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FINITE VOLUME APPROXIMATION FOR AN IMMISCIBLE

TWO-PHASE FLOW IN POROUS MEDIA WITH DISCONTINUOUS

CAPILLARY PRESSURE∗

KONSTANTIN BRENNER† , CLÉMENT CANCÈS‡ , AND DANIELLE HILHORST§

Abstract. We consider an immiscible incompressible two-phase flow in a porous medium com-
posed of two different rocks. The flows of oil and water are governed by the Darcy-Muskat law and
a capillary pressure law, where the capillary pressure field may be discontinuous at the interface
between the rocks. Using the concept of multi-valued phase pressures, we introduce a notion of weak
solution for the flow. We discretize the problem by means of a numerical scheme which reduces to a
standard finite volume scheme in each rock and prove the convergence of an approximate solutions
towards a weak solution. The numerical experiments show that the scheme can reproduce the oil
trapping phenomenon.

Key words. Finite volume schemes, degenerate parabolic convection–reaction–diffusion equa-
tion, two-phase flow in porous media, discontinuous capillarity

AMS subject classifications. 35K65, 35R05, 65M12, 76M12

1. Introduction.

1.1. Multivalued phase pressures. Models of incompressible immiscible two-
phase flows are widely used in oil engineering to predict the motion of oil in the
subsoil. They have been widely studied from a mathematical point of view (see e.g.
[1], [2], [4], [5], [16]) and from a numerical point of view (see e.g. [15], [18], [19], [17],
[26], [28]). In this model, sometimes called dead-oil approximation, it is assumed that
there are only two phases oil and water, and that each phase is only composed of a
single component.

The governing equations are derived by substituting the Darcy-Muskat (or dipha-
sic Darcy) law into the conservation equations for both phases, that is that for each
phase α ∈ {o, w} (o corresponds to the oil phase, while w corresponds to the water
phase):

φ∂tsα − div

(

K
kα(sα)

µα
(∇pα − ραg)

)

= 0, (1.1)

where φ = φ(x) is the porosity of the rock (φ ∈ (0, 1) in the domain Ω), sα is the
saturation of the phase α, the permeability of the porous medium K is supposed to be
a positive scalar function, the relative permeability kα of the phase α is a increasing
function of the saturation sα, satisfying kα(0) = 0 and kα(1) = 1, µα, pα and ρα

denote respectively the viscosity, the pressure and the density of the phase α, and g

is the gravity vector. Assuming that the porous medium is saturated, one has

so + sw = 1. (1.2)
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This relation allows to eliminate the water saturation. We note s := so, so that
sw = 1 − s.

Classically, it is assumed that the phase pressures are connected by the equality

po − pw = π(so), (1.3)

where π is the capillary pressure function, which is supposed to be strictly increasing
on (0, 1).

As it has been stressed in [1], the natural topology for the phase pressures in such
a flow is prescribed by the quantity

∑

α∈{o,w}

∫ T

0

∫

Ω

K
kα(sα)

µα
(∇pα)

2
dxdt. (1.4)

Note that when the phase α vanishes, i.e. sα = 0, then (1.4) provides no control on
the pressure pα —it is indeed difficult to define the pressure of a missing phase—. As
a consequence, if sα = 0 and pβ is known (β 6= α), then pα is not defined in a unique
way, but it is multivalued, i.e. it can take any value lower than a threshold value, for
which the phase α would appear. This point of view, developed in [14], leads to

po ∈ [−∞, pw + π(0)] if so = 0 (1.5)

and

pw ∈ [−∞, po − π(1)] if so = 1. (1.6)

We will take advantage of the multivalued formalism in order to deal with the case
where the porous medium is composed of several rock types, and where the functions
describing the porous medium depend in a discontinuous way of space. As it was
stressed in [29], [6], [10], [11] and [3], the discontinuities of the capillary pressure
function (1.3) have a large influence on the behavior of the flow, leading to oil-trapping.
Several numerical methods ([23], [21], [9], [22]) have been proposed to approximate
this problem, but, to our knowledge, no convergence proof has been provided for the
full problem in several space dimensions. Indeed, the convergence result stated in [9]
holds in the one-dimensional case, where the problem (1.1)-(1.3) becomes a single
degenerate parabolic equation. In [21], simplifying assumptions are made so that the
problem also reduces to a single degenerate parabolic equation. The scope of this
paper is to deal with the two balance equations (1.1). In the case where the porous
medium has smooth variations, it is possible to show the continuity of pα, in the sense
that on each Lipschitz continuous hypersurface of Ω, pα admits strong traces on both
sides pα,1, pα,2, and that these traces coincide:

pα,1 = pα,2, for α ∈ {o, w}. (1.7)

If at the level of such a hypersurface Γ, the characteristic of the medium change in
a discontinuous way, then, unless we have a compatibility condition on the capillary
pressure functions (see [14]), the continuity of the pressure can not be prescribed
by (1.7), but, taking advantage of the multivalued definitions (1.5),(1.6) of the phase
pressures, one should use the graph formalism:

pα,1 ∩ pα,2 6= ∅, for α ∈ {o, w}. (1.8)
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Note that if the phase pressures are single-valued, then the conditions (1.7) and (1.8)
are equivalent. Moreover, because of the conservation of mass, one has

∑

i∈{1,2}

Ki
kα,i(si)

µα
(∇pα,i − ραg) · ni = 0, (1.9)

where Ki and kα,i(si) denote the traces of K and kα(s) on each side of the interface,
and ni denotes the outward normal to Γ with respect to the side i of the interface.

The fact that the phase pressures pα are multivalued when sα = 0 implies that
the capillary pressure functions s 7→ πi(s) must also be multivalued for s = 0 and
s = 1. Thus we introduce the monotonous graphs π̃i defined by

π̃i(s) =







[ −∞, πi(0)] if s = 0,

πi(s) if s ∈ (0, 1),
[πi(1),+∞] if s = 1,

for i = 1, 2. The capillary pressure graphs admit a continuous inverse functions,
denoted by π̃−1

i , which is defined on R by

π̃−1
i (p) :=







0 if p ≤ πi(0),
π−1

i (p) if p ∈ (πi(0), πi(1)),
1 if p ≥ πi(1).

Requiring (1.8) implies that, at an interface where the porous medium is discontinu-
ous, one has

π̃1(s1) ∩ π̃2(s2) 6= ∅, (1.10)

where π1(s1) and π2(s2) denote the traces of π(s) on both sides of the interface. It
has been shown in [13] and [8] that this interface condition is natural, at least in the
one-dimensional case. But this single relation is not sufficient to deal with the case
of two equations such as in (1.1), and further information has to be given along the
discontinuity lines.

1.2. The model problem and assumptions on the data. We assume that
the porous medium Ω is a connex open bounded polygonal subset of R

d, and is made
of two disjoint homogeneous rocks Ωi, i ∈ {1, 2}, which are both open polygonal
subsets of R

d. We denote by Γ the interface between Ω1 and Ω2, i.e.

Γ = ∂Ω1 ∩ ∂Ω2.

For all functions a depending on the physical characteristics of the rock, we use the
notation ai = a(·, x) if x ∈ Ωi.

Also remark that as it has been stressed in [?], the gravity plays a crucial role in
the so called oil-trapping phenomenon.

We assume that at the initial time t = 0, the composition of the fluid is known

s|t=0
= s0 ∈ L∞(Ω; [0, 1]). (1.11)

We also assume that both phase fluxes are equal to 0 through the boundary ∂Ω×[0, T ]
where T > 0 is a positive fixed (but arbitrary) final time:

Ki
kα,i(si)

µα
(∇pα,i − ραg) · ni = 0, on (∂Ω ∩ ∂Ωi) × (0, T ). (1.12)
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Nevertheless, it should be possible to deal with other types of boundary conditions,
such as Dirichlet conditions on a part of the boundary and Neumann conditions on
the remaining part.

We denote by QT and Qi,T the cylinders

QT := Ω × (0, T ), Qi,T := Ωi × (0, T ).

In order to control the energy of the flow, we have to make the following natural
assumption on the capillary pressure functions.

Assumption 1. The functions πi belong to C1((0, 1)) ∩ L1((0, 1)).
Remark 1.1. As a direct consequence of Assumption 1,

π̃−1
i ∈ L1(R−) and (1 − π̃−1

i ) ∈ L1(R+), i ∈ {1, 2}.

1.3. Global pressure formulation of the problem. The lack of control on
the phase pressures, described in Section 1.1 and in [14], leads to important mathe-
matical difficulties. A classical mathematical tool consists in introducing the so-called
global pressure P to circumvent some of them. We define, for x ∈ Ωi

P = pw +

∫ πi(s)

0

ko,i(π̃
−1
i (a))

ko,i(π̃
−1
i (a)) + µo

µw
kw,i(π̃

−1
i (a))

da, (1.13)

= po −
∫ πi(s)

0

kw,i(π̃
−1
i (a))

kw,i(π̃
−1
i (a)) + µw

µo
ko(π̃

−1
i (a))

da. (1.14)

While the phase pressures pα shall be defined as multivalued, it has been pointed out
in [14] that the global pressure P is always single valued, and is therefore much easier
to work with. It is well known that in the case where the domain Ω is homogeneous
([15]), or if Ω varies smoothly ([5], [16]), then the global pressure belongs to the space
L∞(0, T ; H1(Ω)). This regularity result does not remain true, as it will be shown in
the sequel, in the case of a discontinuous capillary pressure.

We define the fractional function fi(s) =
ko,i(s)

ko,i(s) + µo

µw
kw,i(s)

and we introduce

the Kirchhoff transform

ϕi(s) =

∫ s

0

Ki
ko,i(a)kw,i(a)

µwko,i(a) + µokw,i(a)
π′

i(a)da, ∀s ∈ (0, 1), (1.15)

that we extend in a continuous way by constants outside of (0, 1). We make moreover
the following assumption on the functions ϕi.

Assumption 2. For i ∈ {1, 2}, the functions ϕi are Lipschitz continuous and
increasing on [0, 1].

It is well known that the system (1.1)–(1.3) can be rewritten in Qi,T under the
form







φi∂ts + div (fi(s)qi + γi(s)g −∇ϕi(s)) = 0,

divqi = 0,

qi = −Mi(s)∇P + ζi(s)g,

(1.16)

where

γi(s) = Ki(ρo − ρw)
ko,i(s)kw,i(s)

µwko,i(s) + µokw,i(s)
(1.17)
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and

ζi(s) = Ki

(

ko,i(s)

µo
ρo +

kw,i(s)

µw
ρw

)

.

