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Image editing with spatiograms transfer

Nicolas Papadakis, Aurélie Bugeau and Vicent Caselles ∗†‡

Abstract

Histogram equalization is a well known method for image contrast en-
hancement. Nevertheless, as histograms do not include any information
on the spatial repartition of colors, their application to local image editing
problems remains limited. To cope with this lack of spatial information,
spatiograms have recently been proposed for tracking purposes. A spa-
tiogram is an image descriptor that combines a histogram with the mean
and variance of the position of each color. In this paper we address the
problem of local retouching of images by proposing a variational method
for spatiogram transfer. More precisely, a reference spatiogram is used to
modify the color value of a given region of interest of the processed image.
Experiments on shadow removal and inpainting demonstrate the strength
of the proposed approach.

1 Introduction

Image editing, also called photo retouching, refers to processes that create a
transformed version of a given image. It can be used directly for image enhance-
ment, seamless cloning [19], etc. or as a post-processing step for applications
such as inpainting [5]. The referred image modifications can either be global
(for the whole image) or local (limited to a selected area).

One of the most popular tools for global image processing is histogram equal-
ization. It has been widely used for contrast enhancement [12], 3D reconstruc-
tion [16] (to compare objects or scenes that have been observed by different
cameras under different illuminations) or for colorization [18]. Histogram equal-
ization techniques search for a transfer function that maps one image to another
with an approximately uniform histogram. To transfer the original histogram
to a reference one that is not uniform, more advanced techniques have been pro-
posed [10] for gray-scale images. Even if in some applications each color channel
can be treated separately, usually they are correlated and one needs to consider
the transfer of 3D histograms [20]. Instead of using the histograms as variables
in the transfer system, the image can be directly processed, as demonstrated
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in [17]. As a consequence, and contrary to the aforementioned methods, two
pixels having the same color in the original image can have different color values
in the final corrected image. However, to obtain realistic image synthesis, the
transfer of color, in histogram space or in image space, is not sufficient and it is
necessary to consider an additional spatial processing of the images [22]. Indeed,
the change of content between the two images from which the histograms are
extracted has to be taken into account. Consider for instance a pair of landscape
images where the sky in one picture covers a larger area than in the other [20].

Many tools also exist for local image editing, most of them addressing
only one of the following applications: shadow removal [25], highlight removal
[13, 29], Poisson editing [19], Poisson cloning [11], texture synthesis [8], image
inpainting [1]. Even if many applications were proposed in [19], they all require
a particular setting of the reference gradient field used to do the Poisson editing.
Namely for highlight or shadow removal, the gradient amplitude is artificially
modified to make the scene more dark or bright. For general shadow removal
applications, this process is not able to recover the missing colors. Hence, it
would be more convenient to have the same methodology to achieve for ex-
ample shadow removal and inpainting. Histograms are a powerful tool which
has not been completely studied in this context of local editing. For inpainting
application, the histogram transfer has been applied as a post-processing step
in [14] to homogenize the color of the resulting image inside and outside the
inpainting mask. Few works on histogram modification that use information
on the spatial distribution of colors exist. Such methods are nevertheless only
dedicated to contrast enhancement [27] or image cloning [28] and can even re-
quire several steps [28], whereas we rather prefer a single energy minimization
as proposed for contrast enhancement in [2, 24].

In this paper, we aim at doing local image editing through histogram trans-
fer. In order to consider the spatial distribution of colors, we use the concept
of spatiogram and propose a general formulation based on spatiogram transfer
that allows dealing with various image editing problems through a single energy
minimization. The concept of spatiogram is related to the mean and covariance
of the position of each color and was proposed in [3] as a useful descriptor of
images for tracking applications. It has also proven to be a powerful tool in
video [31] and image retrieval [7, 26] applications.

Let us describe the organization of this paper. In Section 2, we briefly
review the notion of spatiogram proposed in [3] and the variational transfer of
histograms of [17]. In Section 3 we show how to combine both works in order
to realize local color enhancement of images. The visualization of spatiograms
is illustrated in Section 4. Finally, in Section 5 we present some experiments,
where we use the proposed model for image inpainting, and shadow and highlight
removal.

