Ilhem Khlif
email: ilhemkhlif@gmail.com

Mohamed Hadj Kacem
email: mohamed.hadjkacem@isimsf.rnu.tn

Une approche de description multi-échelles et multi points de vue pour les architectures logicielles dynamiques

Keywords: Architectures logicielles dynamiques, descriptions multi-échelles, descriptions multi points de vue, raffinement d'architecture, notations UML Dynamic Software Architectures, multi-scales descriptions, multi points of view descriptions, architecture refinement, UML notations

Cet article vise à présenter une approche de modélisation multi-échelles et multi points de vue pour faciliter la description et la validation des architectures logicielles dynamiques. Il s'agit de présenter une approche de conception orientée-modèle basée sur des notations visuelles permettant de décrire, par extension des notations UML, les architectures logicielles dynamiques selon différents niveaux de description. Nous décrivons un processus de raffinement progressif permettant d'automatiser le passage d'un modèle générique décrivant un point de vue donné d'une échelle à un modèle spécifique décrivant ce point de vue sous une autre échelle. Afin de garantir la compatibilité entre les différents niveaux de description, nous adoptons une technique de transformation orientée règles. Les règles gèrent le raffinement d'une échelle à une autre et également le passage d'un point de vue à un autre dans une même échelle. La modélisation des architectures logicielles dynamiques génère des modèles qui doivent être valides par rapport à leurs méta-modèles. L'approche que nous proposons est basée sur des règles de validation entre les différentes échelles et les différents points de vue de la même échelle. Cette validation assure la validité du modèle architectural. Nous présentons également l'interface d'un plug-in Eclipse que nous avons développé pour implémenter et expérimenter notre approche. Nous illustrons notre approche par son application à une étude de cas modélisant les systèmes de support des opérations d'intervention d'urgence (OIU).

INTRODUCTION

L'architecture logicielle a émergé comme un axe de recherche important de l'ingénierie logicielle. Elle fournit la description de haut niveau de la structure d'un système logiciel de façon de réduire sa complexité. L'architecture logicielle inclut la description des éléments à partir desquels les systèmes sont construits, les interactions entre ces éléments, les patrons qui guident leur composition et les contraintes sur ses patrons [START_REF] Garlan | An introduction to software architecture[END_REF] [START_REF] Garlan | An introduction to software architecture[END_REF]. En d'autres termes, l'architecture logicielle décrit d'une manière symbolique et schématique les différents éléments d'un ou de plusieurs systèmes informatiques et leurs interactions.

Ainsi, la conception architecturale se base sur des patrons récurrents d'organisation appelés styles architecturaux. La modélisation de l'architecture logicielle génère des modèles en se basant sur le profil UML (Unified Modeling Language). En effet, la plupart des systèmes logiciels doivent subir de différentes modifications durant leurs cycles de vie afin de faire face aux nouveaux besoins des utilisateurs. L'enjeu est donc de modéliser ces modifications architecturales tout en préservant la validité de l'architecture par rapport à son style.

UML est un langage de modélisation qui décrit un système en utilisant une notation graphique orientée objet. Il a une syntaxe semi-formelle et une sémantique. Pour modéliser un système, UML fournit plusieurs modèles exprimés sous forme de diagrammes (de classes, d'états, de packages, de cas d'utilisation, de composants et de déploiement). Une description architecturale doit être comprise et manipulée par plusieurs intervenants qui ont peu de connaissance dans le domaine des spécifications formelles. C'est l'une des raisons pour lesquelles plusieurs tentatives ont été faites pour utiliser ou étudier la possibilité d'utiliser UML comme un langage de description des architectures. L'autre raison est qu'UML est un standard de l'OMG qui couvre, par ses outils de support, toutes les phases d'un cycle de développement [START_REF] Muller | Modélisation objet avec UML[END_REF] [START_REF] Muller | Modélisation objet avec UML[END_REF] et [START_REF] Piechocki | UML, le langage de modélisation objet unifié[END_REF] [START_REF] Piechocki | UML, le langage de modélisation objet unifié[END_REF].

Un aspect clé de la conception de tout système logiciel est le concept de raffinement de l'architecture. Le raffinement d'une bonne architecture garantit l'intégrité et la cohérence de l'architecture logicielle, permet de réduire les coûts et d'améliorer la qualité du logiciel. Cependant, le raffinement de l'architecture logicielle est considéré comme une étape en cours de la recherche à cause de la complexité de la conversion de l'architecture abstraite à l'architecture spécifique. Le raffinement de l'architecture est devenu donc un domaine de recherche important en génie logiciel pour la description de l'architecture logicielle.

