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Abstract. We present a fourth-order in space, second-order in time finite volume scheme for transient convection diffusion

problem based on the Polynomial Reconstruction Operator and a Crank-Nicholson method. A detailed description of the scheme

is provided and we perform numerical tests to highlight the performance of the method in comparison with the classical Patankar

method.
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1 Introduction

Efficient numerical schemes to solve convection diffusion equations is a constant challenge due to the wide range

of problems which concern the coupling of the two major physical phenomena. Finite difference and finite element

methods are very popular to produce numerical approximations ([1–3]) and a lot of academic and commercial codes

are based on such techniques. The finite volume method for convection diffusion equations has been introduced in

the sixties ([4, 5]) but did not receive attention during three decades whereas the finite element method has known

a wide expansion. In the early eighties, the finite volume method reappeared with the original book of Patankar

([6]) for structured meshes and widely employed by engineers and physicists. Indeed, the method appears to be

an interesting alternative due to its simplicity (one information per cell), the built-in conservative property, and

the capacity to handle unstructured and non-conformal meshes. Important developments took place in this way

and several classes of methods have been proposed. First, the original Patankar scheme for structured meshes has

been extended to the non-structured case where an orthogonality condition is required to allow admissible diffusion

flux (FV4 scheme [7–10]). The diamond scheme based on a local reconstruction of the gradient on each edge has

been introduced by [11–13] while a finite volume scheme based on primal and dual meshes (DDFV scheme) has

been proposed and developed by [14–16]. In the last six years, new techniques to design efficient finite volume

schemes have been developed and a large proposal of numerical algorithms is now available such as the mixed-

hybrid schemes ([17, 18]), mimetic schemes ([19, 20]), and schemes based on a local polynomial reconstruction

([21–23]).

Despite a constant effort to improve the schemes, a serious drawback of the finite volume method is the large

amount of numerical viscosity and the weak convergence rate (at most second-order convergence). In the finite

volume context, mean values are the fundamental data and the traditional (and implicit) identification "mean values

= point-wise value at centroid" used by most of the authors is responsible of the discrepancy leading to, at most,

a second-order scheme. The fact to reject such an identification is the crucial aspect of the presented method to

provide fourth-order accuracy schemes. The main tool of the method is a local polynomial reconstruction in which

the coefficients are determined from the mean values of the neighboring cells ([24, 25]). Another important issue is

the choice of the reconstruction in function of the differential operator type. For the convective operator, we only

employ internal values, i.e. mean-values on the cells, to determine the reconstructed polynomial function, whereas

we introduce the Dirichlet conditions in the polynomial reconstruction employed in the diffusive operator to enforce
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the boundary conditions.

This paper is devoted to a new class of finite volume schemes for transient convection-diffusion problem able to

reach a fourth-order in space and second-order in time. We present the method for the one-dimensional case to

detail the scheme with simple examples considering the convection-diffusion equation with the formulation

❇tu✁ ❇x♣a❇xuq � ❇x♣vuq ✏ f on Ω✂s0, T r

u♣0, tq ✏ ulf♣tq, u♣1, tq ✏ urg♣tq, u♣x, 0q ✏ u0♣xq,

where Ω :✏s0, 1r, a (the diffusive coefficient) and v (the convective coefficient) are regular functions on Ω✂ r0, T s
with a♣x, tq ➙ α → 0, while f ✏ f♣x, tq represents a regular source term.

The rest of the paper is as follows. The second section recalls the classical finite volume scheme for convection-

diffusion problem (namely the Patankar method). Then, we introduce several polynomial reconstructions in section

three, while the fourth section is devoted to the high-order finite volume schemes. The next section concerns the

numerical tests to show the scheme capacity to provide fourth-order in space and second-order in time accuracy

both for the convective and the diffusive part of the operator. In the last section we present the conclusions and

extensions.

2 Patankar finite volume schemes

To design the numerical schemes, we denote by Th a mesh of Ω constituted of cells Ki :✏ rxi✁1④2, xi�1④2s, i ✏
1, . . . , I , with centroid ci, where x1④2 :✏ 0 and xi�1④2 :✏ xi✁1④2 � hi, and set hr as the ratio between the length

of two consecutive cells, that is hr :✏ hi④hi�1, i ✏ 1, 3, . . . , I ✁ 1 (cf. Fig. 1). In the same way, we consider a

hi
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Figure 1: Mesh, cells and interface notations

subdivision ♣tnqn✏0,...,N of the time interval r0, T s with tn�1 :✏ tn � δn�1④2.