2 Related works

In this section, we introduce the basic ingredients that will be necessary for
spatiogram transfer purposes.
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2.1 Introduction to spatiograms

Let I(x) be a color image defined on the spatial domain Ω, such that I : x ∈
Ω 7→ (I1, I2, I3) ∈ [0; 255]3. The RGB color space is considered here. Other
color spaces that have less correlated components like Lαβ [23], Lab or YUV
could have also been used. However, we rather consider the general problem of
color transfer in 3D, since there exists no color space where the channels are
completely uncorrelated.

For a color λ = (λ1, λ2, λ3) ∈ [0; 255]3, the histogram hI of I is defined as:

hI(λ) =
1

|Ω|

∫
Ω

δ(I(x)− λ)dx, (1)

where δ(.) is the Dirac function whose value is 1 if its argument is 0 and 0
otherwise. In practice, the histogram is discretized using a reduced number of
N = (N1×N2×N3) bins, but we will keep the continuous formulation all along
the paper to simplify our notation.

Histograms give a global description of the color distribution of images.
In order to add some spatial information to this description, Birchfield and
Rangarajan proposed in [3] to consider also the mean position µI and the spatial
covariance ΣI of the pixels that contribute to each bin:

µI(λ)=
1

|Ω|hI(λ)

∫
Ω

xδ(I(x)− λ)dx,

ΣI(λ)=
1

|Ω|hI(λ)

∫
Ω

(x− µI(λ))(x− µI(λ))T δ(I(x)−λ)dx.

(2)

The spatiogram of image I is finally defined as

SI = (hI , µI ,ΣI). (3)

Obviously, the above means and covariances are only defined for the bins λ
where hI(λ) > 0, i.e. if there is at least one pixel of I that contributes to the
corresponding color.

In this paper, we will introduce a model to transfer spatiograms. Our ap-
proach is based on the principle of variational histogram transfer that we now
shortly review.

2.2 Variational transfer of histograms

In this section, we briefly review the variational histogram transfer as proposed
in [17]. Let us consider two images I0 and Ir, where Ir is a reference image.
We want to modify I0 in such a way that its histogram is as close as possible
to the one of Ir. Building an energy that compares the histogram values of the
two images (such as

∫
(hI(λ)− hIr (λ))2dλ) is the intuitive way to perform this

transfer. However, due to the Dirac function involved in definition (1), such an
energy is not differentiable with respect to I. As a consequence, as in [17], we
proposed to consider the cumulated histograms. Using the continuous values of
λ ∈ [0; 255]3, the cumulated histogram of I can be expressed as:

HI(λ) =
1

|Ω|

∫
Ω

gλ(I(x))dx, (4)
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where the Heaviside function

gλ(I(x)) =

{
1 if I1(x) ≤ λ1, I2(x) ≤ λ2, I3(x) ≤ λ3,
0 otherwise,

is differentiable with respect to I for a small perturbation dI = (dI1, dI2, dI3)
and gives a dirac operator:

∇Iigλ(I)dIi=−δ(λi − Ii)dIi. (5)

Cumulative histograms are indeed the right tool to compute the mean of two
histograms [9]. As the cumulative histogram HI corresponds to an integration
of hI , it is equivalent to compare histograms or cumulative histograms: HI =
HJ ⇔ hI = hJ .

An energy comparing the L2 distance between cumulative histograms can
be defined as:

ET (I) =

∫
D

(HI(λ)−HIr (λ))
2
dλ, (6)

where D = [0, 255]3 is the range of the color channels.
A data term is added in order to penalize the separation of I and the initial

color values I0:

E0(I) =

∫
Ω

f(x)||I(x)− I0(x)||2dx, (7)

where f is taken as:

f(x) = e

(
−minz∈∂Ω |x−z|

2

σ2

)
. (8)

In this expression, |.| denotes the euclidean distance and σ > 0 determines the
domain of influence. This gives a simple data weight inversely related to the
distance of a point to the mask boundary ∂Ω. It will be of particular interest
for post-processing inpainting results, where the information in the inner of the
mask boundary should be kept. This will not be the case for other applications,
such as shadow removal, where we do not want to preserve the colors inside the
mask.