Nous nous intéressons particulièrement dans nos travaux de recherche à la modélisation des architectures logicielles dynamiques. Cet article vise à présenter une approche de modélisation multi-échelles et multi points de vue pour faciliter la description et la validation des architectures logicielles dynamiques. Il s'agit de présenter une approche de conception orientée-modèle basée sur des notations visuelles permettant de décrire, par extension des notations UML, les architectures logicielles dynamiques selon différents niveaux de description.

Nous nous basons dans notre recherche sur le langage UML puisqu'il est le langage de modélisation le plus répondu et qui s'adapte grâce à ses extensions à la modélisation des architectures dynamiques.

La principale contribution de notre travail est de décrire un processus de raffinement progressif permettant d'automatiser le passage d'un modèle générique décrivant un point de vue donné d'une échelle à un modèle spécifique décrivant ce point de vue sous une autre échelle. L'objectif de notre travail est de générer un système qui peut supporter différents niveaux de description. Un processus de raffinement progressif est nécessaire pour partir d'un modèle générique d'un niveau d'abstraction N-1 à un modèle plus spécifique d'un niveau N. Afin de garantir la compatibilité entre les différents niveaux de description, nous adoptons une technique de transformation orientée règles. Les règles gèrent le raffinement d'une échelle à une autre et également le passage d'un point de vue à un autre dans une même échelle. En effet, une échelle peut être définie comme un modèle qui donne des détails supplémentaires de la conception et décrit également un niveau ou une couche dans un système de communication. De même, une échelle peut avoir plusieurs points de vue procédés par un raffinement du modèle pour exprimer plus de détails.

La modélisation des architectures logicielles dynamiques génère des modèles qui doivent être valides par rapport à leurs méta-modèles. L'approche que nous proposons est basée sur des règles de validation entre les différentes échelles et les différents points de vue de la même échelle. Cette validation assure la validité du modèle architectural.

Nous présentons également l'interface d'un plug-in Eclipse que nous avons développé pour implémenter et expérimenter notre approche. Nous nous intéressons dans nos domaines d'applications à la modélisation des systèmes collaboratifs dans des environnements communicants (SCC) et nous illustrons notre approche par son application à une étude de cas modélisant les systèmes de support des opérations d'intervention d'urgence (OIU) et s'inscrivant dans le projet ROSACE (RObots et Systèmes Auto-adaptatifs Communiquants Embarqués) (Drira, 2009) [START_REF] Khalil Drira | Reconfiguration models for adaptive and ubiquitous communication in layered services[END_REF].

La suite de l'article est organisée de la façon suivante. La section 2 est dédiée pour l'état de l'art présentant une étude synthétique de travaux similaires à notre approche. La démarche générale de l'approche est décrite puis détaillée à travers une étude de cas dans la section 3. La section 4 propose l'implémentation de notre travail sous l'environnement Eclipse. Finalement, la section 5 conclut et décrit les perspectives de notre travail.

ÉTAT DE L'ART

Il existe deux domaines de recherche relatifs à notre travail: les architectures logicielles dynamiques (figure 1) et les méthodes de raffinement de l'architecture (figure 3). De même, l'aspect multi-vu des architectures logicielles dynamiques a été étudié par les travaux de [START_REF] Nassar | Vers un profil uml pour la conception de composants multivues[END_REF] [START_REF] Nassar | Vers un profil uml pour la conception de composants multivues[END_REF]. Ils ont développé une méthodologie de conception dont le noyau est un profil UML, appelé VUML (View based Unified Modeling Language), qui supporte la construction de composants de conception multi-vues. Ce travail a pour objet de spécialiser UML afin qu'il supporte la notion de vue/point de vue de l'analyse jusqu'au déploiement d'une application. Cette spécialisation se traduit par l'introduction d'un ensemble de stéréotypes regroupé sous forme de profil UML. Le méta-modèle de VUML étend celui d'UML avec de nouveaux stéréotypes : MultiViewsClass, AbstractView, Base, View, ViewExtension et ViewDependency. Ainsi, les travaux de [START_REF] Nassar | Vers un profil uml pour la conception de composants multivues[END_REF] [START_REF] Nassar | Vers un profil uml pour la conception de composants multivues[END_REF] ont présenté le patron d'implémentation pour la génération de code multicibles et ont adapté l'outil Objecteering/UML Modeler (qui fait partie de l'atelier Objecteering/UML) pour tenir compte des contraintes de modélisation propres à des projets.

Architectures logicielles dynamiques

Multicouches

Ce travail a mis en oeuvre l'outil support de VUML à travers deux profils Objecteering qui sont le profil Objecteering VUML qui permet de mener une modélisation selon VUML et de vérifier la conformité des diagrammes avec la sémantique de VUML et le profil Objecteering qui permet la génération du code Java à partir d'une modélisation VUML. Mais, il n'a pas précisé un processus de raffinement entre les différents points de vues dans ses profils générés.