The total mobility is defined by Mi(s) = Ki

(

ko,i(s)

µo
+

kw,i(s)

µw

)

. Since the relative

permeabilities kα,i are supposed to be strictly monotone, one has kα,i(s) > 0 if s ∈
(0, 1). As a consequence,

there exists αM > 0 such that, for i ∈ {1, 2}, and for all s ∈ [0, 1],
one has Mi(s) ≥ αM .

(1.18)

The boundary conditions on the phase fluxes (1.12) are given by

qi ·ni = 0, (fi(s)qi + γi(s)g −∇ϕi(s))·ni = 0, on (∂Ω ∩ ∂Ωi)×(0, T ). (1.19)

Concerning the transmission conditions on the interface Γ, prescribing the rela-
tion (1.10) is not sufficient. It has to be replaced by: there exists π such that

π ∈ π̃1(s1) ∩ π̃2(s2), (1.20)

P1 − W1(π) = P2 − W2(π), (1.21)

where Wi(p) =
∫ p

0
fi ◦ π̃−1

i (u)du. Note that (1.20) ensures that (1.10) holds. Equa-
tion (1.21) consists in requiring the continuity of the water pressure in some weak
sense implying (1.8) for α = w. On the other hand, adding π on both side of (1.21)
leads to the continuity in the same weak sense of the oil pressure (see [14]).

The conservation of the total mass and of the oil mass give

∑

i∈{1,2}

qi · ni = 0 on Γ, (1.22)

∑

i∈{1,2}

(fi(s)qi + γi(s)g −∇ϕi(s)) · ni = 0 on Γ, (1.23)

where ni denotes the outward normal to Γ with respect to Ωi.
Since the global pressure P is defined up to a constant, we have to impose a

condition to select a solution. More precisely we impose that

mΩ1(P )(t) = 0, where mΩi
(P )(t) :=

1

m(Ωi)

∫

Ωi

P (x, t)dx for i ∈ {1, 2}. (1.24)

We now define a weak solution of Problem (1.16)-(1.24).
Definition 1.1. We say that a function pair (s, P ) is a weak solution of Problem

(1.16)-(1.24) if:
1. s ∈ L∞(QT ; [0, 1]) ;
2. ϕi(s), P ∈ L2(0, T ; H1(Ωi)), with mΩ1(P )(t) = 0 for almost every t ∈ (0, T );
3. there exists a measurable function π on Γ× (0, T ) such that, for a.e. (x, t) ∈

Γ × (0, T ), (1.20)–(1.21) hold;
4. for all ψ ∈ C∞

c

(

Ω × [0, T )
)

, the following integral equalities hold:

∫ T

0

∑

i∈{1,2}

∫

Ωi

qi · ∇ψdxdt = 0, (1.25)

5



∫ T

0

∫

Ω

φs∂tψdxdt +

∫

Ω

φs0ψ(·, 0)dx

=

∫ T

0

∑

i∈{1,2}

∫

Ωi

(fi(s)qi + γi(s)g + ∇ϕi(s)) · ∇ψdxdt, (1.26)

where

qi = −Mi(s)∇P + ζi(s)g.

We will use several time the following lemma, which ensures that the global
pressure jump P1 − P2 at the interface belongs to L∞(Γ × (0, T )).

Lemma 1.1. The function p 7→ W1(p) − W2(p) belongs to C1(R; R), is uniformly
bounded on R and admits finite limits as p → ±∞.

Proof. Define

Υi(p) =















∫ p

0

(

fi ◦ π̃−1
i (p) − 1

)

dp if p ≥ 0,

∫ p

0

fi ◦ π̃−1
i (p) dp if p < 0,

then W1(p) − W2(p) = Υ1(p) − Υ2(p). Hence, we deduce that if Υ1(p),Υ2(p) have
finite limits for p → ±∞, then W1 − W2 also does, since fi(1) = 1. Since Υ1,Υ2 are
nonincreasing functions, it only remains to check that they are bounded. Let p ≥ 0,
then

0 ≥ Υi(p) ≥ −
∫ p

0

|fi ◦ π̃−1
i (p) − fi(1)|dp

≥ −Lfi

∫ p

0

|π̃−1
i (p) − 1|dp ≥ −Lfi

‖π̃−1
i − 1‖L1(R+).

Similarly, for p < 0, one has

0 ≤ Υi(p) ≤ Lfi
‖π̃−1

i ‖L1(R−).

We conclude the proof of Lemma 1.1 by applying Remark 1.1.

2. The Finite Volume approximation.

2.1. Discretization of QT.

Definition 2.1. An admissible mesh of Ω is given by a set T of open bounded
convex subsets of Ω called control volumes, a family E of subsets of Ω contained in
hyperplanes of R

d with strictly positive measure, and a family of points (xK)K∈T (the
“centers” of control volumes) satisfying the following properties:

1. there exists i ∈ {1, 2} such that K ⊂ Ωi. We note Ti = {K ∈ T , K ⊂ Ωi} ;
2.

⋃

K∈Ti
K = Ωi. Thus,

⋃

K∈T K = Ω;
3. for any K ∈ T , there exists a subset EK of E such that ∂K =

⋃

σ∈EK
σ.

Furthermore, E =
⋃

K∈T EK ;
4. for any (K,L) ∈ T 2 with K 6= L, either the “length”(i.e. the (d−1) Lebesgue

measure) of K ∩ L is 0 or K ∩ L = σ for some σ ∈ E. In the latter case, we
write σ = K|L, and

• Ei = {σ ∈ E , ∃(K,L) ∈ T 2
i , σ = K|L}, Eint = E1∪E2, EK,int = EK∩Eint,

• Eext = {σ ∈ E , σ ⊂ ∂Ω}, EK,ext = EK ∩ Eext,
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• EΓ = {σ ∈ E , ∃(K, L) ∈ T1 × T2, σ = K|L}, EK,Γ = EK ∩ EΓ;
5. The family of points (xK)K∈T is such that xK ∈ K (for all K ∈ T ) and, if

σ = K|L, it is assumed that the straight line (xK , xL) is orthogonal to σ.
For a control volume K ∈ Ti, we denote by NK = {L ∈ Ti, σ = K|L ∈ EK,i} the set
of the neighbors and by m(K) its measure. For all σ ∈ E, we denote by m(σ) the
(d − 1)-Lebesgue measure of σ. If σ ∈ EK , we note dK,σ = d(xK , σ), and we denote

by τK,σ the transmissibility of K through σ, defined by τK,σ = m(σ)
dK,σ

. If σ = K|L, we

note dK,L = d(xK , xL) and τKL = m(σ)
dK,L

. The size of the mesh is defined by:

size(T ) = max
K∈T

diam(K),

and a geometrical factor, connected with the regularity of the mesh, is defined by

reg(T ) = max
K∈T





∑

σ=K|L∈EK,int

m(σ)dK,L

m(K)



 .

Definition 2.2. A uniform time discretization of (0, T ) is given by an integer
value N and a sequence of real values (tn)n∈{0,...,N+1}. We define δt = T

N+1 and,

∀n ∈ {0, . . . , N}, tn = nδt. Thus we have t0 = 0 and tN+1 = T .
Remark 2.1. We can easily prove all the results of this paper for a general time

discretization, but for the sake of simplicity, we choose to only consider uniform time
discretizations.

Definition 2.3. A finite volume discretization D of QT is a family

D = (T , E , (xK)K∈T , N, (tn)n∈{0,...,N}),

where (T , E , (xK)K∈T ) is an admissible mesh of Ω in the sense of definition 2.1 and
(N, (tn)n∈{0,...,N}) is a discretization of (0, T ) in the sense of definition 2.2. For a
given mesh D, one defines:

size(D) = max(size(T ), δt), and reg(D) = reg(T ).

2.2. Definition of the scheme and main result. For K ∈ Ti, we denote by
gK(s) = gi(s) for all function g whose definition depends on the subdomain Ωi, as for
example φi, ϕi,Mi, fi, Wi, . . . . For a function f : R ⊂ R → R and for (a, b) ∈ R

2 we
denote by R(f ; a, b) the Riemann solver

R(f ; a, b) =

{

minc∈[a,b] f(c) if a ≤ b,

maxc∈[b,a] f(c) if b ≤ a.
(2.1)

The total flux balance equation is discretized by

∑

σ∈EK

m(σ)Qn+1
K,σ = 0, ∀n ∈ {0, . . . , N}, ∀K ∈ T , (2.2)

with

Qn
K,σ =











MK,L(sn
K ,sn

L)
dK,L

(Pn
K − Pn

L ) + R (ZK,σ; sn
K , sn

L) if σ = K|L ∈ EK,i,
MK(sn

K)
dK,σ

(

Pn
K − Pn

K,σ

)

+ R
(

ZK,σ; sn
K , sn

K,σ

)

if σ ∈ EK,Γ,

0 if σ ∈ EK,ext,

(2.3)
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where MK,L(sn+1
K , sn+1

L ) = ML,K(sn+1
L , sn+1

K ) is a mean value between MK(sn+1
K ) and

ML(sn+1
L ). For example, we can consider, as in [28], the harmonic mean

MK,L(sn+1
K , sn+1

L ) =
MK(sn+1

K )MK(sn+1
L )dK,L

dL,σMK(sn+1
K ) + dK,σMK(sn+1

L )
.

The function ZK,σ is defined by ZK,σ(s) = ζK(s)g · nK,σ, where nK,σ denotes the
outward normal to σ with respect to K.

The oil-flux balance equation is discretized as follows:

φK
sn+1

K − sn
K

δt
m(K) +

∑

σ∈EK

m(σ)Fn+1
K,σ = 0, (2.4)

with

Fn
K,σ =























Qn
K,σ fK(sn

K,σ) + R(GK,σ; sn
K , sn

L) +
ϕK(sn

K) − ϕK(sn
L)

dK,L
if σ = K|L ∈ EK,i,

Qn
K,σ fK(sn

K,σ) + R(GK,σ; sn
K , sn

K,σ) +
ϕK(sn

K) − ϕK(sn
K,σ)

dK,σ
if σ ∈ EK,Γ,

0 if σ ∈ EK,ext,

(2.5)
where GK,σ(s) = γK(s)g · nK,σ and sn+1

K,σ is the upwind value defined by

sn+1
K,σ =







sn+1
K if Qn+1

K,σ ≥ 0,

sn+1
L if Qn+1

K,σ < 0 and σ = K|L ∈ EK,i,

sn+1
K,σ if Qn+1

K,σ < 0 and σ ∈ EK,Γ.