The variational transfer of histograms can finally be done by minimizing the
energy

ET (I) + αE0(I)

with respect to I. The weight α ≥ 0 balances the influence of the initial data I0

with respect to the distance between the cumulative histograms of the variable
I and the reference image Ir.

The minimization can be performed by means of a gradient descent approach,
as shown in [17]. Even if the energy is not convex (due to the presence of
the term ET (I)), the local minima computed gives good results. Histogram
transfer could be directly performed in the histogram space as it is done in [20]
by looking for the best mapping (in the sense of the optimal transportation
cost) between the histograms hI0 and hIr . However, a main advantage of the
formulation described here is that it allows preserving some local attributes of
the original image I0. For instance, as in [17], one could consider an additional
term preserving the gradient orientations of the original image I0. The function
f is also a way to incorporate some specific spatial processes. Hence, two pixels
having originally the same color can end up with different final colors after
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the variational transfer. Such local processing is obviously not possible when
dealing with mappings in the histogram space. In next section we describe how
this approach can be extended to spatiogram transfer.

3 A model to transfer spatiograms

Let us describe how to combine the previous tools in order to implement the
transfer of spatiograms.

3.1 Transferring the spatial information

The direct extension of the variational method to spatiograms could be done
by considering the L2 distance between the means and covariances defined in
(2). However, as these quantities involve Dirac functions, and are not defined
for empty bins, they are not differentiable with respect to I. Moreover, as the
mean and the covariance of colors are not densities, considering their cumulation
has no sense, and the previous framework cannot be adapted.

It is therefore necessary to model the transfer of mean and covariance in
different ways. The purpose of transferring spatiograms is to encourage a pixel x
with color I0(x) to have a final color I(x) that is consistent with the spatiogram
of the reference image SIr . In other words, x should not end with the color I(x)
if the mean position µIr (I(x)) is far from x. This condition could be added
in the variational model with an additional term that aims at minimizing the
distance: ∫

Ω

||x− µIr (I(x))||2ΣIr (I(x))dx, (9)

where ||u||2Σ is the norm uTΣ−1u. In practice, minimizing such a term with a
gradient descent approach is not efficient, since the means and covariances are
not defined for all the bins. A solution could be to reformulate the problem as a
multi-label one where a color has to be assigned to each pixel. Techniques such
as graph cuts [4] or convexification [21] could then be used. Nevertheless, even if
we consider a small number of bins in the spatiograms, the computational cost
involved in such approaches becomes prohibitive (e.g. 8 bins by color channel
corresponds to 512 labels). The solution we propose is to add to the model a
penalization term:

ES(I) =

∫
Ω

∫
D̃

e

(
−||x−µIr (λ)||2ΣIr (λ)

)
||I(x)− λ||2dλdx. (10)

By minimizing this term, we encourage a pixel x to end up with the color λ if
its position is close enough to the mean position µIr (λ). With this new energy
term containing the spatial information of the spatiogram, there is no need of
differentiating the mean and covariance at each bin. As a consequence, the
problem is now well posed, since it only considers the integral on the domain
of non empty bins: D̃ = {λ | hIr (λ) ≥ ε}. More precisely, we consider the bins
that contain at least three pixels (i.e. ε = 3/|Ω|) in order to be able to compute
a covariance. Note also that if all pixels of a bin λ belong to the same line
Lλ, then the determinant of the associated covariance matrix ΣIr (λ) will be
zero and the matrix will not be invertible. In this case, the argument of the
exponential in (10) is simply given by the opposite of the distance between the
pixel x and its projection onto the line Lλ.
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3.2 Dealing with mask boundaries

By doing a transfer of histogram or spatiogram inside a mask, some artifacts
can appear at the mask boundary as there is no specific processing ensuring the
spatial continuity of colors. Hence, we have to consider the color values at the
boundary of the mask in order to diffuse the information across the boundary,
as it is done in Poisson editing methods [19]. This is realized by considering the
energy term:

ED(I) =

3∑
i=1

∫
B(Ω)

||∇Ii||2, (11)

together with the constraint I|∂Ω = I0|∂Ω, where ∂Ω denotes the boundary of
the mask Ω. In this equation B(Ω) is a band defined as {x ∈ Ω : dist(x, ∂Ω) ≤
η}, η > 0. This additional term permits to diffuse the known data on the
boundary into B(Ω) to ensure the spatial continuity of colors.