Diverses approches visant à trouver des raffinements dans les architectures multi-niveaux ont été présentées dans la littérature. Dans un raffinement progressif, une séquence d'étapes à partir d'une spécification abstraite de l'architecture conduit à une implémentation concrète centrée sur le modèle architectural. Ces étapes de raffinement peuvent être effectuées selon deux directions: horizontale et verticale. Le raffinement horizontal permet d'introduire de nouvelles vues plus détaillées. Chaque ajout de détails à un modèle entraîne un nouveau modèle qui raffine le précédent. Quant au raffinement vertical, il permet de passer d'un niveau abstrait vers un niveau plus concret. Chaque étape de raffinement conduit généralement à une description plus détaillée de l'architecture [START_REF] Oquendo | π-method: a model-driven formal method for architecture-centric software engineering[END_REF] [START_REF] Oquendo | π-method: a model-driven formal method for architecture-centric software engineering[END_REF]. Pour un processus de raffinement de l'architecture logicielle, il existe fondamentalement deux méthodes possibles, la méthode semi-formelle et la méthode formelle (figure3).

Méthodes formelles de raffinement

Langage formel de raffinement des architectures (Π-ARL) [START_REF] Juan | A component-based method for software architecture refinement[END_REF] [START_REF] Juan | A component-based method for software architecture refinement[END_REF] Techniques de transformation de graphes [START_REF] Baresi | Stylebased refinement of dynamic software architectures[END_REF] Parmi les travaux relatifs au raffinement des architectures en se basant sur la méthode formelle, nous citons les travaux de [START_REF] Juan | A component-based method for software architecture refinement[END_REF] [START_REF] Juan | A component-based method for software architecture refinement[END_REF] qui vise à répondre à l'exhaustivité et la cohérence de l'application dans un processus de raffinement des architectures logicielles. L'approche proposée tente de se concentrer sur le composant comme un élément de base pendant le processus de raffinement de l'architecture et de décrire formellement les architectures logicielles avec un langage de raffinement formel Π-ARL.

Ainsi, les travaux de (Juan et al., 2010) [START_REF] Juan | A component-based method for software architecture refinement[END_REF] ont proposé un framework pour une approche qui se concentre sur le raffinement des composants. La description de l'architecture avec Π-ARL interprète correctement les exigences de performance des composants. Dans chaque cycle de raffinement, l'architecte décompose la couche précédente des composants en fonction de l'analyse des fonctions des composants, puis, il obtient un nombre de composants et d'interactions entre eux. Ce cycle poursuit jusqu'à ce que les composants en béton soient indécomposables.

Cette approche a assuré la cohérence sémantique dans le processus de raffinement d'architecture entre les couches et elle a montré des détails sur le niveau d'implémentation de l'architecture pour combler le fossé entre l'architecture et l'exécution. Mais, cette méthode formelle n'a pas fourni une technologie conçue avec ce langage de raffinement pour soutenir le développement des systèmes logiciels complexes. D'autres travaux relatifs au raffinement des architectures ont abordé aussi les techniques de transformation de graphes parmi lesquels nous citons les travaux de [START_REF] Baresi | Stylebased refinement of dynamic software architectures[END_REF] [START_REF] Baresi | Stylebased refinement of dynamic software architectures[END_REF] et [START_REF] Rafe | Automatic refinement of platform independent models[END_REF] [START_REF] Rafe | Automatic refinement of platform independent models[END_REF].

Les travaux de [START_REF] Baresi | Stylebased refinement of dynamic software architectures[END_REF] [START_REF] Baresi | Stylebased refinement of dynamic software architectures[END_REF] ont adressé le problème du développement des architectures dynamiques comme une tâche complexe généralement conduite par une approche par étapes de raffinement.

Dans le domaine de recherche de l'architecture logicielle, les styles architecturaux sont utilisés pour décrire les familles d'architectures par types de ressources communes, les schémas de configuration et des contraintes. Ce travail définit les relations de raffinement entre les styles abstraits et concrets permettant de vérifier le raffinement correct des deux architectures données. Pour ce là, il introduit une technique formelle afin de vérifier et de construire des raffinements des architectures dynamiques. Cette technique utilise des systèmes de transformation de graphe pour modéliser les styles architecturaux pour les différents niveaux d'abstraction et de la plateforme représentée par des scénarios de reconfiguration comme des séquences de transformation de graphe. Le style basé sur l'abstraction et les mappages de raffinement ont été introduits pour raffiner les scénarios de reconfiguration automatique, tout en préservant l'exactitude sémantique. L'architecte de style définit également une correspondance entre le graphe de type et des parties du méta-modèle UML qui peut être utilisé pour convertir des diagrammes UML dans les représentations graphiques.

