solution invariant with respect to   (pseudo 1D case).  To this 

end, a pure diffusive problem with diffusion coefficient equal to 1 is investigated.  Let     and    be the vertical 

and horizontal border respectively and set                , we easily check that function   is the unique 

solution of  

 

                    
  

  
            

 

with               as the source tem. We perform numerical simulations and compute errors in the    (left) 

and    (right) norms employing several types of reconstruction and first deal with unstructured meshes. We use 

uniform weights for the convective reconstruction associated to each cell (one for all).  For the diffusive flux 

based on the edges, we use a weight equal to 3 for the two cells sharing the edge while the other weights are 

equal to one. 

Table 1: Errors in the    (left) and    (right) norms for three types of reconstructions: P1, P3, and P5. 

I h e-02 PRO-P1 PRO-P3 PRO-P5 

    -err ord   -err ord   -err ord   -err ord   -err ord   -err ord 

88 10.660 1.09e-01 — 3.00e-01 — 1.56e-02 — 7.86e-02 — 2.44e-03 — 1.57e-02 — 

202 7.036 3.74e-02 2.6 1.06e-01 2.5 2.50e-03 4,40 9.75e-03 5.0 2.52e-04 5.5 1.02e-03 6.6 

578 4.159 9.59e-03 2.6 5.15e-02 1.4 2.64e-04 4.27 9.64e-04 4.4 9.62e-06 6.2 5.24e-05 5.7 

1038 3.104 4.71e-03 2.4 2.24e-02 2.8 7.74e-05 4.29 3.30e-04 3.7 1.93e-06 5.5 1.17e-05 5.1 

1816 2.347 2.75e-03 1.9 1.46e-02 1.5 2.20e-05 4.51 1.78e-04 2.2 2.49e-07 7.3 2.53e-06 5.5 

 

 

We plot in Table 1 the error and the convergences rates for the    and    norms. For the    norm, we obtain a 

second-order convergence with PRO-P1, a fourth-order convergence with PRO-P3 and a sixth-order 

convergence with PRO-P5 as expected. Note that for the last mesh (1816 cells) the     errors ratio between the 

P1 and P5 reconstructions is around 11000! With the    norm, convergence rates are not so straight for the 

following reason: the    norm is very restrictive since a unique value with larger error is enough to destroy the 

convergence rate. In practice, we have observed that only 1% of cells present an error of order to the    norm 

while the other cells have an error of order to the    norm. Just very few cells present a larger error. Currently, 

we do not know which mechanism is responsible of the extra error (matrix resolution, stencil, weight?). 

 



 

 
Figure 1: Numerical approximation with an unstructured mesh. 

 

 

Figure 1 shows the approximation computed on an unstructured mesh while Figure 2 provides the convergence 

curves using the    (left) and    (right) norms in log-scale graph. We observe a regular decreasing of the error 

and the excellent convergence rate with the PRO-P5 method. 

 
 

 

Figure 2: Unstructured meshes case. Convergence rates in the    (left) and    (right) norms. 

 

 
We now turn to the case where we employ structured meshes in order to compare with the unstructured version. 

We have meshed the domain with quadrilateral elements to provide a uniform grid very similar to the ones use 

for a 1D configuration. As in the previous case, we use uniform weights for the convective reconstruction 

associated to each cell.  For the diffusive flux based on the edges, we use a weight equal to 3 for the two cells 

sharing the edge while the other weights are equal to one. 

 

 

 

 

 



 

Table 2: Errors in the    (left) and    (right) norms for three types of reconstructions: P1, P3, and P5. 

I h e-02 PRO-P1 PRO-P3 PRO-P5 

    -err ord   -err ord   -err ord   -err ord   -err ord   -err ord 

90 10.54 1.46e-01 — 5.27e-01 — 1.96e-02 — 6.37e-02 — 4.65e-03 — 1.33e-02 — 

182 7.412 6.09e-02 2.49 1.69e-01 3.23 4.12e-03 4.42 1.40e-02 4.30 7.28e-04 5.27 3.43e-03 3.85 

380 5.219 2.77e-02 2.14 8.15e-02 1.98 7.68e-04 4.56 4.09e-03 3.35 6.45e-05 6.59 3.17e-04 6.46 