3.3 Final energy and minimization

The transfer of spatiograms into a region of interest is finally represented by the
energy:

E(I) = ET (I) + αE0(I) + βES(I) + γED(I), (12)

where α ≥ 0, β ≥ 0 and γ ≥ 0 weight the influence of the data, spatial and
diffusion terms. By minimizing the whole energy (12), the image I will be
modified so that its spatiogram SI is closer to the spatiogram of the reference
image SIr than to the one of the original image SI0 .

We simply use a gradient descent strategy to minimize (12). Hence, we have
the following numerical scheme for the variable I = (I1, I2, I3):

Ik+1
i = Iki − τ∇Iki E,

where τ > 0 and the initial condition is given by the original image I0. Fol-
lowing [17], the derivative of the comparison term between the two cumulative
histograms (6) is

∇Iki
ET (I(x))

=∇Iki

∫
D

(HIk (λ)−HIr (λ))2 dλ

=− 1

|Ω|

∫ 255

Ij(x)

∫ 255

Ik(x)

[HIk(Ii(x),λj,λk)−HIr(Ii(x),λj,λk)]dλkdλj,

(13)

since, from relation (5), we have that ∇Iki (x)HIk(λ) = −δ(λi − Iki (x)). In

(13), we used the notation (Ii(x), λj , λk) to denote (I1(x), λ2, λ3) for i = 1,
(λ1, I2(x), λ3) for i = 2 and (λ1, λ2, I3(x)) for i = 3.

The data attachment term (7) simply gives

∇Iki E0 = f(Iki − I0
i ), (14)

and the derivative of the term (10) is:

∇Iki ES =

∫
D̃

e

(
−||x−µIr (λ)||2ΣIr (λ)

)
(Iki − λ)dλ. (15)
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Finally, the derivative of the diffusion energy term (11) is given by

∇Iki ED = −∆Iki . (16)

Note that the primitive involved in equation (13) can be precomputed at each
step from the current values of hI and hIr . Similarly, the weights represented
by the exponential in equation (15) can be computed and stored just once, for
all x ∈ Ω and λ ∈ D̃. As the minimization relies on an explicit scheme, the
gradient descent can then be parallelized in the image domain.

4 Spatiogram visualization

In this section, we propose to apply the proposed energy minimization process
in order to recreate a full image. The topic of image reconstruction from its
descriptors has recently been studied in [32] in case of local descriptors. In our
case, this application is equivalent to visualizing the spatiogram. As we process
the whole image, it is not necessary to consider the mask boundary and we set
γ = 0ED(I) = 0. Starting with the reference image in Fig. 1(a) and computing
its spatiogram, we then only use the model formed by the sum of the spatiogram
energy terms (6) and (10), with β = 1 to recreate the image, see Fig. 1(d). In
this example, the unknown image I has been initialized with a constant gray
value. The data term is thus ignored with α = 0. In Fig. 1(c) we show the
result obtained by minimizing only the spatial energy ES of spatiograms. For
comparison, we display in Fig. 1(b) the result obtained with the visualization
process proposed in [3], where the color assigned to each pixel minimizes the
cost (9):

I(x) = arg min
λ∈D̃
||x− µIr (λ)||2ΣIr (λ). (17)

This experiment shows how the spatiogram information can be used to re-
construct an image whose topology and colors are relatively close to the original
image. This gives us a tool to visualize a spatiogram. We can naturally observe
that the method does not allow to reconstruct texture. However, the proposed
model can be successfully applied to specific image processing problems as shown
in the next section.