Les architectes d'applications peuvent utiliser le modèle de leurs architectures conventionnelles des diagrammes UML, les valider et les raffiner à l'aide de cette approche qui définit les règles UML et le mappage. Mais, cette approche nécessite deux types d'intervention humaine. Les gens qui sont compétents dans la transformation de graphe à la fois et les styles architecturaux pour concevoir des systèmes de transformation de graphe avec les types de graphes, les contraintes et les règles spécifiques. D'autres travaux, comme (Rafe et al., 2009) [START_REF] Rafe | Automatic refinement of platform independent models[END_REF], ont proposé une approche automatisée permettant de raffiner les différents modèles dans une plate-forme middleware spécifique dans le but de diminuer le temps de commercialisation, tout en augmentant la qualité des logiciels. En effet, concevoir une approche de raffinement du modèle sans tenir compte de l'automatisation est une tâche complexe devant faire face aux exigences fonctionnelles et non fonctionnelles: la modélisation et l'application des exigences fonctionnelles qui doivent se conformer à la plate-forme middleware.

Cette approche formelle et automatique de raffinement des plateformes indépendamment des modèles permet d'obtenir des plateformes plus spécifiques. Les systèmes de transformation de graphe se sont révélés être une solution pour la transformation de modèle et de raffinement. Cette proposition suggère une solution par étapes au raffinement du modèle. Pour chaque niveau d'abstraction, un style doit être conçu comme un schéma graphique et des règles de graphe.

Ces deux dernières approches ont conçu des modèles multiniveaux et multi-styles pour les systèmes logiciels en se basant sur leurs propres méthodes de raffinement. Mais, elles n'ont pas détaillé la modélisation de leurs approches à travers une étude de cas et leurs implémentations avec un outil de développement pour concrétiser ces travaux.

Dans le même axe de recherche sur les architectures multiniveaux à base des techniques de transformation de graphes, les travaux de [START_REF] Sancho | Modélisation multi-niveau pour des systèmes ubiquitaires collaboratifs[END_REF] [START_REF] Sancho | Modélisation multi-niveau pour des systèmes ubiquitaires collaboratifs[END_REF], (Bouassida et al., 2010) [START_REF] Bouassida | A rule-driven approach for architectural self adaptation in collaborative activities using graph grammars[END_REF]et [START_REF] Bouassida | Gestion dynamique des architecures logicielles pour les systèmes communicants collaboratifs[END_REF] [START_REF] Bouassida | Gestion dynamique des architecures logicielles pour les systèmes communicants collaboratifs[END_REF] ont donné naissance à une approche de modélisation multi-niveau pour les systèmes collaboratifs ubiquitaires.

L'objet de ces travaux est de spécifier les problèmes de ces systèmes ainsi que de leur proposer un cadre conceptuel.

Afin de modéliser des architectures logicielles complexes multiniveaux, ils ont présenté deux procédures permettant de transformer des modèles entre les niveaux: le raffinement et la sélection. Le raffinement permet de calculer l'ensemble de modèles d'un niveau considéré qui implantent le modèle donné de niveau supérieur. La sélection permet de choisir le bon modèle parmi tous les modèles possibles d'un niveau considéré représentant l'architecture qui sera effectivement déployée. Ces travaux se sont basés sur les techniques de transformation de modèles basés sur les ontologies notamment les techniques de transformation de graphes pour le raffinement des configurations architecturales dans un système multi-niveau (niveau application, niveau collaboration et niveau middelware).

Ces travaux ont présenté un exemple d'application de l'approche qui est un jeu collaboratif développé dans le cadre du projet européen UseNet. Il est présenté à travers un modèle de niveau application et des règles permettant son raffinement au niveau collaboration. Ces travaux ont défini un cadre algorithmique générique de reconfiguration architecturale multi-niveaux qui a été appliquée au cas de la communication et de la coopération de groupe. puis implanté selon les techniques formelles. Ces techniques nécessitent forcément une formation particulière et des aptitudes mathématiques.

D'autres travaux de recherche ont présenté des méthodes de raffinement sur les architectures multi-styles. Les travaux de (Georg Jung et John Hatcliff, 2009) [START_REF] Jung | A type-centric framework for specifying heterogeneous, large-scale, componentoriented, architectures[END_REF] ont défini le raffinement des styles en utilisant l'héritage multiple. Il s'agit de définir les relations entre les styles pour connecter leurs interfaces et préciser la superposition ou l'abstraction de contraintes. (Georg Jung et John Hatcliff, 2009) [START_REF] Jung | A type-centric framework for specifying heterogeneous, large-scale, componentoriented, architectures[END_REF] ont décrit des opérations sur les méta-modèles fournies par CALM, un framework de méta-modélisation des systèmes multi-niveaux du langage d'architecture CADENA basé sur Eclipse, qui permettent des descriptions de raffinements de plates-formes architecturales. Ils ont illustré les principes de CALM en utilisant un système formulé en termes d'un modèle de composants hybride qui intègre trois cycles architecturaux y compris un style pour nesC, un modèle de composants et d'infrastructures connexes qui a été utilisé pour la construction de réseaux de capteurs sans fil, le style de planification de haut niveau et le style de la couche physique nécessaire dans la construction de système de systèmes.