In the finite volume context, ui denotes an approximation of the mean value over cell Ki, that is

un
i ✓

1

hi

➺
Ki

u♣x, tnq dx,

and vector Un ✏ ♣un
1
, . . . , un

I q
T P R

I is the vector of the unknowns at time tn.

For the sake of consistency, we recall the Patankar scheme. For each interface xi�1④2, i ✏ 0, . . . , I , we define the

diffusive and the convective fluxes for any vector U P R
I by

FP

diff,i� 1

2

♣Uq :✏ a♣xi� 1

2

q
2♣ui�1 ✁ uiq

♣hi � hi�1q
(1)

and

FP

conv,i� 1

2

♣Uq :✏ rv♣xi� 1

2

qs�ui � rv♣xi� 1

2

qs✁ui�1, (2)

respectively, where we have set h0 :✏ 0, hI�1 :✏ 0, u0 ✏ ulf, uI�1 ✏ urg and we used the notation rαs� :✏
♣α�⑤α⑤q④2, rαs✁ :✏ ♣α✁⑤α⑤q④2. Note that we have skip the time index for the sake of simplicity. Then we defined

the finite volume operator for cell Ki associated to the Patankar fluxes (1)-(2) by

GP

i ♣U ;ulf, urg, fq :✏ ✁
✑
FP

diff,i� 1

2

♣Uq ✁ FP

diff,i✁ 1

2

♣Uq
✙
�

✑
FP

conv,i� 1

2

♣Uq ✁ FP

conv,i✁ 1

2

♣Uq
✙
✁ hifi, (3)
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where fi is an approximation of the mean value of f over cell Ki, that is

fi ✓
1

hi

➺
Ki

f dx.

Using expression (3), we define the semi-discrete problem: find U♣tq ✏ ♣u1♣tq, . . . , uI♣tqq
T such that

dU

dt
� GP♣U ;ulf, urg, fq ✏ ♣0, . . . , 0qT

U♣0q ✏ U0, u0♣tq ✏ ulf♣tq, uI�1♣tq ✏ urg♣tq,

with

U0 :✏ ♣u0

1
, . . . , u0

Iq
t, u0

i :✏
1

hi

➺
Ki

u0 dx, i ✏ 1, . . . , I,

and

GP♣U ;ulf, urg, fq :✏
�
GP

1
♣U ;ulf, urg, fq, . . . ,G

P

I ♣U ;ulf, urg, fq
✟T

P R
I

being the finite volume operator for the mesh Th.

The three classical time discretizations are

• the explicit scheme:

HP♣Un�1;Un, ulf, urg, fq :✏
Un�1 ✁ Un

δn�1④2
� GP♣Un;ulf, urg, fq;

• the implicit scheme:

HP♣Un�1;Un, ulf, urg, fq :✏
Un�1 ✁ Un

δn�1④2
� GP♣Un�1;ulf, urg, fq;

• the Crank-Nicholson scheme:

HP♣Un�1;Un, ulf, urg, fq :✏
Un�1 ✁ Un

δn�1④2
�

1

2
GP♣Un;ulf, urg, fq �

1

2
GP♣Un�1;ulf, urg, fq.

In each case, one has to determine the vector Un�1 solution of the affine problem

HP♣U ;Un, ulf, urg, fq ✏ 0, U P R
I .

3 The polynomial reconstructions

The main tool to provide very high-order approximations is the construction of a specific polynomial approximation.

In the sequel, we shall consider two kinds of reconstructions. For each cell Ki, i ✏ 1, . . . , I , we denote by ν♣iq the

stencil associated to it such that i ❘ ν♣iq, i.e. a set of neighboring cells, and by ui♣x; ν♣iq, dq P Pd the polynomial

reconstruction on cell Ki of degree d based on the stencil ν♣iq.
In practice, we build the stencil ν♣iq in function of the polynomial degree d we shall reconstruct picking up the

nearest d � 1 cells to Ki. A difficulty arises when dealing with cells which share a point with the boundary. The

two proposed reconstructions vary in the manner that the boundary conditions are considered.