5 Applications

In this section, we present some applications of the proposed model to image
editing problems. First, we show how our process can realize (limited) image
inpainting. Then, some pertinent examples for inpainting enhancement and
shadow removal are presented. Some experiments on highlight removal are
finally discussed as a perspective for future work.

5.1 Discussion on parameters

Before going any further, we would like to add some comments about the chosen
parameters. In all the subsequent experiments, we used a discretization of 32
bins for each color channel, which corresponds to 2 minutes for treating a region
containing 104 pixels with our current implementation that is not parallelized.
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(a) (b)

(c) (d)

Figure 1: Example of image creation. (a) Original reference image. (b) Result
obtained by assigning the best color to each pixel according to (17). (c) Result
obtained by minimizing the energy term (10). (d) Result obtained by minimizing
the sum of the spatiogram energy terms (6) and (10).

When considering 8 bins by color channel, the process only takes a few seconds
to reach convergence. Note that the computational cost also depends on the
number of pixels in the mask. In the experiments in sections 5.2.2, 5.3, 5.4
and 5.5, the reference spatiograms have been computed on a band of 20 pixels
around the input mask. The results shown in the paper have been obtained
with a time step τ = 10−3, the value σ = 3 for the domain of influence, a data
coefficient α = 0.1, a spatiogram coefficient β = 1 and a diffusion coefficient
γ = 10. This large value of the diffusion coefficient is only used in a band
of 5 pixels to reduce the visual artifacts that occur at the mask boundary.
These parameters have been chosen empirically and a small variation of their
values, almost preserving their order of magnitude, does not perturb the results.
Because of the cumulative histogram, the number of bins has an influence on
the weight of the histogram transfer energy term. For that reason, this term
has been weighted with a factor 1/N3.

5.2 Image completion

The proposed model can be used for image completion in order to reconstruct the
unknown part of an image using the spatiogram properties of the known region.
For this application, there is no original image inside of the area to completed.
Therefore, in the following completion experiments, we do not consider the data
term by simply setting α = 0.
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5.2.1 Influence of the energy terms

As a first example, let us study a simple toy image (Fig. 2) and show the
influence of the different terms involved in our model (12). The domain Ω is
the unknown central area of the image. The reference spatiogram is computed
on the the whole image outside the mask. The result in Fig. 2(b) has been
obtained by only considering the energy term ET (6) acting on histograms. As
the mask has been initialized with a uniform gray value, the process applies the
same perturbation to all the pixels. The obtained result consists of a constant
color, which is the barycenter of the input colors, weighted by the frequency of
each color.

Fig. 2(c) presents the result obtained by minimizing only the term ES (10),
i.e. without histogram transfer. New blurred colors that do not respect the
histogram corresponding to the known part of the image are created. Notice
however that, thanks to the use of spatial information, the reconstruction re-
spects the spatial repartition of the colors at the mask boundaries. In Fig. 2(d)
we show the result obtained by minimizing the spatiogram energy terms ET and
ES , by setting α and γ in (12) to 0. This simple example shows the key role
of the histogram transfer energy term ET (I), which allows imposing a global
criteria (the histogram) to the unknown area. Such property is not ensured with
classical inpainting approaches.

(a) (b)

(c) (d)

Figure 2: Example of inpainting and influence of the spatiogram energy term
ES . (a) Original image. (b) Result obtained by minimizing the single histogram
energy term (6): E = ET . (c) Result obtained by minimizing the single energy
term (10): E = ES . (d) Result obtained by minimizing the spatiogram energy
terms (6) and (10): E = ET + ES .

With respect to state of the art diffusion-based inpainting approaches [30],
such results are too sharp to be visually plausible. Therefore, we incorporate
ED, the diffusion term (11). We note that the goal of this subsection is not to
propose a new inpainting method, but only to show what can be expected from
spatiograms transfer. More sophisticated terms with higher order derivatives
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[1, 6] could have been used instead of the diffusion (11). This would improve
the results obtained by minimizing this single diffusion energy term ED (11)
(see Fig. 3(b)) but would still contain blurred edges. For instance, the diffusion
method of [30] gives the improved result1 in Fig. 3(c), which approximately
preserves the known colors (even if some new ones are created) but not their
histogram (see Fig. 4(a) for details).