(2.6)

The interface values
(

sn+1
K,σ , sn+1

L,σ , Pn+1
K,σ , Pn+1

L,σ

)

for σ = K|L ∈ EΓ are defined by the

following nonlinear system. For all σ = K|L ∈ EΓ, for all n ∈ {0, . . . , N}, there exists
πn+1

σ ∈ R such that

πn+1
σ ∈ π̃K(sn+1

K,σ ) ∩ π̃L(sn+1
L,σ ), (2.7)

Pn+1
K,σ − WK

(

πn+1
σ

)

= Pn+1
L,σ − WL

(

πn+1
σ

)

, (2.8)

Qn+1
K,σ + Qn+1

L,σ = 0, (2.9)

Fn+1
K,σ + Fn+1

L,σ = 0. (2.10)

Moreover, we impose the discrete counterpart of the equation (1.24), that is, for all
n ∈ {0, . . . , N},

∑

K∈T1

m(K)Pn+1
K = 0. (2.11)

We will show below in Section 2.3 that the system (2.7)-(2.10) possesses a solution.
We denote by X (D, i) the finite dimensional space of piecewise constant functions uD

defined almost everywhere in Qi,T having a trace on the interface Γ, i.e.

X (D, i) :=
{

uD,i ∈ L∞(Qi,T ) and for all (K, σ, n) ∈ T × EΓ × {0, . . . , N},
uD,i is constant on K × (tn, tn+1], uD,i is constant on σ × (tn; tn+1)

}

,
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and by X (D) the space of the functions uD whose restriction (uD)|Qi,T

belongs to

X (D, i). We define the solution (sD, PD) ∈ X (D)2 of the scheme by

sD(x, t) = sn+1
K , PD(x, t) = Pn+1

K if (x, t) ∈ K × (tn, tn+1],

and, for x ∈ σ = K|L ⊂ Γ for some K ∈ T1, L ∈ T2, for t ∈ (tn, tn+1), the traces

sD|Γ,1
(x, t) = sn+1

K,σ , sD|Γ,2
(x, t) = sn+1

L,σ .

In this paper we prove the following convergence result.
Theorem 1. Assume that Assumptions 1 and 2 hold. Let (Dm)m be a sequence

of admissible discretizations of QT in the sense of Definition 2.3, then for all m ∈ N,
there exists a discrete solution (sDm

, PDm
) ∈ X (Dm)2 to the scheme. Moreover, if

limm→∞ size(Dm) = 0, and if there exists ζ > 0 such that, for all m, reg(Dm) ≤ ζ,
then up to a subsequence, sDm

converges, towards s ∈ L∞(QT ; [0, 1]) in the Lp(QT )
topology for all p ∈ [1,∞), PDm

converges to P weakly in L2(QT ), where (s, P ) is a
weak solution of Problem (1.16)-(1.24) in the sense of Definition 1.1.

2.3. The interface conditions system. Define, for all σ = K|L ∈ EΓ, for all
n ∈ {0, . . . , N},

Pn+1
σ := Pn+1

K,σ − WK

(

πn+1
σ

)

= Pn+1
L,σ − WL(πn+1

σ ), (2.12)

and

Qn+1
K,σ (πn+1

σ ) := αn+1
K

(

Pn+1
K − Pn+1

σ − WK(πn+1
σ )

)

+ R(ZK,σ; sn+1
K , π̃−1

K (πn+1
σ )),

(2.13)

where αn+1
K =

MK(sn+1
K

)

dK,σ
. Then, the balance of the fluxes on the interface (2.9)–(2.10)

can be rewritten as

Qn+1
K,σ (πn+1

σ ) + Qn+1
L,σ (πn+1

σ ) = 0 (2.14)

Qn+1
K,σ (πn+1

σ )fK

(

sn+1
K,σ (πn+1

σ )
)

+ Qn+1
L,σ (πn+1

σ )fL

(

sn+1
L,σ (πn+1

σ )
)

+R(GK,σ; sn+1
K , π̃−1

K (πn+1
σ )) + R(GL,σ; sn+1

L , π̃−1
L (πn+1

σ ))

+
ϕK(sn+1

K ) − ϕK ◦ π̃−1
K (πn+1

σ )

dK,σ
+

ϕL(sn+1
L ) − ϕL ◦ π̃−1

L (πn+1
σ )

dL,σ
= 0,

(2.15)

where

sn+1
K,σ (p) =

{

sn+1
K if Qn+1

K,σ (p) ≥ 0,

π−1
K (p) if Qn+1

K,σ (p) < 0.
(2.16)

We deduce from (2.14) that

Pn+1
σ =

αn+1
K (Pn+1

K − WK(πn+1
σ )) + αn+1

L (Pn+1
L − WL(πn+1

σ ))

αn+1
K + αn+1

L

+
R(ZK,σ; sn+1

K , π̃−1
K (πn+1

σ )) + R(ZL,σ; sn
L, π̃−1

L (πn+1
σ ))

αn+1
K + αn+1

L

(2.17)
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and thus that

Qn+1
K,σ (πn+1

σ ) =
αn+1

K αn+1
L

αn+1
K + αn+1

L

(

Pn+1
K − Pn+1

L − WK(πn+1
σ ) + WL(πn+1

σ )
)

+
αn+1

L R(ZK,σ; sn+1
K , π̃−1

K (πn+1
σ )) − αn+1

K R(ZL,σ; sn
L, π̃−1

L (πn+1
σ ))

αn+1
K + αn+1

L

.

(2.18)
As a direct consequence of Lemma 1.1, Qn+1

K,σ belong to C1(R; R) and admits finite
limits as p → ±∞.

Denote by

Ψn+1
σ (p) := Qn+1

K,σ (p) (fK(sK,σ(p)) − fL(sL,σ(p)))

+R(GK,σ; sn+1
K , π̃−1

K (p)) + R(GL,σ; sn+1
L , π̃−1

L (p))

+
ϕK(sn+1

K ) − ϕK ◦ π−1
K (p)

dK,σ
+

ϕL(sn+1
L ) − ϕL ◦ π−1

L (p)

dL,σ
,

then Ψσ is continuous on R.

Lemma 2.1. Let (sn+1
K , sn+1

L ) ∈ [0, 1]2, there exists πn+1
σ ∈ [mini πi(0), maxi πi(1)]

such that Ψn+1
σ (πn+1

σ ) = 0.

Proof. From the definition (2.16) of sn+1
K,σ (p), since limp→mini πi(0) π−1

K (p) = 0, and

since Qn+1
K,σ (p) admits a limit as p → mini πi(0), one has

lim
p→mini πi(0)

Qn+1
K,σ (p)

(

fK(sn+1
K,σ (p)) − fL(sn+1

L,σ (p))
)

≥ 0

and also

lim
p→mini πi(0)

R(GM,σ; sn+1
M , π̃−1

M (p)) = max
s∈[0,sM ]

GM,σ(s) ≥ 0, with M ∈ {K, L}.

This yields that

lim
p→mini πi(0)

Ψn+1
σ (p) ≥ ϕK(sn+1

K )

dK,σ
+

ϕL(sn+1
L )

dL,σ
≥ 0.

One obtains similarly that lim
p→maxi πi(1)

Ψn+1
σ (p) ≤ 0. One conclude thanks to the

continuity of Ψn+1
σ .

Proposition 2.2. Let σ = K|L ∈ EΓ, and let
(

sn+1
K , sn+1

L , Pn+1
K , Pn+1

L

)

∈ R
4,

then there exists a solution
(

πn+1
σ , sn+1

K,σ , sn+1
L,σ , Pn+1

K,σ , Pn+1
L,σ

)

∈ [mini πi(0), maxi πi(1)]×
[0, 1]2 × R

2 to the nonlinear system (2.7)–(2.10).

Proof. Let πn+1
σ ∈ R be a solution of the equation Ψn+1

σ (πn+1
σ ) = 0, whose

existence has been claimed in Lemma 2.1. Firstly, defining sn+1
K,σ := π−1

K (πn+1
σ ) and

sn+1
L,σ := π−1

L (πn+1
σ ), one has directly that

πn+1
σ ∈ π̃K(sn+1

K,σ ) ∩ π̃L(sn+1
L,σ ).
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As it was noticed in Lemma 1.1, the function p 7→ WK(p) − WL(p) is uniformly
bounded. Hence, the values

Pn+1
K,σ :=

αn+1
K Pn+1

K + αn+1
L Pn+1

L + αn+1
L

(

WK(πn+1
σ ) − WL(πn+1

σ )
)

αn+1
K + αn+1

L

+
R

(

ZK,σ; sn+1
K , π̃−1

K (πn+1
σ )

)

+ R
(

ZL,σ; sn
L, π̃−1

L (πn+1
σ )

)

αn+1
K + αn+1

L

and

Pn+1
L,σ :=

αn+1
K Pn+1

K + αn+1
L Pn+1

L + αn+1
K

(

WL(πn+1
σ ) − WK(πn+1

σ )
)

αn+1
K + αn+1

L

+
R

(

ZK,σ; sn+1
K , π̃−1

K (πn+1
σ )

)

+ R
(

ZL,σ; sn
L, π̃−1

L (πn+1
σ )

)

αn+1
K + αn+1

L

are finite. It is now easy to check that
(

πn+1
σ , sn+1

K,σ , sn+1
L,σ , Pn+1

K,σ , Pn+1
L,σ

)

is a solution

to the system (2.7)–(2.10) thanks to the analysis carried out above.

3. A priori estimates and existence of a discrete solution.

3.1. L∞(QT) estimate on the saturation.

Proposition 3.1. Let (sD, PD) be a solution to the scheme (2.2)–(2.11), then

0 ≤ sD ≤ 1 a.e. in QT . (3.1)

Proof. We will prove that for all K ∈ T , for all n ∈ {0, . . . , N},

sn+1
K ≤ 1.

The proof for obtaining sn+1
K ≥ 0 is similar.

Using the definition (2.5) of Fn+1
K,σ , one can rewrite (2.4) under the form

HK

(

sn+1
K , sn

K ,
(

sn+1
L

)

L∈NK
,
(

sn+1
K,σ

)

σ∈EK,Γ

,
(

Qn+1
K,σ

)

σ∈EK

)

= 0, (3.2)

where HK is non increasing with respect to sn
K ,

(

sn+1
L

)

L∈NK
,
(

sn+1
K,σ

)

σ∈EK,Γ

. Making

use of the notations a⊤b = max(a, b), we obtain that

HK

(

sn+1
K , sn

K⊤1,
(

sn+1
L ⊤1

)

L∈NK
,
(

sn+1
K,σ⊤1

)

σ∈EK,Γ

,
(

Qn+1
K,σ

)

σ∈EK

)

≤ 0.