L'architecture est en couches et les développeurs doivent se conformer à ces contraintes de superposition (par exemple, l'implémentation de chaque composant de la couche de planification doit être exprimée en nesC et chaque composant nesC associé à la catégorie du Hardware doivent être décrites en utilisant le style de la couche physique afin d'éviter l'architecture qui se dégrade au cours du temps). L'encapsulation est utilisée comme un mécanisme d'abstraction pour les deux (composants et connecteurs) qui peut impliquer un changement dans les styles d'architecture pour représenter une frontière d'abstraction. Ainsi, ces travaux de recherche ont manipulé le style CALM permettant aux architectes de créer des environnements de modélisation qui contrôlent l'évolution ou le raffinement d'une architecture d'une plate-forme indépendante d'usage général de description à un style qui contient plus de détails sur la plate-forme sous-jacente.

L'ingénierie logicielle n'a cessé de produire de nouvelles approches et de nouveaux paradigmes qui présentent l'intérêt de permettre le raisonnement sur des systèmes logiciels complexes à large échelle (figure4).

Architectures dynamiques reconfigurables

Approche manuelle [START_REF] Lange | On the design of twolevel reconfigurable architectures[END_REF] [16]

Approche automatisée [START_REF] Combemale | Metamodeling autonomic system management policies ongoing works[END_REF] [9] (Hagimont et al.,2008) [START_REF] Hagimont | Autonomic management policy specification in tune[END_REF] Figure 4: Architectures dynamiques reconfigurables

Une approche de conception des architectures reconfigurables à deux niveaux a été proposée par (Lange et Middendorf, 2005) [START_REF] Lange | On the design of twolevel reconfigurable architectures[END_REF]. Trouver la granularité optimale est un problème de conception central pour les architectures reconfigurables à deux niveaux. La solution proposée est une heuristique basée sur la fusion des deux ensembles d'une partition qui a des effets sur les coûts de l'hyper-reconfiguration. De même, deux approches automatisées de [START_REF] Combemale | Metamodeling autonomic system management policies ongoing works[END_REF] [START_REF] Combemale | Metamodeling autonomic system management policies ongoing works[END_REF] et [START_REF] Hagimont | Autonomic management policy specification in tune[END_REF] [START_REF] Hagimont | Autonomic management policy specification in tune[END_REF] ont étudié les architectures logicielles à base de composants. Elles ont étudié la conception et l'implémentation d'un système autonome appelé Tune qui s'appuie sur un modèle de composants fournissant un soutien pour l'encapsulation de logiciels décrivant l'architecture du logiciel à gérer et à son déploiement dans l'environnement physique. Les expériences de [START_REF] Combemale | Metamodeling autonomic system management policies ongoing works[END_REF] [START_REF] Combemale | Metamodeling autonomic system management policies ongoing works[END_REF] avec Tune ont mis l'accent sur l'utilisation de XML (Extensible Markup Language) et UML pour profiter de nombreux outils open source par exemple TOPCASED basé sur Eclipse Toolkit pour la description des architectures. Ces expériences ont confirmé l'intérêt d'élever le niveau d'abstraction et de spécialiser la sémantique UML selon les exigences du champ considéré. [START_REF] Hagimont | Autonomic management policy specification in tune[END_REF] [START_REF] Hagimont | Autonomic management policy specification in tune[END_REF] ont développé un outil pour la description de wrapper basé sur le langage de description d'encapsulation (Wrapping Description Language) pour spécifier le comportement des encapsulations. Ces travaux ont étudié l'aspect dynamique pour les architectures logicielles à base de composants. Seulement, ils n'ont pas introduit un processus clair pour la modélisation multi-niveau et le raffinement de ces architectures reconfigurables.

Selon cette étude, plusieurs travaux ont été menés pour la modélisation multi-niveau des architectures logicielles par la définition d'une notation visuelle et unifiée en se basant sur le profil UML. Mais, ces travaux qui ont intérêt essentiellement à la description du paradigme multi-niveau n'ont pas précisé la relation entre les différents niveaux de l'architecture dans un système logiciel multi-niveau. Le concept de raffinement a été absent pour les méthodes semiformelles. Les techniques formelles et plus précisément les travaux menés sur les transformations de graphe permettent de raffiner l'architecture logicielle mais ces travaux exigent toujours un certain niveau d'aptitude mathématique. Nous avons noté également que peu de travaux présentent un processus clair, un environnement adéquat pour la description multi-niveau des architectures logicielles dynamiques.