3.1 Design of polynomial ♣ui♣x; ν♣iq, dq

For each cell Ki, i ✏ 1, . . . , I , we consider the polynomial expression (we skip the ν♣iq reference for the sake of

simplicity)

♣ui♣x; dq :✏ ui �
d➳

α✏1

♣Ri
α

✒
♣x✁ ciq

α ✁
1

hi

➺
Ki

♣x✁ ciq
αdx

✚
,

where the coefficients ♣Ri
α, α ✏ 1, . . . , d, are the minimizers of the functional

♣E ✁ ♣Ri
α

✠
:✏

➳
jPν♣iq

✓
1

hj

➺
Kj

♣ui♣x; dq dx✁ uj

✛2

, i ✏ 1, . . . , I.

To provide the numerical flux at the boundary for the convective flux, we use the extension ♣u0 :✏ ulf and ♣uI�1 :✏ urg

and we denote by ♣P♣U ; dq ✏ ♣♣u0♣x; dq, . . . , ♣uI�1♣x; dqq
T

the vectorial function on Ω associated to the ♣u polynomial

reconstruction.
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3.2 Design of polynomial rui♣x; ν♣iq, dq

For all the cells Ki, i ✏ 1, . . . , I , we use the same polynomial function of the previous subsection, that is,

rui♣x; dq :✏ ui �
d➳

α✏1

rRi
α

✒
♣x✁ ciq

α ✁
1

hi

➺
Ki

♣x✁ ciq
αdx

✚
.

For i ✏ 2, . . . , I ✁ 1,we set rRi
α :✏ ♣Ri

α. To provide the reconstructed polynomial function for i ✏ 1, we slightly

modify the functional introducing the boundary condition, that is,

rE ✁ rR1

α

✠
:✏ ♣ru1♣0q ✁ ulfq

2
�

➳
jPν♣0q

✓
1

hj

➺
Kj

ru1♣x; dq dx✁ uj

✛2

,

where we set ν♣0q :✏ ν♣1q ✁ tlast cell of ν♣1q✉. In the same way, we compute the last polynomial by minimizing

functional

rE ✁ rRI
α

✠
:✏

➳
jPν♣I�1q

✓
1

hj

➺
Kj

ruI♣x; dq dx✁ uj

✛2

� ♣ruI♣1q ✁ urgq
2
,

where now we set ν♣I � 1q :✏ ν♣Iq✁ tfirst cell of ν♣Iq✉. We also introduce the polynomials ru0 :✏ ru1, ruI�1 :✏ ruI

and denote by rP♣U ; dq ✏ ♣ru0♣x; dq, . . . , ruI�1♣x; dqq
T

the vectorial function on Ω associated to the ru polynomial

reconstruction.

4 PRO finite volume schemes

4.1 Finite volume formulation

The design of the finite volume schemes is based on the Polynomial Reconstruction Operator (PRO-FV-scheme).

We use the rP♣U ; dq reconstruction to approximate the diffusion flux while the polynomial reconstruction ♣P♣U ; dq
is considered to compute the convective contribution. At last, the diffusive and the convective fluxes write, with

i ✏ 0, . . . , I ,

FPRO
diff,i� 1

2

♣U ;ulf, urg, f, dq :✏ a♣xi� 1

2

q
ru✶i♣xi� 1

2

; dq � ru✶i�1
♣xi� 1

2

; dq

2

and

FPRO
conv,i� 1

2

♣U ;ulf, urg, f, dq :✏ rv♣xi� 1

2

qs�♣ui♣xi� 1

2

; dq � rv♣xi� 1

2

qs✁♣ui�1♣xi� 1

2

; dq,

respectively.

Based on the polynomial reconstruction and the definition of the fluxes, we now introduce the affine operator U Ñ
GPRO♣U ;ulf, urg, f, dq, from R

I into R
I given component by component by:

GPRO
i ♣U ;ulf, urg, f, dq :✏ ✁

✑
FPRO

diff,i� 1

2

♣U ;ulf, urg, f, dq ✁ FPRO
diff,i✁ 1

2

♣U ;ulf, urg, f, dq
✙

�
✑
FPRO

conv,i� 1

2

♣U ;ulf, urg, f, dq ✁ FPRO
conv,i✁ 1

2

♣U ;ulf, urg, f, dq
✙
✁ hifi.