We remark that for all K ∈ T and for all s ∈ [0, 1] one has

∑

σ∈EK

m(σ)GK,σ(s) = 0. (3.3)

Combining (3.3) and (2.2) we have

HK

(

1, 1, (1)L∈NK
, (1)σ∈EK,i

,
(

Qn+1
K,σ

)

σ∈EK

)

= 0.
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Hence, using once again the monotonicity of HK , one obtains

HK

(

1, sn
K⊤1,

(

sn+1
L ⊤1

)

L∈NK
,
(

sn+1
K,σ⊤1

)

σ∈EK,Γ

,
(

Qn+1
K,σ

)

σ∈EK

)

≤ 0.

Since a⊤b is either equal to a or to b, one has

HK

(

sn+1
K ⊤1, sn

K⊤1,
(

sn+1
L ⊤1

)

L∈NK
,
(

sn+1
K,σ⊤1

)

σ∈EK,Γ

,
(

Qn+1
K,σ

)

σ∈EK

)

≤ 0. (3.4)

Next we remark that for any σ = K|L ∈ EΓ the the equation (2.10) can be written as

Hσ

(

sn+1
K , sn+1

L ,
(

sn+1
M,σ

)

M∈{K,L}
,
(

Qn+1
M,σ

)

M∈{K,L}

)

= 0,

where Hσ is non increasing with respect to sn+1
K , sn+1

L and
(

sn+1
M,σ

)

M∈{K,L}
. Thanks

to (2.9) and using γi(1) = 0 for i ∈ {1, 2} we obtain

Hσ

(

1, 1, (1)M∈{K,L} ,
(

Qn+1
M,σ

)

M∈{K,L}

)

= 0.

Using the same arguments as for (3.4) one has that

Hσ

(

sn+1
K ⊤1, sn+1

L ⊤1,
(

sn+1
M,σ⊤1

)

M∈{K,L}
,
(

Qn+1
M,σ

)

M∈{K,L}

)

≤ 0. (3.5)

Multiplying (3.4) by δt and summing over K ∈ T provides, using (3.5) and the
conservativity of the scheme,

∑

K∈T

φK(sn+1
K − 1)+m(K) ≤

∑

K∈T

φK(sn
K − 1)+m(K).

Since s0 ∈ L∞(QT ; [0, 1]), s0
K ∈ [0, 1] for all K ∈ T . A straightforward induction

allows us to conclude.

3.2. Energy estimate.

Definition 3.1. We define the discrete L2(0, T ;H1(Ωi)) semi-norm of an ele-
ment uD ∈ X (D, i) by

|uD|2D,i :=
∑

n

δt
∑

σ=K|L∈Ei

τKL

(

un+1
K − un+1

L

)2
+

∑

n

δt
∑

K∈Ti

∑

σ∈EK,Γ

τKσ

(

un+1
K − un+1

K,σ

)2

.

Lemma 3.2. The following inequalities hold:

• for all σ = K|L ∈ Eint,

Qn+1
K,σ fK

(

sn+1
K,σ

)

(

πK(sn+1
K ) − πK(sn+1

L )
)

≥ Qn+1
K,σ

(

WK(πK(sn+1
K )) − WK(πK(sn+1

L ))
)

;

(3.6)
• for all σ ∈ EK,Γ,

Qn+1
K,σ fK

(

sn+1
K,σ

)

(

πK(sn+1
K ) − πn+1

σ )
)

≥ Qn+1
K,σ

(

WK(πK(sn+1
K )) − WK(πn+1

σ )
)

. (3.7)
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Proof. Since fK ◦ π−1
K is a non decreasing function, then function WK : p 7→

∫ p

0
fK ◦ π−1

K (a)da is convex, so that for all (a, b) ∈ R
2,

fK ◦ π−1
K (a) (b − a) ≤ WK(b) − WK(a) ≤ fK ◦ π−1

K (b) (b − a) .

The inequalities (3.6) and (3.7) follow from the definition (2.6) of sn+1
K,σ .

Lemma 3.3. Let us define

GK,σ(p) :=

∫ p

0

GK,σ

(

π̃−1
K (τ)

)

dτ (3.8)

for all K ∈ T and σ ∈ EK . Then, the following estimates hold:

• for all σ = K|L ∈ Eint,

R(GK,σ; sn+1
K , sn+1

L )
(

πK(sn+1
K ) − πK(sn+1

L )
)

≥ GK,σ(πK(sn+1
K )) − GK,σ(πK(sn+1

L ))
(3.9)

• for all σ ∈ EK,Γ,

R(GK,σ; sn+1
K , sn+1

K,σ )
(

πK(sn+1
K ) − πn+1

σ )
)

≥ GK,σ(πK(sn+1
K )) − GK,σ(πn+1

σ ). (3.10)

Proof. For any a, b ∈ R one has

R(GK,σ; π̃−1
K (a), π̃−1

K (b)) (a − b))

∫ a

b

GK,σ

(

π̃−1
K (p)

)

dp

+

∫ a

b

R
(

GK,σ; π̃−1
K (a), π̃−1

K (b)
)

− GK,σ

(

π̃−1
K (p)

)

dp. (3.11)

We only have to remark that in view of (2.1) the last term in the right hand side of
(3.11) is positive.

Lemma 3.4. For all K ∈ T , for all n ∈ {0, . . . , N} and for all σ ∈ EK,Γ, one has

(

ϕK(sn+1
K ) − ϕK(sn+1

K,σ )
)

(

πK(sn+1
K ) − πn+1

σ

)

≥
(

ϕK(sn+1
K ) − ϕK(sn+1

K,σ )
)(

πK(sn+1
K ) − πK(sn+1

K,σ )
)

. (3.12)

Proof. Assume that sn+1
K,σ ∈ (0, 1), then π̃K(sn+1

K,σ ) = {πK(sn+1
K,σ )}, thus the inequal-

ity (3.12) is in fact an equality. Assume now that sn+1
K,σ = 0, then πn+1

σ ≤ πK(sn+1
K,σ ) ≤

πK(sn+1
K ), and ϕK(sn+1

K,σ ) ≤ ϕK(sn+1
K ). The inequality (3.12) follows. Similarly, if

sn+1
K,σ = 1, then πn+1

σ ≥ πK(sn+1
K,σ ) ≥ πK(sn+1

K ), and ϕK(sn+1
K,σ ) ≥ ϕK(sn+1

K ), leading
also to (3.12).

Proposition 3.5. There exists C1, depending only on αM , mini Ki, µo, µw ,
maxi ‖πi‖L1((0,1)) and Ω, such that

∑

i∈{1,2}

(

|PD|2D,i + |ϕ(sD)|2D,i

)

≤ C1. (3.13)
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Proof. Multiplying the equation (2.4) by δtπK(sn+1
K ) and summing over K ∈ T

and n ∈ {0, . . . , N} yield, after reorganizing the sum,

A + B = 0, (3.14)

where

A =

N
∑

n=0

∑

K∈T

φKπK(sn+1
K )

(

sn+1
K − sn

K

)

m(K),

B =

N
∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)Fn+1
K,σ

(

πK(sn+1
K ) − πK(sn+1

L )
)

+

N
∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)Fn+1
K,σ

(

πK(sn+1
K ) − πn+1

σ

)

,

where we have used (2.10). The definition (2.5) of Fn+1
K,σ gives

B = B1 + B2 + B3, (3.15)

where

B1 =

N
∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)Qn+1
K,σ fK(sn+1

K,σ )
(

πK(sn+1
K ) − πK(sn+1

L )
)

+

N
∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)Qn+1
K,σ fK(sn+1

K,σ )
(

πK(sn+1
K ) − πn+1

σ

)

,

B2 =

N
∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)R(GK,σ; sn+1
K , sn+1

L )
(

πK(sn+1
K ) − πK(sn+1

L )
)

+

N
∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)R(GK,σ; sn+1
K , sn+1

K,σ )
(

πK(sn+1
K ) − πn+1

σ

)

,

B3 =

N
∑

n=0

δt
∑

σ=K|L∈Eint

τKL

(

ϕK(sn+1
K ) − ϕK(sn+1

L )
) (

πK(sn+1
K ) − πK(sn+1

L )
)

+

N
∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

τKσ

(

ϕK(sn+1
K ) − ϕK(sn+1

K,σ )
)

(

πK(sn+1
K ) − πn+1

σ )
)

.

It follows from Lemma 3.2 that

B1 ≥
N

∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)Qn+1
K,σ

(

WK(πK(sn+1
K )) − WK(πK(sn+1

L ))
)

+

N
∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)Qn+1
K,σ

(

WK(πK(sn+1
K )) − WK(πn+1

σ )
)

.
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Multiplying the equation (2.2) by δt
(

Pn+1
K − WK(πK(sn+1

K ))
)

and summing over K ∈
T and n ∈ {0, . . . , N} yields, after reorganizing the sum and using (2.8) and (2.9),

N
∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)Qn+1
K,σ (Pn+1

K − Pn+1
L )

+

N
∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)Qn+1
K,σ (Pn+1

K − Pn+1
K,σ )

=

N
∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)Qn+1
K,σ

(

WK(πK((sn+1
K )) − WK(πK(sn+1

L ))
)

+

N
∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)Qn+1
K,σ

(

WK(πK(sn+1
K, )) − WK(πn+1

σ )
)

.

Therefore, using the definition (2.3) of Qn
K,σ, we deduce that

B1 ≥ B4 + B5, (3.16)

where

B4 =

N
∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)MK,L

dK,L
(Pn+1

K − Pn+1
L )2

+

N
∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)MK

dK,σ
(Pn+1

K − Pn+1
K,σ )2

and

B5 =

N
∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)R(ZK,σ; sn+1
K , sn+1

L )(Pn+1
K − Pn+1

L )

+

N
∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)R(ZK,σ; sn+1
K , sn+1

K,σ )(Pn+1
K − Pn+1

K,σ ).

(3.17)

Using (1.18), i.e the fact that for all s ∈ R, Mi(s) ≥ αM > 0 we obtain

B4 ≥ αM

∑

i∈{1,2}

|PD|2D,i . (3.18)

The Cauchy-Schwarz inequality applied to the right hand side of (3.17) implies

|B5| ≤ Eint





N
∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)

dK,L
(Pn+1

K − Pn+1
L )2





1
2

+ EΓ





N
∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)

dK,σ
(Pn+1

K − Pn+1
K,σ )2





1
2

,
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where

(Eint)
2

=

N
∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)dK,LR(ZK,σ; sn+1
K , sn+1

L )2

and

(EΓ)
2

=

N
∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)dK,σR(ZK,σ; sn+1
K , sn+1

K,σ )2.