DESCRIPTION DES ARCHITECTURES MULTI-ÉCHELLES ET MULTI POINTS DE VUE

Application de l'approche

Après cette analyse préalable des différents travaux existants, nous présentons notre approche de description multiéchelles et multi points de vue pour les architectures logicielles dynamiques qui cherche à combiner plusieurs formalismes en profitant de leurs avantages et en essayant d'apporter des solutions à leurs limites. Nous allons considérer un nombre d'échelles fixe et préciser les notations pour chaque échelle considérée. Nous proposons la description de notre méthodologie à travers un tableau à deux dimensions dont les lignes présentent les échelles et les colonnes présentent les points de vue d'une échelle considérée (voir figure 5).

Figure 5: Application de l'approche

Nous considérons à l'échelle 0 toute l'application et nous la représentons sous forme d'un seul composant en lui attribuant un nom de l'application. Nous procédons à un raffinement du modèle pour passer à une nouvelle échelle qui permet de fournir des détails supplémentaires sur le composant générique de l'échelle 0. L'échelle 1 admet deux points de vue : Le premier point de vue représente les types de composants inclus dans l'application entière. Nous utilisons le type de composant comme étant la définition abstraite d'une entité logicielle pour la description de notre style architectural. Le deuxième point de vue procédé par un raffinement du modèle de la même échelle offre plus de détails sur les relations entre ces types de composants. Nous présentons ces relations selon le deuxième point de vue de l'échelle 1 sous forme d'associations entre les types de composants. Finalement, nous présentons à l'échelle 2 deux points de vue. Un premier raffinement donne lieu au point de vue 1 de l'échelle 2 qui représente un composant composite pour chaque type de composants de l'application. Un deuxième raffinement met en relief un point de vue 2 de l'échelle 2 et permet de passer aux détails de chaque composant composite des types de composants en ajoutant les connexions établies entre eux. En effet, chaque association reliant deux types de composant au point de vue 2 de l'échelle 1 est raffinée en une connexion plus détaillée au point de vue 2 de l'échelle 2. Le deuxième point de vue consiste donc à identifier pour chaque composant composite, la liste de ses ports et de ses interfaces ainsi que la liste des connexions. Pour chaque connexion, il faut identifier le type de composant source et le type de composant destinataire. De ce fait, nous pouvons extraire les règles de passage entre les échelles et les points de vue de la même échelle. • Raffinement du modèle de la même échelle (différents points de vue) Le passage d'un point de vue 1 à un point de vue 2 de la même échelle signifie l'ajout des relations établies entre les types de composants à l'échelle 1 et entre les composants composites d'un type de composant à l'échelle 2.

A l'échelle 1, chaque Type-Composant interagit avec son environnement par l'intermédiaire de ses ports. La cardinalité [1..*] entre les méta-classes Type-Composant et Port exprime qu'un composant peut avoir un ou plusieurs ports. Une première règle gère le passage du point de vue composant au point de vue association.

A l'échelle 2, le premier point de vue consiste à identifier les composants composites des types de composants. Le deuxième point de vue consiste à spécifier davantage les détails sur le type de chacune des associations établies entre les types de composants. Une deuxième règle gère le passage de point de vue composant au point de vue connexion qui sera plus spécifique que le point de vue association. Chaque Type-Composant a une ou plusieurs interfaces fournies et/ou requises exposées par l'intermédiaire de ports.

La méta-classe Port représente le point d'interaction pour un composant. La méta-classe Interface représente l'interface d'un composant. Une interface peut être soit de type fourni '+=Fournie' ou requis '+=requise'. La méta-classe Connecteur définit un lien qui rend possible la communication entre deux ou plusieurs composants.

La méta-classe Type Connecteur spécifie deux types de connecteurs : les connecteurs de délégation et les connecteurs d'assemblage. Un connecteur de type délégation qui exprime un lien entre deux composants partant d'une interface requise vers une interface requise ou d'une interface fournie vers une interface fournie. Un connecteur de type assemblage qui exprime un lien entre deux composants partant d'une interface requise vers une interface fournie (HajdKacem et al., 2010) [START_REF] Kallel | Modeling and enforcing invariants of dynamic software architectures[END_REF]. Pour chaque composant composite, il faut également identifier la liste de ses ports et de ses interfaces ainsi que la liste des connexions établies entre eux.

