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A FINITE VOLUME SCHEME FOR THE CONVECTION-DIFFUSION SYSTEM USING THE POLYNOMIAL RECONSTRUCTION OPERATOR

INTRODUCTION

We present a new very high-order finite volume scheme for the two-dimensional convection-diffusion problem system based on the local Polynomial Reconstruction Operator (PRO-Scheme). We detail the design of the schemes and provide an example with regular solution. The solution is presented for Patankar scheme and for PRO scheme. In this last case we present the solution using a polynomial reconstruction of degree 1 and 2.
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THE 2D CONVECTION-DIFFUSION PROBLEM

Convection-diffusion equation is one of the most popular equations in engineering or environmental applications. Producing very efficient numerical schemes to obtain accurate and relevant approximations is a constant challenging objective. Here, we propose a new approach based on two ingredients: a finite volume scheme coupled with the Polynomial Reconstruction Operator to achieve a very high-order algorithm. The method is an extension of the bi dimensional geometry initially proposed by [START_REF] Clain | Very high-order finite volume method for one-dimensional convection diffusion problems[END_REF]. We introduce the steady-state convection-diffusion equation , where is the unknown function, the Dirichlet condition on boundary , the Neumann condition on boundary (see Figure 1). In the following, stands for the convection velocity while represents the diffusion coefficient. 

A HIGH-ORDER FINITE VOLUME SCHEME

We consider a mesh of triangle polyhedral cells and edges where are the outward normal vectors, and the index set of the neighbor cells of . For each edge, , are the associated Gauss points (see Figure 2). Let us denote by an approximation of the mean value of over cell . For any cell , the generic very high-order finite volume schemes writes [START_REF] Clain | A high-order polynomial finite volume method for hyperbolic system of conservation laws with Multi-dimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Eymard | The finite volume method, Handbook for Numerical Analysis[END_REF]: where are the associated weights for the integration quadrature rule over the edge and and the length and area of edge and cell , respectively. Functions and represent convective and diffusive contributions of the numerical across the interface evaluated at the Gauss points. The crucial issue is the calculation of very accurate approximations of these fluxes at the Gauss points.

THE POLYNOMIAL RECONSTRUCTION OPERATORS

For a given piecewise constant function defined on the mesh cells, we introduce the polynomial function of degree as proposed by [START_REF] Hernández | High-order finite volume schemes for the advection-diffusion equation[END_REF][START_REF] Ollivier-Gooch | A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation[END_REF]:

. Now we determine the coefficients in two different ways depending on the flux approximations. To this end, for any cell we denote by the stencil associated to cell . In the present study, we shall use the whole corona around the cell, i.e.

. Note that . We first define the functional, and denote by the coefficients of the polynomial which minimizes . We also introduce a second polynomial reconstruction operator which includes the Dirichlet condition. Consider a cell . If cell then we set whereas if we deal with a cell in contact with the boundary , we set where is the mean value on edge of the Dirichlet condition and denote by the coefficients of the polynomial which minimizes . Note that one has to provide a rich enough stencil, larger than the number of unknowns for a polynomial reconstruction of degree . If the corona does not contain enough elements, one has to pick-up element in the second corona. Based on the two reconstructions, we then define the numerical convective and diffusive fluxes by:

 ˆ  ˆ  ˆ
with and the positive and negative part of the normal velocity. For an edge on the boundary, we only have one cell with outward normal vector . We slightly modify the scheme as a function of the boundary conditions. For the Neumann condition , we set and  ˆ while we prescribe and

 ˆ  ˆ
for the Dirichlet condition on where are the Gauss points for the quadrature rule on the edge.

Let us denote by the vector of unknowns with I the number of cells. Then, we define an affine operator from into given component by component by

 ˆ
with and  ˆ  ˆ the two polynomial reconstruction operators associated to the diffusion and the convection respectively. For the boundary edges, one has to join the contribution due to the Dirichlet or Neumann conditions. To provide the approximation to the convection diffusion equation, we have to solve the affine problem in . We rewrite the system under the form setting and the column , with , the j-canonical vector. We solve the linear system using a classical decomposition. Note that an iterative technique such as Krylov method should be more efficient but usually requires a preconditioning matrix to improve the convergence.

NUMERICAL SIMULATIONS

Numerical simulations are carried out to highlight the performance of the numerical scheme to achieve very high-order approximations even with large Peclet number. We consider two Delaunay meshes M1 and M2 with 870 and 1804 triangular cells, respectively. In the example, we solve a 2D steady convection-diffusion problem, on a unit square domain :

with V=(3,3) , a=1, and f=1. In the example presented, we use the first corona cells to define our stencil. This is achieved considering all cells that have one vertex in common with the reference cell (see Figure 2). In Figures 3,4, and 5 we plot the function using respectively Patankar [START_REF] Patankar | Numerical Heat Transfer and Fluid Flow[END_REF], PRO 1 (polynomial reconstruction operator of degree 1), and PRO 2 (polynomial reconstruction operator of degree 2) using mesh M1. The three figures are very similar but we notice we violate the Maximum Principle with PRO 1, while PRO2 recovers this property. In Figures 6 and7 we plot the solution on mesh M2 using Patankar and PRO 2 schemes. As expected, the results are very similar, but PRO 2 provides higher maximum, since this scheme has a lower numerical diffusion. 

CONCLUSION

Preliminary results presented in this study show the feasibility of the approach since the results obtained from Patankar and PRO schemes are relevant.

In order to consider solutions using higher order polynomials one needs to increase the stencil, namely introducing the second corona of cells around the reference cell.
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 1 Figure 1 -Computational domain with Neumann and Dirichlet boundary.
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 2 Figure 2 -Mesh notations.
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 3 Figure 3 -Results for Patankar scheme with mesh M1.
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 4 Figure 4 -Results for PRO 1 scheme with mesh M1.
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 5 Figure 5 -Results for PRO 2 scheme with mesh M1.
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 6 Figure 6 -Results for Patankar scheme with mesh M2.
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 7 Figure 7 -Results for PRO 2 scheme with mesh M2.

We plan to perform convergence study to check the method order using a PRO d reconstruction.