For completeness, we also applied an exemplar-based inpainting method [8],
as illustrated in Fig. 3(d). The result obtained with this copy/paste patch-
based approach shows strong visual artifacts as the known part of the image
does not contain enough pertinent information (see Fig. 4(b)).

As illustrated in Fig. 3(e), the minimization of the histogram ET (6) and
diffusion ED (11) terms leads to a smooth result that respects exactly the his-
togram information of colors. However, the lack of spatial information implies
the presence of a blue area inside the mask, on the upper part. As shown in
Fig. 3(f), minimizing the full energy (12) solves this problem. Note that the
influence of the diffusion term (11) is important when we compare Fig. 3(f)
with the result in Fig. 2(c), as there is now a continuity of colors at the mask
boundary (see Fig. 4(c)). The most interesting property of this approach is
that it allows realizing a variational diffusion of the colors inside the mask while
limiting the creation of new colors, which is often an important limitation of
diffusion-based approaches. With respect to classical methods [30], very few
new colors are created at the boundaries of two different color areas with the
model (12).

5.2.2 Inpainting

Some results of inpainting on more complex images are shown in Fig. 5. We com-
pared our results with the diffusion-based [30] and exemplar-based approaches
[8]. In these examples, as we have no prior color information on the mask to
inpaint, α is set to 0.

On the first example (see the first row of Fig. 5), the diffusion method
of [30] and the proposed approach give both good global results by correctly
rebuilding the line between sea and grass. The texture is obviously better with
the exemplar-based approach [8]. On the second example which contains natural
tree and grass textures, the diffusion method and the proposed process create,
as expected, a smooth image which is not visually plausible. The patch-based
method is in this case more realistic. By zooming on this last result (see Fig. 6
(a)), it can nevertheless be observed that the texture that has been inpainted
is not the one we would think of. The histogram of inpainted colors is indeed
not so close to the histogram of the exterior band around the mask. Most of
the colors have indeed been copied from a particular region.

We will now show how the spatiogram transfer can be used to enhance the
results obtained with exemplar-based inpainting methods.

1As suggested in [30], we set the contour preservation parameter p1 = 10−3, the structure
anisotropy p2 = 102 and the time step dt = 150.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Example of inpainting. (a) Original image. (b) Result obtained by
minimizing the single diffusion energy term (11): E = ED. (c) Result obtained
using the diffusion method in [30]. (d) Result obtained with [8] using patches
of size 9 × 9. (e) Result obtained by minimizing the histogram energy (6) and
the diffusion term (11): E = ET + 10ED. (f) Result obtained by minimizing
the whole energy (12): E = ET + 10ED + ES .

(a) (b) (c)

Figure 4: Zoom of the inpainted images (c), (d) and (f) of Fig. 3. (a) Result
obtained with the diffusion method in [30]. (b) Result obtained with [8] using
patches of size 9 × 9. (c) Result obtained by minimizing the whole energy
(12):E = ET + 10ED + ES .

5.3 Correcting exemplar-based inpainting

The patch-based inpainting methods allow reconstructing natural textures. As
previously mentioned, the patch effectively used during the process can come
from undesired regions of the image. Post-processing the exemplar-based result
I0 with the spatiogram transfer allows correcting this default. In order to pre-
serve the exemplar-based texture estimation at the boundary of the mask, we
now make use of the data term (7) which involves the function f that gives a
data weight inversely related to the distance of a point to the mask boundary
∂Ω. Hence, pixels inside the mask and close to the boundary are encouraged to
keep their original color values, while pixels deeply inside the mask will be able
to change their color values.
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(a) (b) (c) (d)

Figure 5: Exemplar-based inpainting. (a) Original image and the inpainting
mask in red. (b) Results obtained with [30] . (c) Results obtained with [8] using
patches of size 9× 9. (d) Results obtained by minimizing (12).