Therefore we deduce that,

B2
5 ≤ 3

2
T |g|2d

∑

i∈{1,2}

m(Ωi)‖ζi‖2
L∞((0,1))

∑

i∈{1,2}

|PD|2D,i , (3.19)

where d stands for the dimension of Ω. Combining (3.16), (3.18) and (3.19) one has

B1 ≥ αM

∑

i∈{1,2}

|PD|2D,i−





3

2
T |g|2d

∑

i∈{1,2}

m(Ωi)‖ζi‖2
L∞((0,1))





1
2





∑

i∈{1,2}

|PD|2D,i





1
2

.

(3.20)
We now will show the estimates on the term B2. Using Lemma 3.3 we have

B2 ≥
N

∑

n=0

δt
∑

σ=K|L∈Eint

m(σ)
(

GK,σ

(

πK(sn+1
K )

)

− GK,σ

(

πK(sn+1
L )

))

+

N
∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)
(

GK,σ

(

πK(sn+1
K )

)

− GK,σ

(

πn+1
σ

))

.

(3.21)

Recombining terms we obtain

B2 ≥
N

∑

n=0

δt
∑

K∈T

∑

EK,int

m(σ)GK,σ

(

πK(sn+1
K )

)

+

N
∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)
(

GK,σ

(

πK(sn+1
K )

)

− GK,σ

(

πn+1
σ

))

,

which in view of (3.8) and (3.3) implies

B2 ≥ −
N

∑

n=0

δt
∑

K∈T

∑

σ∈EK,Γ

m(σ)GK,σ

(

πn+1
σ

)

.

Remark that if σ = K|L ∈ EΓ then the function GK,σ(p) + GL,σ(p) in general is
not equal to zero. However we can write an lower bound for the term B2. Indeed,
comparing the definition (1.15) of ϕi with the definition (1.17) of γi, and using the
fact that γi(0) = 0 and γi(1) = 0 one has

∫ πn
σ

0

γK ◦ π̃−1
K (p)dp =

∫ sn
K,σ

0

γK(a)π′
K(a)da = (ρo − ρw)ϕK(sn

K,σ)

16



and thus, in view of Proposition 3.1

B2 ≥ −|ρo − ρw||g| max
i∈{1,2}

ϕi(1) m(Γ)T.

Because of the definition (1.15) of the function ϕi, then, for all (a, b) ∈ [0, 1]2,

(ϕi(a) − ϕi(b))(πi(a) − πi(b)) ≥
max(µo, µw)

Ki
(ϕi(a) − ϕi(b))

2
. (3.22)

Then it follows from Lemma 3.4 and for inequality (3.22) that

B3 ≥ max(µo, µw)

mini∈{1,2} Ki

∑

i∈{1,2}

|ϕi(sD)|2D,i . (3.23)

We define Πi(s) =
∫ s

0
πi(a)da, then Πi is a continuous convex function. As a conse-

quence, for all (a, b) ∈ [0, 1]2,

πi(b)(b − a) ≥ Πi(b) − Πi(a).

Therefore,

A ≥
N

∑

n=0

∑

K∈T

φK

(

ΠK(sn+1
K ) − ΠK(sn

K)
)

m(K)

=
∑

K∈T

φK

(

ΠK(sN+1
K ) − ΠK(s0

K)
)

m(K).

Using the fact that, for all (a, b) ∈ [0, 1]2, one has

Πi(b) − Πi(a) =

∫ b

a

πi(u)du ≥ −
∫ 1

0

|πi(u)|du,

it follows from Proposition 3.1 that

A ≥ −
∑

i∈{1,2}

φim(Ωi)‖πi‖L1((0,1)). (3.24)

Taking (3.20), (3.23), (3.23) and (3.24) into account in (3.14) we have.

αM

∑

i∈{1,2}

|PD|2D,i −





3

2

T |g|2
d

∑

i∈{1,2}

m(Ωi)‖ζi‖2
L∞((0,1))





1
2





∑

i∈{1,2}

|PD|2D,i





1
2

+
max(µo, µw)

mini∈{1,2} Ki

∑

i∈{1,2}

|ϕi(sD)|2D,i ≤ C.

(3.25)
Applying Young’s inequality to (3.21) we complete the proof of Proposition 3.5. In-
deed,

αM

2

∑

i∈{1,2}

|PD|2D,i +
max(µo, µw)

mini∈{1,2} Ki

∑

i∈{1,2}

|ϕi(sD)|2D,i ≤ C.

17



Proposition 3.6. There exists C only depending on Ωi, C1 and ‖W1 − W2‖∞
such that

‖PD‖L2(QT ) ≤ C.

Proof. In view of the discrete Poincar-Wirtinger inequality [27] and Proposi-
tion 3.5, there exists C depending only on Ωi and C1 such that

∫∫

Qi,T

(PD − mΩi
(PD))

2
dxdt ≤ C.

In order to conclude the proof, it only remains to check that mΩ2(PD) is uniformly
bounded.

3.3. Existence of a discrete solution. Proposition 3.7. There exists (at
least) a solution to the scheme (2.4)-(2.11).

Proof. The proof is based on a topological degree argument (see for example [20]).
For ν ∈ [0, 1], we introduce the functions

• fν
i (s) = νfi(s) + (1 − ν)s,

• ζν
i (s) = νζi(s), γν

i (s) = νγi(s)
• Mν

i (s) = νMi(s) + (1 − ν)αM ,
• λν

i (s) = νλi(s) + (1 − ν)αMs(1 − s),

• πν
i (s) = νπi(s) + (1 − ν)π1(s),

• ϕν
i (s) =

∫ s

0

λν
i (a) (πν

i )
′
(a)da,

• W ν
i (s) =

∫ s

s⋆

fν
i (a) (πν

i )
′
(a)da.

We denote by (sν
D, P ν

D) the solution to the modified scheme. For ν = 0, the
problem becomes homogeneous, corresponding to the equations

{

∂ts
0 − div

(

s0∇P 0 −∇ϕ0(s0)
)

= 0,

−αM∆P 0 = 0.
(3.26)

The pressure equation provides a classical linear Finite Volume scheme which is com-
pletely uncoupled from the saturation equation. The transmission conditions (2.9),(2.8)
turn to

P
n+1,0
K,σ = P

n+1,0
L,σ =

τKσP
n+1,0
K + τLσP

n+1,0
L

τKσ + τLσ
,

and thus

Q
n+1,0
K,σ = τKL

(

P
n+1,0
K − P

n+1,0
L

)

.

Note that the a priori estimates (3.1) and (3.13) still hold for (sν
D, P ν

D) instead of
(sD, PD). We introduce now a new parameter η ∈ [0, 1], and we approximate the
problem

{

∂ts
0,η − ηdiv

(

s0,η∇P 0 −∇ϕ0(s0,η)
)

= 0,

−αM∆P 0 = 0.

The corresponding discrete solution s
0,η
D satisfies

0 ≤ s
0,η
D ≤ 1, ∀η ∈ [0, 1]. (3.27)

18



We introduce the compact set

K =
{

(uD, vD) ∈ (X (D))
2

∣

∣

∣
‖uD‖∞ ≤ 2 and |vD|D ≤ 2C1

}

,

where C1 is the quantity introduced in Proposition 3.5. Since, for ν = η = 0, the
problem turns to an invertible linear problem, we can claim that the corresponding
topological degree is equal to +1 (since the determinant of the underlying matrix is

positive). One can let first η go to 1, and thanks to (3.13),(3.27),
(

s
0,η
D , P 0

D

)

never

belongs to the boundary ∂K of K. Hence, the topological degree is constant for
η ∈ [0, 1], and, for η = 1, the discrete counterpart of (3.26) admits at least a solution.
Letting then ν tend to 1 provides thanks to similar arguments the existence of a
solution to the scheme (2.4)-(2.7).

4. Compactness properties of the discrete solution. In order to prove the
convergence of the scheme, we will use the method presented in [24] to derive the
relative compactness of the sequencies (sDm

)m∈N
and (PDm

)m∈N
, where (Dm)m∈N

is
a sequence of admissible discretizations of Ω× (0, T ) in the sense of Definition 2.3, for
which the discretization parameter hm := size(Dm) tends to 0 as m → ∞, while the
regularity parameter reg(Dm) remains bounded.

Firstly, since 0 ≤ sDm
≤ 1 almost everywhere in QT , we can claim that there

exists s ∈ L∞(QT ; [0, 1]), such that, up to a subsequence,

sDm
⇀ s in the L∞(QT ) weak- ⋆ sense as m → ∞.

This is of course not sufficient to pass to the limit, so that we seek for additional
compactness on the family of approximate solutions (sDm

, PDm
)m.

4.1. Estimates on differences of space and time translates. We recall here
the lemmas 4.2 and 4.3 of [24].

Lemma 4.1. Let uD be an element of X (D), then for all ξ ∈ R
d,

∫ T

0

∫

Ωi,ξ

(uD(x + ξ, t) − uD(x, t))
2
dxdt ≤ |uD|2D,i|ξ| (|ξ| + 2size(D)) ,

where Ωi,ξ = {x ∈ Ωi | [x,x + ξ] ⊂ Ωi}.
Lemma 4.2. Let uD be an element of X (D), and let Ti(uD) the function of

L2(Rd+1) defined by

Ti(uD)(x, t) =

{

uD(x, t) if (x, t) ∈ Ωi × (0, T ),
0 otherwise,

then for all ξ ∈ R
d,

∫ T

0

∫

Rd

(Ti(uD)(x + ξ, t) − Ti(uD)(x, t))
2
dxdt

≤ |uD|2D,i|ξ| (|ξ| + 2size(D) + 2m(∂Ωi) ‖uD‖∞) ,

where Ωi,ξ = {x ∈ Ωi | [x,x + ξ] ⊂ Ωi}.
Lemma 4.3. There exists C3, which does not depend on size(T ), δt nor on τ

such that for all τ ∈ (0, T ),

∫ T−τ

0

∑

i∈{1,2}

∫

Ωi

(ϕi(sD)(x, t + τ) − ϕi(sD)(x, t))
2
dxdt ≤ C3τ. (4.1)
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Lemma 4.3 is an extension of Lemma 4.6 of [24] (see also Proposition 5.1 in [26]).
Proposition 4.4. The sequence (ϕi(sDm

))m converges strongly in L2(Qi,T ), up
to a subsequence, towards the function ϕi(s) ∈ L2(0, T ;H1(Ωi)).

Proof. First recall that, by Proposition 3.1, (ϕi(sDm
))m is bounded in L∞(Qi,T )

for i ∈ {1, 2} and that by Proposition 3.5 the sequence (|ϕi(sDm
)|Dm,i)m is bounded.