Illustration de l'approche : Étude de cas des OIU

Afin d'illustrer notre approche, nous considérons les systèmes de gestion d'intervention d'urgence et des crises (ER-CMS) que nous traitons en détail à travers l'étude de cas des opérations d'intervention d'urgence (OIU).

Les OIU impliquent des groupes structurés de participants communicants et coopérants afin de réaliser une mission commune (Par exemple: lutter contre les incendies et sauver les vies humaines). Les éléments de l'architecture possèdent différents rôles et disposent de ressources inégales en énergie et en capacités de communication. Ils sont déployés sur des machines fixes et mobiles et communiquent à travers des réseaux filaires et sans fil (Drira, 2010) [START_REF] Bouassida | Semantic driven self-adaptation of communications applied to ercms[END_REF].

Les relations de communication entre les participants évoluent tout au long de la mission pour s'adapter au processus de raffinement entre les échelles et au niveau de la même échelle. Le système de communication doit faire face aux imprévus ou à l'évolution des besoins des utilisateurs. Pendant la mission, les étapes d'exécution de l'activité sont: la phase d'exploration du champ d'investigation pour la localisation et l'identification de la situation d'urgence et la phase d'action après la découverte d'une situation critique et l'identification des événements.

Nous définissons les différents rôles des participants: Le superviseur de la mission, les coordinateurs et les investigateurs sur le terrain. Chaque groupe d'investigateurs est supervisé par un coordinateur. Chaque participant est associé à un identifiant, à un rôle et aux différentes fonctions qu'il remplit.

Ainsi, les participants à une OIU sont les suivants : Un superviseur qui gère l'ensemble des coordinateurs supervise toute l'application et attend des rapports de En s'appuyant sur cette étude de cas, nous procédons le passage du niveau style au niveau instance à travers la figure 7.

A l'échelle 0, nous associons l'instance d'une application de gestion d'intervention d'urgence (OIU). Nous présentons également les instances de ces deux points de vue de l'échelle 1. En effet, les trois participants d'une équipe d'Intervention d'Urgence sont représentés selon le premier point de vue de l'échelle 1 par les trois types composants qui sont le superviseur, le coordinateur et l'investigateur. Ces trois participants communiquent entre eux. Le deuxième point de vue présente ces relations sous forme d'associations à travers les ports. Nous illustrons également les instances de ces deux points de vue. En effet, un superviseur gère un ensemble de coordinateurs et chaque coordinateur dirige une section d'investigateurs. Ainsi, le point de vue 1 de l'échelle 2 représente trois composants composites de type superviseur, coordinateur et investigateur composant les trois par- Il fournit une composante de génération et d'exécution des infrastructures ce qui permet le développement rapide des éditeurs graphiques basés sur les frameworks EMF et GEF. Notre plug-in permet de créer un diagramme éditeur pour la conception d'un style architectural. Pour dessiner un élément graphique, il suffit de le tirer de la palette d'outils et de le mettre dans la partie éditeur de diagramme selon la technologie drag-and-drop. Nous allons ainsi, créer une instance de l'application, telle que le ferait un de ses futurs utilisateurs : nous allons, dans le cas de notre exemple, créer une instance de l'application de gestion des OIU que nous avons déjà détaillée.

IMPLÉMENTATION ECLIPSE

A l'échelle 0, nous avons intégré un seul composant OIU (figure 8)

A l'échelle 1, nous avons présenté les 3 composants : Superviseur, Coordinateur et Investigateur. Chacun d'entre eux possède un ensemble de ports et d'interfaces Ainsi, nous A l'échelle 2, nous avons présenté notre style Nom-Application OIU avec les trois types de composants comprenant chacun un composant composite selon le premier point de vue puis nous avons ajouté les connexions établies entre eux selon le deuxième point de vue de cette échelle considérée.

Ainsi, notre plug-in Eclipse nous permet de représenter graphiquement notre approche de description des architectures multi-échelles et multi points de vue (figure 9) Notre plug-in est exporté sous forme des fichiers archives Jar. Ces fichiers seront intégrés avec l'installation standard d'Eclipse. Le concepteur peut l'utiliser en l'intégrant dans Eclipse avec ses dépendances. Le plug-in sera donc intégré dans l'interface de l'Eclipse. Le concepteur peut maintenant décrire son architecture par l'éditeur fourni.

CONCLUSION ET PERSPECTIVES

Dans le cadre des travaux issus des domaines des architectures dynamiques, nous avons passé en revue l'état de l'art et nous avons étudié la littérature concernant les domaines de recherche abordés. Nous avons spécifié, en effet, quelques approches de modélisation des architectures multi-niveaux, multicouches, multi-vues et multi-styles ainsi que quelques méthodes de raffinement des architectures.