4.2 The semi-discrete formulation

Once again we consider U as a function of time from r0, T s into R
I , that is, U♣tq ✏ ♣u1♣tq, . . . , uI♣tqq

T , and

we naturally extend the two polynomial reconstruction operators ♣P♣U♣tq; dq and rP♣U♣tq; dq as a time parameter

reconstruction providing polynomial functions for any time t. We then define the finite volume semi-discretization

of order d by

HPRO♣U ;ulf, urg, f, dq :✏
dU

dt
� GPRO♣U ;ulf, urg, f, dq.

The semi-discrete problem consists in solving the affine system of I differential equations with the initial condition

U♣0q ✏ ♣u0

1
, . . . , u0

Iq
T .
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4.3 Time discretization

As in the Patankar case, we introduce the three classical time discretizations, namely

• the explicit scheme:

HPRO♣Un�1;Un, δn�1④2, ulf, urg, f, dq :✏
Un�1 ✁ Un

δn�1④2
� GPRO♣Un;ulf, urg, f, dq;

• the implicit scheme:

HPRO♣Un�1;Un, δn�1④2, ulf, urg, f, dq :✏
Un�1 ✁ Un

δn�1④2
� GPRO♣Un�1;ulf, urg, f, dq;

• the Crank-Nicholson scheme:

HPRO♣Un�1;Un, δn�1④2, ulf, urg, f, dq :✏
Un�1 ✁ Un

δn�1④2
�
1

2
GPRO♣Un;ulf, urg, f, dq�

1

2
GPRO♣Un�1;ulf, urg, f, dq.

In each case, one has to determine the vector Un�1 solution of the affine problem

HPRO♣U ;Un, δn�1④2, ulf, urg, f, dq ✏ ♣0, . . . , 0qT , U P R
I .

5 Numerical tests

Numerical simulations have been carried out to check the convergence order of the methods and show its effective-

ness. Two kinds of convergence has to be investigated: one with respect to space discretization and the other with

respect to time discretization.

In the following subsections, the error between the solution and its approximation is provided with L✽ norm since

we deal with regular functions, namely

E0 :✏
I

max
i✏1

⑤uN
i ✁ uN

i ⑤,

where

U :✏ ♣uN
1
, . . . , uN

I q, uN
i :✏

1

hi

➺
Ki

u♣x, T qdx,

are the exact mean values of the solution of the continuous problem at time t ✏ T . Note that E0 does not depend on

the polynomial reconstruction but just on the mean values.

For the sake of simplicity, we consider a uniform dsicretization in space and time controlled by parameters h and

∆t so we set h :✏ hi ✏
1

I
, i ✏ 1, . . . , I , and δn�1④2 :✏ ∆t, n ✏ 0, . . . , N .

We will present two examples. In both of them, we have as the analytical solution u♣x, tq ✏ sin♣2πxq exp♣✁tq. We

take a♣xq ✏ 1 and v ✏ 0 to provide a pure diffusion problem in the first example, while we consider a convection

diffusion problem with a♣xq ✏ 1 and v ✏ 1 in the second one. All the computations are performed using the

Crank-Nicholson scheme in time till we reach the final time T ✏ 0.1.

5.1 Example 1

As mentioned above, we first start with the transient diffusion equation. To measure the convergence rate deriving

from the Crank-Nicholson method, we fix the number of cells large enough to guaranty a smaller error for the space

approximation than the error deriving from the scheme in time. As expected, Table 1 shows that we get a second-

order convergence both for the Patankar and the PRO-P3 (see the convergence curve in Figure 2). Note that we need

3200 cells to eliminate the error in space for Patankar while we only use 120 cell with the PRO-scheme. Another

point is the better condition number of the linear system when using the PRO-scheme.
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Table 1: Example 1 — convergence in time.

∆t Patankar, I ✏ 3200 P3, I ✏ 120

k♣Aq E0 k♣Aq E0

err ord err ord

1/10 1.4E�06 1.6E✁03 NA 1.7E�03 1.6E✁03 NA

1/20 8.2E�05 2.9E✁04 2.5 1.0E�03 2.9E✁04 2.5

1/40 4.6E�05 7.1E✁05 2.0 5.7E�02 7.0E✁05 2.1

1/80 2.4E�05 1.7E✁05 2.0 3.0E�02 1.7E✁05 2.1

1/160 1.2E�05 4.1E✁06 2.0 1.6E�02 3.7E✁06 2.2

Figure 2: Example 1 — convergence curves of E0 in time for a fixed value of I: I ✏ 3200 for the Patankar scheme

and I ✏ 120 for the PRO-FV-scheme P3 (cf. Table 1).