Thanks to the lemmas 4.2 and 4.3 and the Kolmogorov compactness criterion (see
e.g. [7] or [24, Theorem 3.9]), it follows that (Ti(ϕi(sDm

)))m is relatively compact
in L2(Rd+1) for i ∈ {1, 2}. Thus we can extract a subsequence, still denoted by
(Ti(ϕi(sDm

)))m, such that both T1(φ1(sDm
)) and T2(φ2(sDm

)) converge to their limit
strongly in L2(Q1,T ) and L2(Q2,T ) respectively. As a direct consequence, (ϕi(sDm

))m

converges in L2(Qi,T ) for i ∈ {1, 2} towards a function φ, which satisfies, thanks to
Lemma 4.1,

∫ T

0

∫

Ωi,ξ

(φ(x + ξ, t) − φ(x, t))2dxdt ≤ C|ξ|2, ∀ξ ∈ R
d.

This implies (see [7]) that φ ∈ L2(0, T ; H1(Ωi)). It remains to identify φ as ϕi(s),
i ∈ {1, 2}. This can be done using Minty’s lemma (see e.g. [25, Theorem 4.1]).

Corollary 4.5. Up to a subsequence, (sDm
)m converges towards s strongly in

Lp(QT ) for all p ∈ [1,∞).
Proof. Since (ϕi(sDm

))m converges in L2(QT ) towards ϕi(s), it converges (up to
a new subsequence) almost everywhere in QT . Since ϕ−1

i is continuous, sDm
tends

to s almost everywhere. The result then follows from the uniform bound on (sDm
)m

stated in Proposition 3.1.
Lemma 4.6. There exists P ∈ L2(0, T ; H1(Ωi)) such that, up to a subsequence,

PDm
− mΩi

(PDm
) ⇀ P weakly in L2(Qi,T ) as m → ∞.

Proof. In view of the discrete Poincar-Wirtinger inequality [27], there exists C

depending only on Ωi and on the quantity C1 introduced in Proposition 3.5 such that

‖PDm
− mΩi

(PDm
)‖L2(Qi,T ) ≤ C, for i ∈ {1, 2}.

Hence the sequence (PDm
− mΩi

(PDm
))m converges weakly in L2(Qi,T ) towards a

function P. Therefore, for all ξ ∈ R
d,

PDm
(· + ξ, ·) − PDm

⇀ P(· + ξ, ·) − P weakly in L2(Ωi,ξ × (0, T )) as m → ∞.

The lower semi-continuity of the norm for the weak L2 topology implies that

∫ T

0

∫

Ωi,ξ

(P(x + ξ, t) − P(x, t))
2
dxdt

≤ lim inf
m→∞

∫ T

0

∫

Ωi,ξ

(PDm
(x + ξ, t) − PDm

(x, t))
2
dxdt.

We deduce from Proposition 3.5 and Lemma 4.1 that

∫ T

0

∫

Ωi,ξ

(P(x + ξ, t) − P(x, t))
2
dxdt ≤ C1|ξ|2,

ensuring that P belongs to L2(0, T ; H1(Ωi)).
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4.2. Convergence of the traces. We denote by sD|Γ,i
(resp. PD|Γ,i

) the trace

of sD (resp. PD) on Γ from the side of Ωi, defined by

sD|Γ,i
(x, t) = sn+1

K,σ , PD|Γ,i
(x, t) = Pn+1

K,σ , ∀(x, t) ∈ σ × (tn, tn+1],

where σ ∈ EK,Γ, K ⊂ Ωi.
It has been proven in Proposition 4.4 that ϕi(sDm

) converges strongly in L2(Qi,T )
towards ϕi(s) ∈ L2(0, T ; H1(Ωi)). Hence, ϕ1(s) and ϕ2(s) admits a traces in the sense
of L2(Γ × (0, T )). Since ϕ−1

i is continuous, s also admits a traces on the interface,
denoted by s1 and s2. We claim in Corollary 4.10 below that sDm|Γ,i

converges strongly

in Lp(Γ × (0, T )) towards si for all p ∈ [1,∞).
We now introduce another definition of the trace, denoted by ũ|Γ,i

. For a function
u of X (D) we define

ũ|Γ,i
(x, t) := un+1

K if (x, t) ∈ σ × (tn, tn+1], σ ⊂ Γ ∩ ∂K, K ⊂ Ωi.

Lemma 4.7. Let u ∈ X (D), then

∫ T

0

∫

Γ

|u|Γ,i
− ũ|Γ,i

|dxdt ≤ |u|D (Tm(Γ)size(D))
1/2

.

Proof. From the definitions of the traces of u,

∫ T

0

∫

Γ

|u|Γ,i
− ũ|Γ,i

|dxdt =

N
∑

n=0

δt
∑

K∈Ti

∑

σ∈EK,Γ

m(σ)|un+1
K,σ − un+1

K |.

Cauchy-Schwarz inequality yields that

∫ T

0

∫

Γ

|u|Γ,i
− ũ|Γ,i

|dxdt ≤





N
∑

n=0

δt
∑

K∈Ti

∑

σ∈EK,Γ

τK,σ(un+1
K,σ − un+1

K )2





1/2

×





N
∑

n=0

δt
∑

K∈Ti

∑

σ∈EK,Γ

m(σ)dK,σ





1/2

.

The result follows.
Since Ωi is supposed to be polygonal, Γ is made of a finite number of faces

(Γj)1≤j≤J contained in affine hyperplanes of R
d. We denote by ni,j the outward

normal to Γj with respect to Ωi. For ε > 0 and j ∈ {1, . . . , J}, we define the open
subset ωi,j,ε of Ωi as the largest cylinder of width ε generate by Γj and ni,j included
in Ωi, that is

ωi,j,ε :=
{

x − hni,j ∈ Qi,T |x ∈ Γj , 0 < h < ε and [x, x − εni,j ] ⊂ Ωi

}

. (4.2)

We also define the subset Γi,j,ε = ∂ωi,j,ε ∩ Γj of Γj , that satisfies

m(Γj \ Γi,j,ε) ≤ Cε, (4.3)

where C only depends on Ω.
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Lemma 4.8. Let u ∈ X (D), then for all j ∈ {1, . . . , J},
∫ T

0

1

ε

∫

Gi,j,ε

∫ ε

0

(

ũ|Γ,i
(x, t) − u(x − hni,j , t)

)2
dhdxdt ≤ |u|2D (ε + size(D)) .

Proof. For all σ ∈ Eint, we denote by

χσ(x, y) :=

{

1 if (x, y) ∩ σ is reduced to a single point,
0 otherwise.

We also introduce, for almost all x ∈ Γi,j,ε, for almost h ∈ (0, ε) and for all t ∈ (0, T ),
the quantity

TD(x, h, t) :=
∣

∣ũ|Γ,i
(x, t) − uD(x − hni,j , t)

∣

∣

≤
∑

σ=K|L∈Ei

χσ(x,x − hni,j)
∣

∣un+1
K − un+1

L

∣

∣

if t ∈ (tn, tn+1]. It follows from the Cauchy-Schwarz inequality that, for t ∈ (tn, tn+1],

(TD(x, h, t))
2 ≤





∑

σ=K|L∈Ei

χσ(x,x − hni,j)

(

un+1
K − un+1

L

)2

dKL|ni,j · nKL|





×





∑

σ=K|L∈Ei

χσ(x,x − hni,j)dKL|ni,j · nKL|



 .

For almost all x ∈ Gi,j,ε, there exists a unique K1 ∈ Ti such that x ∈ ∂K1. Moreover,
for almost all h ∈ (0, ε), there exists a unique K2 ∈ Ti such that x − hni belongs to
K2 (possibly K2 coincides with K1). Hence,

∑

σ=K|L∈Eint

χσ(x, x − hni,j)dKL|ni,j · nKL| = (xK1 − xK2) · ni,j

≤ (xK1 − x) · ni,j + h + |(xK2 − (x − hni,j)) · ni,j | . (4.4)

Since x − hni,j belongs to K2, we have

|(xK2
− (x − hni,j)) · ni,j | ≤ size(D),

and since x belongs to Γi, (xK1
− x) · ni,j ≤ 0. Then we obtain

∑

σ=K|L∈Eint

χσ(x,x − hni,j)dKL|ni,j · nKL| ≤ ε + size(D). (4.5)

For all σ ∈ Eint with σ ∩ ωi,j,ε = ∅ and all h ∈ (0, ε), one has

∫

Γε
i

χσ(x,x − hni)dx = 0.

For all σ ∈ Ei,j,ε := {σ ∈ Ei | σ ∩ ωi,j,ε 6= ∅}, one has

∀h ∈ (0, ε),

∫

Gi,j,ε

χσ(x,x − hni,j)dx ≤ m(σ)|ni,j · nKL|. (4.6)
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We obtain from (4.5) and (4.6) that for all t ∈ (tn, tn+1], for all h ∈ (0, ε),
∫

Gi,j,ε

(TD(x, h, t))
2
dx ≤ (ε + size(D))

∑

σ=K|L∈Ei,j,ε

τKL

(

un+1
K − un+1

L

)2
,

which complete the proof.

Proposition 4.9. The sequence
(

ϕi(sDm|Γ,i
)
)

m
converges towards ϕi(si) strongly

in L1(Γ × (0, T )) as m → ∞.
Proof. For notation convenience, we remove the subscripts m in the proof. Denote

by

Ai,j,D :=

∫ T

0

∫

Γj

∣

∣

∣ϕi(sD|Γ,i
) − ϕi(si)

∣

∣

∣ dxdt, (4.7)

then in view of Lemma 4.7 and Proposition 3.5, there exists C not depending on D
such that

Ai,j,D =

∫ T

0

∫

Γj

∣

∣

∣
ϕi(s̃D|Γ,i

) − ϕi(si)
∣

∣

∣
dxdt + Csize(D)1/2. (4.8)

By (4.3), one has

∫ T

0

∫

Γj

∣

∣

∣
ϕi(s̃D|Γ,i

) − ϕi(si)
∣

∣

∣
dxdt ≤

∫ T

0

∫

Γi,j,ε

∣

∣

∣
ϕi(s̃D|Γ,i

) − ϕi(si)
∣

∣

∣
dxdt + ϕi(1)Cε.