Ainsi, nous avons présenté au niveau conceptuel notre approche de description multi-échelles et multi points de vue pour les architectures logicielles dynamiques et nous avons proposé des notations visuelles, par extension des notations UML, pour les échelles et les points de vue au niveau du style de l'architecture.

Finalement, nous avons présenté le niveau d'instances sous un plug-in Eclipse qui implémente notre approche et la valide à travers une étude de cas détaillée des OIU. En effet, le développement de notre outil Eclipse a démontré que l'ajout de nouvelles fonctionnalités était souvent possible une fois l'apprentissage des cadres de développement Eclipse et GEF complétés. Nous n'avons eu qu'un seul problème de performance sérieux, et il était lié à la reconstruction trop fréquente des propriétés lorsque nous modifions des éléments. Ceci ralentissait parfois l'avancement du travail.

Nous travaillons actuellement sur l'amélioration de la démarche de validation de notre approche en se basant sur

Figure 3 :

 3 Figure 3: Méthodes de raffinement de l'architecture

Figure 6 :

 6 Figure 6: Étude de cas d'une OIU Pendant la mission, les communications entre les participants est un élément clé pour la collaboration. La gestion des communications permet de s'assurer du bon déroulement de la mission. Dans le scénario ERCMS, on distingue deux types de flux : le flux de coordination et le flux de coopération (Informations, demandes, suggestions). Le flux de coordination est entre les investigateurs et leur coordinateur correspondant ainsi qu'entre les coordinateurs et le superviseur. Les investigateurs transmettent des informations de coordination pour le coordinateur correspondant. Les participants doivent observer le champ d'investigation et rapporter sur ce qui est observé. Le flux de coopération est soit entre les investigateurs du même groupe (par exemple : entre 2 robots ou 2 pompiers) soit entre les investigateurs de différents groupes (par exemple : entre un pompier et un avion).En s'appuyant sur cette étude de cas, nous procédons le passage du niveau style au niveau instance à travers la figure7.A l'échelle 0, nous associons l'instance d'une application de gestion d'intervention d'urgence (OIU). Nous présentons également les instances de ces deux points de vue de l'échelle 1. En effet, les trois participants d'une équipe d'Intervention d'Urgence sont représentés selon le premier point de vue de l'échelle 1 par les trois types composants qui sont le superviseur, le coordinateur et l'investigateur. Ces trois participants communiquent entre eux. Le deuxième point de vue présente ces relations sous forme d'associations à travers les ports. Nous illustrons également les instances de ces deux points de vue. En effet, un superviseur gère un ensemble de coordinateurs et chaque coordinateur dirige une section d'investigateurs. Ainsi, le point de vue 1 de l'échelle 2 représente trois composants composites de type superviseur, coordinateur et investigateur composant les trois par-

Figure 7 :

 7 Figure 7: Illustration de l'approche

Figure 8 :

 8 Figure 8: Représentation de l'échelle 0 dans le plugin Eclipse

Figure 9 :

 9 Figure 9: Implémentation

•

 Raffinement du modèle entre les différentes échelles L'échelle 0 considère l'application entière représentée par le stéréotype unique Nom-Application qui décrit le nom de l'application à spécifier. L'unicité est représentée par la cardinalité [1]. Le passage d'une échelle à une autre permet de fournir des détails supplémentaires sur le composant générique Nom-Application . L'échelle 1 comprend la méta-classe Type-Composant. Elle spécifie l'ensemble des types de composants qui constituent l'application. Cette spécification est décrite en utilisant la notation UML 2.0. La multiplicité est représentée par la cardinalité [2..*] car une application comprend au moins deux types de composants. L'échelle 2 comprend la méta-classe Type-Composant éventuellement composée de plusieurs composants composites décrits par la méta-classe Composant-Composite. Ces derniers représentent une partie modulaire des types de composants de l'application et sont restreints à la cardinalité [1..*]. Le passage d'une échelle à une autre permet de fournir plus de détails sur les propriétés de types de composants.

Investigateurs Coordinateurs Groupe Robots Groupe Avions Investigateurs Groupe Pompiers

	et de pompiers.
	tous ses coor-
	dinateurs. Plusieurs coordinateurs dont chacun d'entre eux
	dirige une section d'investigateurs. Leurs fonctions est de
	collecter, interpréter et synthétiser les informations reçues
	des investigateurs et les diffuser vers le superviseur. Plusieurs
	sections d'investigateurs qui agissent pour aider, sauver et
	réparer. Ils explorent le champ opérationnel, observent,
	analysent et font un rapport décrivant la situation.
	Nous illustrons dans la figure 6 un superviseur, trois types
	de coordinateurs qui sont le coordinateur de robots, le co-
	ordinateur d'avions, et le coordinateur de pompiers et trois
	types d'investigateurs qui sont des groupes de robots, d'avions