756 3.636 1.28e-02 2.44 3.91e-02 2.14 1.68e-04 4.41 1.05e-03 3.96 8.16e-06 6.01 4.52e-05 5.67 

1560 2.532 6.25e-03 1.98 2.08e-02 1.74 4.08e-04 3.91 2.98e-04 3.47 7.78e-07 6.48 5.32e-06 5.91 

 

We plot in Table 2 the error and the convergences rates for the    and    norms.  As in the structured case, we 

obtain the expected convergence rate but this time both for the two norms with a slight degradation for the    

norms. One more time, only few cell present (less than 1%) presents a larger error. Note that for the last mesh 

(1560 cells) the     errors ratio between the P1 and P5 reconstruction is around 8000! 

 

 
Figure 3: Numerical approximation with a structured mesh 

 

Figure 3 shows the approximation computed on a structured mesh while Figure 4 provides the convergence 

curves using the    (left) and    (right) norms in log-scale graph. We also observe a regular decreasing of the 

error and the excellent convergence rate with the PRO-P5 method. Note that the performance is very similar to 

the unstructured case. 

 

 

Figure 4: Structured meshes case. Convergence rates in the    (left) and    (right) norms. 

 



 

5.2 A full 2D test 

 
For a given constant velocity          ,  we introduce the following functions:  

 

     
 

  
   

      

     
          

 

  
   

      

     
   

 

One can easily check that function                   is the solution of the steady-state convection diffusion 

problem with    ,                   and homogeneous Dirichlet condition on the whole boundary. We 

perform numerical simulations and compute errors with the two norms for several meshes.  We use uniform 

weights for the convective reconstruction associated to each cell.  For the diffusive flux based on the edges, we 

use a weight equal to 3 for the two cells sharing the edge while the other weights are equal to 1. 

 

 

Table 3: Errors in the    (left) and    (right) norms for three types of reconstructions: P1, P3, and P5. 

I h e-02 PRO-P1 PRO-P3 PRO-P5 

    -err ord   -err ord   -err ord   -err ord   -err ord   -err ord 

104 9.806 4.71e-04 — 2.12e-03 — 3.10e-05 — 1.49e-04 — 2.87e-06 — 1.14e-05 — 

230 6.594 3.17e-04 1.0 1.36e-03 1.1 5.25e-06 4.5 5.68e-05 2.4 2.60e-07 6.1 1.52e-06 5.0 

452 4.703 2.11e-04 1.2 9.66e-04 1.0 1.78e-06 3.2 1.97e-05 3.1 6.14e-08 4.2 4.46e-07 3.6 

946 3.251 9.39e-05 2.2 4.79e-04 1.9 4.85e-07 3.5 6.89e-06 2.8 6.13e-09 6.2 5.25e-08 5.8 

1928 2.277 2.72e-05 3.4 2.42e-04 1.9 1.01e-07 4.4 2.23e-06 3.2 6.47e-10 6.3 9.10e-09 4.9 

 

 

We plot in Table 3 the error and the convergences rates for the    and    norms. We obtain with the    norm a 

second order-scheme for the PRO-P1, a fourth-order convergence rate with the PRO-P3 and a sixth-order rate 

with the PRO-P5. As mention above, the discrepancy with the    norm derives from an extra error for a few 

cells.  Note that for the last mesh (1928 cells) the     errors ratio between the P1 and P5 reconstruction is around 

33000! 

 

 

 
Figure 5: numerical approximation on an unstructured mesh. 

 

 

We plot in Figure 5 the mesh with the approximate solution while the convergence curves are printed in Figure 

6. As in the previous cases (pseudo-1D) we recover very good effective convergence rates with order very close 

to the expected (theoretical) ones.  



 

 

Figure 6: Convergence rates in the    (left) and    (right) norms. 

 

 

6 CONCLUSION 

In this short paper, we have presented a new finite volume method to provide very high-order approximation for 

the steady-state convection diffusion problem. We show effective convergences for simple examples using 

structured or unstructured meshes to prove the efficiency of the method. Lots of things remain to be done to 

provide a competitive method with respect to the classical ones (namely the finite element method), especially to 

reduce the error in     norm, i.e., eliminate the few cell which provide an extra error. Non-stationary versions 

are under studies while a 3D version is a further goal.  
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