(4.9)
Next we apply the triangle inequality to deduce that

∫ T

0

∫

Γi,j,ε

∣

∣

∣
ϕi(s̃D|Γ,i

) − ϕi(si)
∣

∣

∣
dxdt ≤ B1,D,ε + B2,D,ε + B3,ε, (4.10)

where

B1,D,ε =
1

ε

∫ T

0

∫

Gi,j,ε

∫ ε

0

∣

∣

∣
ϕi(s̃D|Γ,i

)(x, t) − ϕi(sD)(x − hni,j , t)
∣

∣

∣
dhdxdt,

B2,D,ε =
1

ε

∫ T

0

∫

ωi,j,ε

|ϕi(sD) − ϕi(s)|dxdt,

B3,ε =
1

ε

∫ T

0

∫

Gi,j,ε

∫ ε

0

|ϕi(si)(x, t) − ϕi(s)(x − hni,j , t)|dhdxdt,

where we have used (4.2). From Cauchy-Schwarz inequality, one has

(B1,D,ε)
2 ≤ m(Gi,j,ε)T

∫ T

0

∫

Gi,j,ε

1

ε

∫ ε

0

(ϕi(s̃D|Γ,i
)(x, t)−ϕi(sD)(x−hni,j , t))

2dhdxdt,

and then, from Proposition 3.5 and Lemma 4.8, one has

|B1,D,ε| ≤ (C1(size(D) + ε)m(Γi)T )
1/2

. (4.11)

We can now let size(D) tend to 0 in (4.10). Thanks to Proposition 4.4, we can claim
that

lim
size(D)→0

B2,D,ε = 0.
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Then it follows from (4.9) and (4.11) that

lim sup
size(D)→0

∫ T

0

∫

Γj

∣

∣

∣
ϕi(s̃D|Γ,i

) − ϕi(si)
∣

∣

∣
dxdt ≤ C(ε +

√
ε) + B3,ε. (4.12)

Since ϕi(si) is the trace of ϕi(s) on Γ, limε→0 B3,ε = 0. Therefore, letting ε tend to
0 in (4.12) implies that

lim
size(D)→0

∫ T

0

∫

Γj

∣

∣

∣ϕi(s̃D|Γ,i
) − ϕi(si)

∣

∣

∣ dxdt = 0.

Then the result follows from (4.7) and (4.2).

Corollary 4.10. The sequence
(

sDm|Γ,i

)

m
converges towards si strongly in

Lp(Γ × (0, T )) for all p ∈ [1,∞).
Proof. This corollary is just a consequence from the fact that ϕi(sDm|Γ,i

) con-

verges, up to a subsequence, almost everywhere on Γ× (0, T ), from the fact that ϕ−1
i

is continuous and from the fact that sDm|Γ,i
is essentially uniformly bounded between

0 and 1.
Lemma 4.11. The sequence

(

(PDm
)|Γ,i

− mΩi
(PD)

)

m
converges towards Pi

weakly in L2(Γ × (0, T )).
Proof. Let ψ ∈ D(Γi × (0, T )), then, there exists ε⋆ such that, for all ε ∈ (0, ε⋆),

supp(ψ) ⊂ Γi,j,ε × (0, T ). We aim to prove that

lim
size(D)→0

∫ T

0

∫

Γj

(

PD|Γ,i
− mΩi

(PD) − Pi

)

ψdxdt = 0. (4.13)

Thanks to Lemma 4.7 and to Proposition 3.5, it is sufficient to show that

lim
size(D)→0

∫ T

0

∫

Γj

(

P̃D|Γ,i
− mΩi

(PD) − Pi

)

ψdxdt = 0.

Let ε ∈ (0, ε⋆), then one has

∫ T

0

∫

Γj

(

P̃D|Γ,i
− mΩi

(PDm
) − Pi

)

ψdxdt = E1,D,ε + E2,D,ε + E3,ε,

where

E1,D,ε =

∫ T

0

1

ε

∫

Gi,j,ε

∫ ε

0

(

P̃D|Γ,i
(x, t) − PD(x − hni,j , t)

)

ψ(x, t)dhdxdt,

E2,D,ε =

∫ T

0

1

ε

∫

Gi,j,ε

∫ ε

0

(PD(x − hni,j , t) − mΩi
(PD) − P(x − hni,j , t))ψ(x, t)dhdxdt,

E3,ε =

∫ T

0

1

ε

∫

Gi,j,ε

∫ ε

0

(P(x − hni,j , t) − Pi)ψ(x, t)dhdxdt.

The Cauchy-Schwarz inequality gives that

(E1,D,ε)
2 ≤

∫ T

0

1

ε

∫

Gi,j,ε

∫ ε

0

(

P̃D|Γ,i
(x, t) − PD(x − hni,j , t)

)2

dhdxdt

×
∫ T

0

∫

Γj

(ψ(x, t))
2
dxdt.
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Using Proposition 3.5 and Lemma 4.8 yields

|E1,D,ε| ≤ ‖ψ‖L2(Γj×(0,T )) (C1(ε + size(D)))
1/2

.

It has been stated in Lemma 4.6 that PD − mΩi
(PD) tends to P weakly in L2(Qi,T )

as size(D) tends to 0, then

lim
size(D)→0

E2,D,ε = 0.

Therefore,

lim sup
size(D)→0

∣

∣

∣

∣

∣

∫ T

0

∫

Γj

(

P̃D|Γ,i
− Pi

)

ψdxdt

∣

∣

∣

∣

∣

≤ Cψ

√
ε + |E3,ε|.

Since Pi is the trace on Γ of P from the side of Ωi, one has

lim
ε→0

E3,ε = 0.

Thus, letting ε → 0, one obtains that for all ψ ∈ D(Γj × (0, T )),

lim
size(D)→0

∫ T

0

∫

Γj

(

P̃D|Γ,i
− mΩi

(PD) − Pi

)

ψdxdt = 0. (4.14)

A straightforward generalization of [24, Lemma 3.10] allows us to claim, using Proposi-

tion 3.5 and the discrete Poincar-Wirtinger inequality [27], that
(

P̃D|Γ,i
− mΩi

(PD)
)

D

is uniformly bounded in L2(Γ × (0, T )). Then, we conclude, using a classical density
argument, that (4.14) holds for all ψ ∈ L2(Γj × (0, T )).

Proposition 4.12. There exists P ∈ L2(0, T ; H1(Ωi)) such that PDm
tends

to P weakly in L2(QT ) as m → ∞, and such that
(

PDm|Γ,i

)

m
converges weakly in

L2(Γ × (0, T )) towards Pi.
Proof. Firstly, since we have enforced mΩ1(PDm

) = 0, we can set P := P in
Q1,T . Next we search for a uniform bound on ‖PDm

‖L2(Q2,T ). In view of the discrete
Poincar-Wirtinger inequality

‖PDm
‖2

L2(Q2,T ) ≤ (mΩ2
(PDm

))
2

+ C, (4.15)

it only remains to check that mΩ2(PDm
) is uniformly bounded w.r.t. m. This is a

consequence of the fact that, almost everywhere on Γ × (0, T ), one has

mΩ2
(PDm

) = PDm|Γ,1
−

(

PDm|Γ,2
− mΩ2

(PDm
)
)

− (W1(πDm
) − W2(πDm

)) .

Then, integrating on Γ × (0, T ) and using Lemma 1.1 provides

|mΩ2(PDm
)| ≤ 1

m(Γ)T

∑

i∈{1,2}

∥

∥

∥
PDm|Γ,i

− mΩi
(PDm

)
∥

∥

∥

L1(Γ×(0,T ))
+ ‖W1 − W2‖∞.

For all i ∈ {1, 2} the quantities
∥

∥

∥
PDm|Γ,i

− mΩi
(PDm

)
∥

∥

∥

L1(Γ×(0,T ))
are bounded by the

proof of Lemma 4.11. Hence, in view of (4.15), (PDm
)m converges towards some func-

tion P weakly in L2(Qi,T ). From the analysis performed in the proof of Lemma 4.6, we
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deduce that P ∈ L2(0, T ; H1(Ωi)), and from the analysis of Lemma 4.11, we deduce
the weak convergence of the traces.

Lemma 4.13. Let s1, s2 ∈ L∞(Γ × (0, T )) be the respective limits of
(

sDm|Γ,1

)

m

and
(

sDm|Γ,2

)

m
, then,

π̃1(s1) ∩ π̃2(s2) 6= ∅ a.e. on Γ × (0, T ). (4.16)

Proof. For all m ∈ N , one has

π̃1(sDm|Γ,1
) ∩ π̃2(sDm|Γ,2

) 6= ∅.

Since the set F = {(a, b) ∈ [0, 1]2 | π̃1(a) ∩ π̃2(b) 6= ∅} is closed in [0, 1]2, we conclude
that (4.16) holds.

We now focus on the last technical difficulty for proving Theorem 1, that is the
convergence of the sequence (πDm

)m. This is done by following the same path as
in [14].

In the sequel, we denote by

T[A,B](s) =







s if s ∈ [A,B],
A if s ≤ A,

B if s ≥ B,

and by

U = {(x, t) ∈ Γ × (0, T ) | {s1, s2} = {0, 1}}, V = Uc.

Note that, thanks to Lemma 4.13, the set U is empty if mini πi(1) > maxi πi(0).
Lemma 4.14. There exists a measurable function π defined on V with values in

R, such that, up to a subsequence,

πDm
→ π a.e. in V.

Proof. We define the functions

ϕ̃i : p 7→
∫ p

πi(0)

Ki
ko,i(π̃

−1
i (a))kw,i(π̃

−1
i (a))

µwko,i(π̃
−1
i (a)) + µokw,i(π̃

−1
i (a))

da,

that satisfy the properties

π ∈ π̃i(s) =⇒ ϕ̃i(π) = ϕ̃i(πi(s)) = ϕi(s), (4.17)

and

its restriction (ϕ̃i)|[πi(0),πi(1)]
admits a continuous inverse function. (4.18)

Thanks to Proposition 4.9 and to (4.17), we can claim that, up to a subsequence,
ϕ̃i(πDm

) converges almost everywhere on Γ × (0, T ) towards ϕ̃i(πi(si)). For a.e.
(x, t) ∈ V, the set π̃1(s1) ∩ π̃2(s2) is reduced to the singleton {πi0(si0)} for some
i0 ∈ {1, 2}. Thanks to (4.18), we can identify the limit π of πDm

as πi0(si0).
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Lemma 4.15. Assume that [mini πi(1),maxi πi(0)] 6= ∅, then there exists π ∈
L∞(U ; [mini πi(1), maxπi(0)]) such that, for all bounded interval J ⊂ R such that

[mini πi(1), maxi πi(0)] ⊂
◦
J ,

TJ (πDm
) → π in the L∞(U) weak- ⋆ sense.

Proof. For the sake of simplicity, we assume, without loss of generality, that
π1(1) ≤ π2(0), then thanks to Lemma 4.13, almost everywhere in U , s1 = 1 and
s2 = 0.