(a) (b)

Figure 6: (a) Zoom on the exemplar-based inpainting result of image (c) in
the second row of Fig. 5. (b) Zoom on the corresponding spatiogram transfer
correction.

From Fig. 7, we can see that the spatiogram transfer allows correcting the
default of exemplar-based inpainting results while preserving the textures. This
combination produces really plausible reconstructions (see Fig. 6(b) for details
on the tree example).

5.4 Shadow removal

We now focus on the shadow removal problem [25] which is a pertinent field of
application for spatiogram transfer. As in the case of exemplar-based inpainting
enhancement, the mask already contains some structures/textures that should
be preserved through the transfer process. Let I0 be an image containing areas
with shadows due to sun exposure that we would like to remove. Such areas
can be automatically estimated with state-of-the-arts method [33]. Once the
mask Ω containing shadow areas has been estimated, the proposed process can
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(a) (b)

Figure 7: Exemplar-based inpainting correction. (a) Result obtained with [8]
using patches of size 9 × 9. (b) Post-processing result obtained by minimizing
the energy (12) and using the data term function (8).

be applied to transfer the histogram of the exterior region to the area inside
the mask. The use of spatiograms allows to preserve the distribution of outside
colors inside the mask.

An example of shadow removal taken from [25] is illustrated in Fig. 8(b).
The result obtained with our approach is shown in image 8(d), we can see that
the known information (the texture inside the mask and the colors outside) is
combined to estimate an image that seem real. In Fig. 8(c) we show the re-
sult obtained with the transfer of colors realized in histogram space, using an
adaptation of the color grading code of [20]2. Excepting the mask boundary,
the result obtained seems very similar to the one produced by our spatiogram
transfer, but if we look carefully at the details (see Fig. 9), we observe that
the transfer in histogram space creates some un-natural spots as it contains no
particular spatial processing.

A further example shown in Fig.10(a), taken from [15], displays the original
image and the mask of shadowed pixels. Fig. 10(b) shows the result of [15] which
requires an accurate user selection of the shadow transition boundary (i.e. the
pixels that are not totally in the shadow nor in the light) to perform a specific
process. Note that we do not need to have such an accurate band estimation,
as the diffusion and data terms are able to deal with these shadows transition
areas. Fig. 10(c) and 10(d) show the results obtained with color transfer in
histogram space (using the code of [20]) and with our method, respectively. We
note that using spatiogram encourages the spatial repartition of final colors.

The results obtained with [20] are good inside the mask, but not satisfactory
at its boundary: the color of the pixels that belong to the mask and are not in
the shadow are too bright on the final result. This is due to the fact that his-

2To the best of our knowledge, there is no existing work that consider histogram transfer
to solve the shadow removal problem. The use of [20] is thus also an original way of addressing
the problem
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(a) (b)

(c) (d)

Figure 8: Shadow removal. (a) Original image. The mask of shadowed pixels
to be processed is delimited with a red curve. (b) Result taken from [25]. (c)
Result obtained with a transfer of colors in histogram space [20]. (d) Solution
with the model (12).

(a) (b)

Figure 9: Zoom on shadow removal. (a) Zoom of the result in Fig. 8(c) obtained
with a transfer of colors in histogram space [20]. (b) Zoom of the result in Fig.
8(d) obtained with the model (12).
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(a) (b) (c) (d)

Figure 10: Shadow removal. (a) Original image with the mask of shadowed
pixels and the shadow boundary. The image is taken from [15]. (b) Result in
[15]. (c) Result obtained by histogram transfer using [20]. (d) Result obtained
using the full model (12).

togram transfer methods try to brighten all pixels inside the mask, while pixels
close to the boundary are not completely covered by the shadow. There is in-
deed a smooth transition between shadow and non-shadow that must be treated
with detail. This is an important problem that has been carefully addressed in
[15] by underlining the problem of mask definition: to be efficient, shadow re-
moval methods need: (i) a mask that only contains pixels with shadow, and (ii)
the knowledge of the band where shadow transition occurs. In this paper, in
order to circumvent this limitation, we introduced the diffusion energy (11) in
a band inside the mask. This allows removing the bad boundary effect previ-
ously observed. Note that this addition does not only smooth the image, as the
spatiogram transfer is simultaneously taken into account in the band. However,
as these two terms do not allow creating textures, the band should be taken
small enough in practice (5 pixels). It is important to mention that such a pro-
cess running in the image domain cannot be used with the method of [20] that
considers the transfer of colors in histogram space. A posterior diffusion should
then be applied in this case.