We now check the convergence rate in space. To this end, we fix the time step small enough to ensure a neglected

error in time. We obtain a predominant mass matrix leading to a small conditioning number but we need large

number of iterations to reach the final time T . As shown in Table 2, we obtain a second-order scheme with the

Patankar method, whereas an accurate and effective fourth-order is achieved with the PRO-P3 scheme. For 160 cells

the error is cut by around 1000 with a smaller computational effort (see Figure 3 for the convergence curves).

Table 2: Example 1 — convergence in space

with fixed ∆t ✏ 1④1600.

I k♣Aq E0

err ord

Patankar

20 1.5E�00 7.4E✁03 NA

40 3.0E�00 1.9E✁03 2.0

80 9.0E�00 4.7E✁04 2.0

160 3.3E�01 1.2E✁04 2.0

P3

20 1.4E�00 1.8E✁03 NA

40 2.7E�00 7.2E✁05 4.7

80 8.0E�00 3.7E✁06 4.3

160 2.9E�01 1.7E✁07 4.4
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Figure 3: Example 1 — convergence curves of E0 in space for a fixed value of ∆t♣✏ 1④1600q (cf. Table 2).

Since the schemes in time and space have not the same order, it is numerically important to adapt the time step

with the space step. For the Patankar scheme with Crank-Nicholson method, we have both a second-order scheme

so we set ∆t ✏ h. Since the PRO-P3 provides a fourth-order in space, we set ∆t ✏ h2 and expect a fourth-order

convergence. Table 3 confirms the good choice of the time step and we get a global second-order scheme with

Patankar and a global fourth-order scheme with the PRO method.

Table 3: Example 1 — convergence in space.

I k♣Aq E0

err ord

Patankar ♣∆t ✏ hq

10 1.4E�01 4.0E✁02 NA

20 3.3E�01 7.3E✁03 2.5

40 7.2E�01 1.8E✁03 2.0

80 1.5E�02 4.5E✁04 2.0

160 3.1E�02 1.1E✁04 2.0

P3 ♣∆t ✏ h2q

10 2.6E�00 3.9E✁02 NA

20 2.7E�00 1.8E✁03 4.4

40 2.7E�00 7.2E✁05 4.7

80 2.7E�00 3.7E✁06 4.3

160 2.7E�00 2.1E✁07 4.1

5.2 Example 2

The second example deals with the transient convection diffusion problem with a♣xq ✏ 1 and v ✏ 1, and we choose

the right-hand side term such that u♣xq ✏ sin♣2πxq exp♣✁tq is the solution. Based on the previous numerical

experiences, we use ∆t ✏ h for the Patankar-Crank-Nicholson scheme and ∆t ✏ h2 for the PRO-Crank-Nicholson

scheme. We print out in Table 4 the global convergence rate and obtain a first-order rate of convergence for the

classical method due to the rough discretization of the convective part (just an upwind method). We obtain an

effective fourth-order convergence with the PRO scheme which highlights the effectiveness of the method.
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Table 4: Example 2 (u♣xq ✏ sin♣2πxq exp♣✁tq, a♣xq ✏
1, v ✏ 1) with Crank-Nicholson

I k♣Aq E0

err ord

Patankar ♣∆t ✏ hq

10 1.4E�01 2.1E✁02 NA

20 3.3E�01 1.5E✁02 0.5

40 7.3E�01 9.9E✁03 0.6

80 1.5E�02 5.5E✁03 0.9

160 3.1E�02 2.9E✁03 0.9

P3 ♣∆t ✏ h2q

10 2.7E�00 3.3E✁02 NA

20 2.8E�00 1.7E✁03 4.2

40 2.8E�00 7.2E✁05 4.6

80 2.8E�00 4.0E✁06 4.2

160 2.8E�00 2.3E✁07 4.1

6 Conclusion

We have presented a new finite volume method for one-dimensional convection-diffusion problem which provides

very high-order accuracy. Numerical simulations have been carried out to prove the capacity of the method to effec-

tively reach the fourth-order accuracy. Several extensions are under consideration. The two- and three-dimensional

case is of course of crucial importance, but we will also investigate the schemes for both Dirichlet and Neumann

boundary conditions. Another difficulty concerns the solution stability when dealing with rough data. A strategy

based on the MOOD method ([24, 25]) is currently being developed.
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