The sequence (TJ (πDm
))m is bounded in L∞(U), thus, up to a subsequence, it

converges towards a function πJ in the L∞(U) weak-⋆ sense. Let us now show that
πJ does not depend on the choice of the bounded interval J . Because of Lemma 4.13,
one has, for a.e. (x, t) ∈ U ,

lim inf
m

πDm
≥ π1(1), lim sup

m
πDm

≤ π2(0). (4.19)

Let J1 and J2 be two bounded intervals such that [π1(1), π2(0)] ⊂
◦
J k (k ∈ {1, 2}).

Then, it follows from (4.19) that, for a.e. (x, t) ∈ U , for m large enough (depending
on (x, t)),

TJ1
(πDm

(x, t)) − TJ2
(πDm

(x, t)) = 0.

As a consequence, the sequence (TJ1
(πDm

) − TJ2
(πDm

))m converges almost every-
where to 0 on U , and is uniformly bounded in L∞(U). The dominated convergence
theorem yields that for all ψ ∈ L1(U),

∫∫

U

(TJ1(πDm
) − TJ2(πDm

)) ψdxdt → 0 =

∫∫

U

(πJ1 − πJ2)ψdxdt.

Choosing ψ = (πJ1
− πJ2

) provides that πJ1
= πJ2

= π almost everywhere in U .
Lemma 4.16. Assume that [mini πi(1),maxi πi(0)] 6= ∅, then there exists π ∈

L∞(U) such that, for all bounded interval J ⊂ R such that [mini πi(1), maxi πi(0)] ⊂
◦
J , the sequence (Wi(TJ (πDm

)))m converges towards Wi(π) in the L∞(U) weak-⋆
sense.

Proof. We suppose, without loss of generality, that π1(1) ≤ π2(0). Then on U ,
s2 = 0 and s1 = 1. One has

W2(TJ (πDm
)) =

∫ π2(0)

0

f2 ◦ π−1
2 (p)dp +

∫ πDm

π2(0)

f2 ◦ π−1
2 (p)dp.

Since for almost every (x, t) ∈ U ,

lim sup
m

πDm
(x, t) ≤ π2(0),

and since f2 ◦ π−1
2 (p) = 0 for all p ≤ π1(0), then for almost every (x, t) ∈ U ,

∫ πDm (x,t)

π2(0)

f2 ◦ π−1
2 (p)dp → 0 as m → ∞.
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Since the function W2 ◦ TJ is uniformly bounded on R, the dominated convergence
theorem yields that, for all ψ ∈ L1(U),

lim
m→∞

∫

U

W2(TJ (πDm
))ψdxdt →

∫∫

U

W2(π2(0))ψdxdt =

∫∫

U

W2(π)ψdxdt.

Similarly, we obtain that

∫∫

U

(W1(TJ (πDm
)) − TJ (πDm

)) ψdxdt →
∫∫

U

(W1(π1(1)) − π1(1))ψdxdt.

Since, thanks to Lemma 4.15, TJ (πDm
) tends to π in the L∞(U) weak-⋆ sense, one

has

lim
m→∞

∫∫

U

W1(TJ (πDm
))ψdxdt =

∫∫

U

(W1(π1(1)) + π − π1(1))ψdxdt

=

∫∫

U

W1(π)ψdxdt.

Proposition 4.17. There exists a measurable function π on Γ × (0, T ), with
π ∈ π̃1(s1) ∩ π̃2(s2) a.e. on Γ × (0, T ), with value in [mini(πi(0)),maxi(πi(1))] such
that,

W1(πDm
)−W2(πDm

) → W1(π)−W2(π) in the L∞(Γ×(0, T )) weak-⋆sense as n → ∞.

Proof. We know, from Lemma 1.1, that W1(p) − W2(p) is uniformly bounded on
[mini πi(0), maxi πi(1)]. Hence, the sequence (W1(πDm

) − W2(πDm
))m converges in

the L∞(Γ × (0, T )) weak-⋆ sense towards a function Z. Let ψ ∈ L1(Γ × (0, T )), then

∫ T

0

∫

Γ

(W1(πDm
) − W2(πDm

)) ψdxdt =

∫∫

U

(W1(πDm
) − W2(πDm

))ψdxdt

+

∫∫

V

(W1(πDm
) − W2(πDm

)) ψdxdt.

Thanks to Lemma 4.14, πDm
tends almost everywhere to π on V, then for almost

every (x, t) ∈ V, we can identify Z(x, t) as W1(π(x, t)) − W2(π(x, t)). Thus

lim
m→∞

∫∫

V

(W1(πDm
) − W2(πDm

))ψdxdt =

∫∫

V

(W1(π) − W2(π)) ψdxdt.

We denote by

Am =

∫∫

U

(W1(πDm
) − W2(πDm

) − W1(π) + W2(π)) ψdxdt,

=

∫∫

U

(Υ1(πDm
) − Υ1(π))ψdxdt +

∫∫

U

(Υ2(πDm
) − Υ2(π)) ψdxdt.

Let R ∈ R such that [mini πi(0),maxi πi(1)] ⊂ [−R,R], then

Am = B1,m(R) − B2,m(R) + Cm(R),
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where

Bi,m(R) =

∫∫

U

(

Υi(πDm
) − Υi(T[−R,R](πDm

))
)

ψdxdt

and

Cm(R) =

∫∫

U

(

W1(T[−R,R](πDm
)) − W2(T[−R,R](πDm

)) − W1(π) + W2(π)
)

ψdxdt.

Let ε > 0, then since Υi admits finite limits as p → mini πi(0) and p → maxi πi(1),
there exists R0(ε) > 0 such that

R > R0(ε) =⇒ ‖Υi − Υi ◦ T[−R,R]‖∞ ≤ ε.

Thus, for R > R0(ε) fixed,

|Bi,m(R)| ≤ Tm(Γ)ε.

Thanks to Lemma 4.16,

lim
m→∞

Cm(R) = 0,

then, for all ε > 0,

lim sup
m→∞

|Am| ≤ 2Tm(Γ)ε.

As a consequence, since the above estimate holds for all ε > 0, Am tends to 0,
concluding the proof of Proposition 4.17.

5. End of the proof of Theorem 1. We have proven in the section 4 that,
up to a subsequence, the sequence of approximate solutions (sDm

, PDm
)m converge

towards (s, P ) as m → ∞. Moreover, it as been stated in Lemmata 4.14 and 4.15
that (πDm

)m converges in some sense on Γ× (0, T ) towards a measurable function π.
In order to conclude the proof of Theorem 1, it remains to check that (s, P ) satisfy
the weak formulations (1.25) and (1.26), and that the transmission conditions (1.20)
and (1.21) are fulfilled. Let us begin by this latter point.

It follows from the construction of the function π carried out in Lemmata 4.14
and 4.15 that, for almost every (x, t) ∈ Γ × (0, T ),

π(x, t) ∈ π̃1(s1(x, t)) ∩ π̃2(s2(x, t)). (5.1)

Let ψ ∈ L2(Γ × (0, T )), then thanks to (2.8), one has, for all ψ ∈ L2(Γ × (0, T )),

∫ T

0

∫

Γ

(

PDm|Γ,1
− PDm|Γ,2

)

ψdxdt =

∫ T

0

∫

Γ

(W1(πDm
) − W2(πDm

))ψdxdt.

Letting m tend to ∞ provides, thanks to Propositions 4.12 and 4.17, that

∫ T

0

∫

Γ

(P1 − P2)ψdxdt =

∫ T

0

∫

Γ

(W1(π) − W2(π))ψdxdt.

Hence,

P1 − W1(π) = P2 − W2(π) a.e. on Γ × (0, T ). (5.2)

In order to recover the weak formulations (1.25) and (1.26), we can apply to our
case the analysis carried out in the proof of Theorem 5.1 in [28].
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Fig. 6.1. The model porous medium Ω1 ∪ Ω2
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Fig. 6.2. Capillary pressure connection at t = 0

Fig. 6.3. Saturation for t = 0.06, t = 0.11 and t = 0.6

6. Numerical results. In this Section we consider a model porous medium
Ω = (0, 1)2 composed of two layers Ω1 and Ω2, which are separated by an ”S-shaped”
interface Γ (see Fig. 6.1), and which have different capillary pressure laws. The oil
and water densities are given by ρo = 0.81, ρw = 1 respectively, and g = −9.81ey.
We suppose that the porosity is such that φi = 1, i ∈ {1, 2}, and we define the oil and
water mobilities by

ηo,i(s) = 0.5s2 and ηw,i = (1 − s)2, i ∈ {1, 2}.

Moreover we suppose that the capillary pressure curves have the form

π1(s) = s and π2(s) = 0.5 + s.

In the first test case we suppose that the layer Ω1 contains some quantity of oil and
it is situated below Ω2, which is saturated with water, that is to say Ω1 = {(x,y) ∈
Ω | y < Γ(x)} and Ω2 = {(x,y) ∈ Ω | y > Γ(x)}. The initial saturation is given by

s0(x) =

{

0.3 if x ∈ Ω1,

0 otherwise.

The flow is driven by buoyancy, making the oil move along ey until it reaches the
interface Γ. As one can see on the figures 6.3 and 6.4, for t ≤ 0.11, oil can not access
the domain Ω2, since the capillary pressure π1(s1) is lower than the threshold value
π2(0) = 0.5, which is called the entry pressure (see Fig. 6.2). Hence the saturation
below the interface s1 increases, as well as the capillary pressure π1(s1). As soon as
the capillary pressure π1(s1) reaches the entry pressure π2(0), oil starts to penetrate
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Fig. 6.4. Capillary pressure for t = 0.06, t = 0.11 and t = 0.6

in the domain Ω2. Nevertheless, as pointed out in [6, 9], a finite quantity of oil remains
trapped under the rock discontinuity. This phenomenon is called oil trapping. It is
worth noting that the solution at t = 0 satisfies (1.20), thus in the absence of gravity
the initial distribution of oil-phase would be a steady state solution s(x, t) = s0(x).

In the second test case we assume that the oil is initially situated in the rock with
a higher entry pressure pressure i.e.

s0(x) =

{

0.3 if x ∈ Ω2,

0 otherwise.

where this time Ω1 = {(x,y) ∈ Ω | y > Γ(x)} and Ω2 = {(x,y) ∈ Ω | y < Γ(x)}.
This time the flow is driven not only by a buoyancy, but also by a difference in the
capillary pressure potential (the solution at t = 0 does not fulfill (1.20)). As a result
the oil-phase can immediately penetrate the domain Ω1. The figure 6.5 shows that
the oil propagates in the domain Ω1 with a finite speed.

Fig. 6.5. Saturation for t = 0.3, t = 1 and t = 1.7
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