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INTRODUCTION 

 

We present a new very high-order finite volume scheme for the two-dimensional convection-diffusion 

problem system based on the local Polynomial Reconstruction Operator (PRO-Scheme). We detail the design 

of the schemes and provide an example with regular solution. The solution is presented for Patankar scheme 

and for PRO scheme. In this last case we present the solution using a polynomial reconstruction of degree 1 

and 2.  

 

 

Keywords:  CONVECTION-DIFFUSION, FINITE VOLUME, POLYNOMIAL RECONSTRUCTION. 

 

 

1. THE 2D CONVECTION-DIFFUSION PROBLEM 

 

Convection-diffusion equation is one of the most popular equations in engineering or environmental 

applications. Producing very efficient numerical schemes to obtain accurate and relevant approximations is a 

constant challenging objective. Here, we propose a new approach based on two ingredients: a finite volume 

scheme coupled with the Polynomial Reconstruction Operator to achieve a very high-order algorithm. The 

method is an extension of the bi dimensional geometry initially proposed by [1].  

We introduce the steady-state convection-diffusion equation 

 

                                                        , 

 
where   is the unknown function,    the Dirichlet condition on boundary   ,     the Neumann condition on 

boundary    (see Figure 1). In the following,          stands for the convection velocity while   
         represents the diffusion coefficient. 

 

 
Figure 1 – Computational domain with Neumann and Dirichlet boundary. 

 

 

 

2.  A HIGH-ORDER FINITE VOLUME SCHEME  

 

We consider a mesh    of triangle polyhedral cells    and edges           where     are the outward 

normal vectors, and      the index set of the neighbor cells of   . For each edge,    ,    
  are the associated 

Gauss points (see Figure 2). 



 

 

 

 
 

Figure 2 – Mesh notations. 
 

 

 

Let us denote by    an approximation of the mean value of   over cell   . For any cell   , the generic very 

high-order finite volume schemes  writes [2,3]: 

 

            

       

                                                  

      

 

 

where    are the associated weights for the integration quadrature rule over the edge and       and 

               the length and area of edge      and cell   , respectively. Functions                     and  

                    represent convective and diffusive contributions of the numerical across the interface 

evaluated at the Gauss points. The crucial issue is the calculation of very accurate approximations of these 

fluxes at the Gauss points.  

 

 

3. THE POLYNOMIAL RECONSTRUCTION OPERATORS 

 

For a given piecewise constant function          
 defined on the mesh cells, we introduce the polynomial 

function of degree   as proposed by [4, 5]: 

 

                     
        

  
    

     

       
 

    
       

        
  

    
  

  

 

                    . Now we determine the coefficients         in two different ways depending 

on the flux approximations. To this end, for any cell    we denote by    the stencil associated to cell   . In 

the present study, we shall use the whole corona around the cell, i.e.                . Note that 

       . We first define the functional, 

 

           
 

    
            
  

 

 

    

 

 

and denote by    the coefficients of the polynomial which minimizes      . 

We also introduce a second polynomial reconstruction operator which includes the Dirichlet condition. 

Consider a cell   . If cell         then we set              whereas if we deal with a cell in contact 

with the boundary          , we set 

 

            
 

    
            
  

 

 

    

      
 

     
        
   

 

 

 

 



 

where     
 

     
        
   

 is the mean value on edge     of the Dirichlet condition and denote by    the 

coefficients of the polynomial which minimizes       . Note that one has to provide a rich enough stencil, 

larger than the number of unknowns  
      

 
 for a polynomial reconstruction of degree  . If the corona does 

not contain enough elements, one has to pick-up element in the second corona.  

Based on the two reconstructions, we then define the numerical convective and diffusive fluxes by: 
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with        and        the positive and negative part of the normal velocity. 

For an edge     on the boundary, we only have one cell     with outward normal vector    . We slightly 

modify the scheme as a function of the boundary conditions.  For the Neumann condition   , we set 

     
             and      

  ̂         while we prescribe      
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   for the Dirichlet condition on    where    
  are 

the Gauss points for the quadrature rule on the edge. 

 

Let us denote by             the vector of unknowns with I the number of cells. Then, we define an affine 

operator from    into     given component by component by 
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with          and  ̂  ̂     the two polynomial reconstruction operators associated to the diffusion and 

the convection respectively. For the boundary edges, one has to join the contribution due to the Dirichlet or 

Neumann conditions.  

To provide the approximation to the convection diffusion equation, we have to solve the affine problem 

             in   . We rewrite the system under the form      setting            and the column 

           , with   , the j-canonical vector. We solve the linear system using a classical       

decomposition. Note that an iterative technique such as Krylov method should be more efficient but usually 

requires a preconditioning matrix to improve the convergence.  

 

 

 

4.  NUMERICAL SIMULATIONS  

 

Numerical simulations are carried out to highlight the performance of the numerical scheme to achieve very 

high-order approximations even with large Peclet number. We consider two Delaunay meshes M1 and M2 

with 870 and 1804 triangular cells, respectively. In the example, we solve a 2D steady convection-diffusion 

problem, on a unit square domain   : 

 

                                    
 

with V=(3,3) , a=1, and f=1.  In the example presented, we use the first corona cells to define our stencil. 

This is achieved considering all cells that have one vertex in common with the reference cell (see Figure 2). 

In Figures 3, 4, and 5 we plot the   function using respectively Patankar [6], PRO 1 (polynomial 

reconstruction operator of degree 1), and PRO 2 (polynomial reconstruction operator of degree 2) using mesh 

M1. The three figures are very similar but we notice we violate the Maximum Principle with PRO 1, while 

PRO2 recovers this property.   

 



 

 
 

Figure 3 – Results for Patankar scheme with mesh M1. 

 

 

 
 

Figure 4 – Results for PRO 1 scheme with mesh M1. 



 

 
 

Figure 5 – Results for PRO 2 scheme with mesh M1. 

 

 

In Figures 6 and 7 we plot the solution on mesh M2 using Patankar and PRO 2 schemes. As expected, the 

results are very similar, but PRO 2 provides higher maximum, since this scheme has a lower numerical 

diffusion. 

   

 
 

Figure 6 – Results for Patankar scheme with mesh M2. 

 



 

 
 

Figure 7 – Results for PRO 2 scheme with mesh M2. 

 

 
    

5. CONCLUSION 

 

Preliminary results presented in this study show the feasibility of the approach since the results obtained from 

Patankar  and PRO  schemes are relevant. 

 

In order to consider solutions using higher order polynomials one needs to increase the stencil, namely 

introducing the second corona of cells around the reference cell. 

 

We plan to perform convergence study to check the method order using a PRO d reconstruction. 
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