Fig. 11 shows other examples of shadow removal. The original images are
taken from [25]. We compare our results with the ones in [25]. In the the first
row of Fig. 11(b), we see that [25] is not able to recover all the colors in the
shadowed area3, whereas the proposed method removes all red and blue colors
inside the mask while preserving the texture of the original image. In the last
two examples, our method gives results comparable to the ones in [25], except
for the ball color. Indeed, in this case, our method cannot recover the ball colors:
as there is no other ball available outside the shadow mask, the histogram have
empty bins for these colors.

These shadow removal experiments have been run with an image comple-
tion method such as [8] or [30]. However, such approaches would have created
structures without preserving the original textures (see for instance the rocks
in Fig. 8 or the balls in Fig. 11).

3The black boundary just denotes the mask boundary
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(a) (b) (c)

Figure 11: Shadow removal. (a) Original image with the mask of shadowed
pixels. (b) Result taken from [25]. (c) Result obtained using the full model
(12).

5.5 Highlight removal

The same process can be used to remove visual artifacts due to camera flash
in a glass or sun exposure. In the general case of highlight removal, we show
in Fig. 12 that the proposed process is imperfect as the mask boundary is not
well restored. Indeed, the textures at the mask boundary cannot be handled
correctly with the diffusion term. The colors inside the mask are nevertheless
visually plausible.

We compared our approach with the Poisson editing method [19] in Fig.
13. As mentioned in the original paper, the implementation we used to realize
these experiments includes an artificial reduction of the reference gradient am-
plitude in order to remove the highlight effects4. With this modification of the
data, Poisson editing tends to smooth the image and is not able to remove the
highlights. Nevertheless, neither Poisson editing [19] nor the proposed method
work correctly for highlight removal. In the case of Poisson editing, it can be
impossible to find the correct artificial reduction of gradient amplitude that
produces plausible colors. With the proposed model, the failure is mainly due
to the color saturation. Contrary to shadows, there is no preserved texture to
correct. We have studied the influence of the color space representation for
computing histograms in this particular case, as we thought that working in an
appropriate uncorrelated color space could lead to a solution. With YCbCr or
HSV color spaces, the illumination and color information can be represented by
different channels that are less correlated. We then divided the channels into
two groups, depending on whether or not the highlight is perturbing the chan-
nel information. The process has then been applied separately on each group,

4http://www.howardzzh.com/research/poissonImageEditing/index.htm
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(a)

(b)

Figure 12: Flash removal. (a) Original image with the mask of highlight pixels
to be removed delimited with a green curve. (b) Estimated solution.

while considering correlations inside the channel of a group. Unfortunately, the
obtained results were not better than the ones obtained with RGB color space.
Some other direction should be studied in the future.

6 Conclusion and perspectives

In this paper, we have proposed a variational formalism to realize spatiogram
transfer, and addressed different image processing problems such as image com-
pletion or shadow and flash removal. We showed with various examples and
comparisons that the methodology allows improving inpainting results obtained
with diffusion-based or patch-based methods. We also applied the process to
shadow removal and obtained some significant results. The extension to high-
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(a) (b) (c)

Figure 13: Highlight removal. (a) Original image with the mask of highlight
pixels to be removed delimited with a green curve. (b) Result with Poisson
Editing [19]. (c) Estimated solution.

light removal is more complex, and will be studied in the near future.
The enhancement of the proposed model deserves also further attention.

Namely, spatiogram representation could benefit from the use of multi-modal
Gaussian densities, as suggested in [3], in order to capture more information on
the spatial distribution of colors. Finally, some advanced model (such as [15])
dealing with mask boundary effects will also be studied.
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