
HAL Id: hal-00675609
https://hal.science/hal-00675609

Submitted on 1 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Energy-Efficient Architecture for Nanometric
Technologies with Strong Robustness to Process

Variability : Design of a GALS node based on a MIPS
R2000 processor

Sylvain Durand, H. Zakaria, Laurent Fesquet, Nicolas Marchand

To cite this version:
Sylvain Durand, H. Zakaria, Laurent Fesquet, Nicolas Marchand. An Energy-Efficient Architecture
for Nanometric Technologies with Strong Robustness to Process Variability : Design of a GALS node
based on a MIPS R2000 processor. [Research Report] GIPSA-lab. 2013. �hal-00675609�

https://hal.science/hal-00675609
https://hal.archives-ouvertes.fr

MANUSCRIPT SUBMITTED TO CIRCUITS AND SYSTEMS I: REGULAR PAPER, ON DECEMBER 1, 2011 1

An Energy-Efficient Architecture for Nanometric Technologies
with Strong Robustness to Process Variability:
Design of a GALS node based on a MIPS R2000 processor

Sylvain Durand, Hatem Zakaria, Laurent Fesquet and Nicolas Marchand

Abstract—In this paper we present an energy-efficient solu-
tion for nanometric systems, where some variability problems
which did not influence the circuit at a higher scale introduce
some uncertainties at a sub-micrometric size. Therefore, some
advanced control strategies are required to manage the energy-
performance tradeoff in such an environment. The setup is based
on some Dynamic Voltage and Frequency Scaling (DVFS) tech-
niques applied to a Globally Asynchronous Locally Synchronous
(GALS) architecture. Whereas a Vdd-hopping converter is able to
provide discrete voltage levels, a Programmable Self-Timed Ring
(PSTR) oscillator allows a variability robust source for generating
adjustable clock frequencies. A fast predictive control law is also
developed in this paper to calculate the frequency and voltage
levels to apply to these actuators, minimizing the high voltage
running time while ensuring good computational performance.
Finally, the proposal is dedicated to a GALS node based on a
MIPS processor over STMicroelectronics 45 nm technology and
some fine-grained simulation results are performed. Besides a
noticeable reduction of the energy consumption, the performance
of the closed-loop system is ensured and a strong robustness to
technological variability is also demonstrated.

Index Terms—Energy-performance tradeoff, nanometric
GALS architecture, process variability robustness, fast
predictive control, programmable self-timed ring oscillator.

EDICS Category—CTRL100A5, POW170B0, DCS160-210.

INTRODUCTION

The upcoming generations of embedded integrated systems
in multimedia and telecommunication applications require sev-
eral drastic technological evolutions since they have reached
limits in terms of power consumption, computational effi-
ciency and fabrication yield. As a result, the main problems
that we are facing nowadays with the nanometric technologies
can be categorized in three main points:

a) Variability refers to the unpredictability, inconsistency,
unevenness, and changeability associated with a given feature
or specification. At a sub-micrometric scale, variability has
become one of the leading causes for chip failures and delayed
schedules. Indeed, in nanometric design flows, variability is
associated with design modes, power states, environmental
conditions, manufacturing steps, and the behavior of devices
and interconnects. Variability affects the entire physical de-
sign environment, from power management, through timing
and signal integrity closure to manufacturability. A major

S. Durand is with the NeCS project-team, an INRIA Rhône-Alpes and
GIPSA-lab joined team, Grenoble, France (sylvain.durand@inria.fr)

H. Zakaria is with the Electrical Engineering Department, Benha Faculty of
Engineering, Benha University, Benha, Egypt (hatem.radwan@bhit.bu.edu.eg)

L. Fesquest is with the CIS Group, TIMA Laboratory, Grenoble University,
Grenoble, France (laurent.fesquet@imag.fr)

N. Marchand is with the SysCO team, Control Department of GIPSA-lab,
Grenoble University, Grenoble, France (nicolas.marchand@gipsa-lab.fr)

problem facing the computer and semiconductor industries is
the increasing CMOS process variability. In low-level circuit
parameters, such as transistor gate length and gate oxide thick-
ness, variability complicates system design by introducing
uncertainty about how a fabricated system will perform [1].
Although a circuit or chip is designed to run at a nominal
clock frequency, the fabricated implementation may vary far
from this expected performance (see Fig. 1).

b) Leakage power is a growing concern in the overall
design process. As voltages scale downward with geometries,
threshold voltages must also decrease to gain performance
advantages of the new technology. This reduction in threshold
voltages has led to an exponential increase in leakage current
in transistors. Thinner gate oxides have led to an increase in
gate leakage current as well. At 65nm and below, leakage
power accounts for a significant portion of the total power
in high-performance designs [2], therefore its management is
essential in the ASIC design process. Unlike dynamic power,
which can be managed by reducing switching activity, leakage
power effect exists as long as the power is on. That is why
current process technologies are pushing designers to consider
new design methods to reduce leakage power.

c) Yield success is much harder to achieve because of
the increasing number and complexity of variables affecting
manufacturability. Early on, the path to yield on integrated
circuit design was fairly simple: comply with all the design
rules and yield would more or less follow. Designers did not
need to worry too much about what happened in the fabrication
after tape-out [3]. Nevertheless, the game has changed in the
nanometric era. The designer’s strategy must now shift from
simple design rule compliance to the definition and design of
the optimal layout for the highest yield.

Manager

speed

Fig. 1. Representation of the technological variability’s phenomenon which
appears in sub-micrometric integrated circuits: whereas a part of the chip
could run with the expected computational speed, another part may run more
slowly and another might not run at all. A controller has hence to manage
these different domains to yield the best performance.

MANUSCRIPT SUBMITTED TO CIRCUITS AND SYSTEMS I: REGULAR PAPER, ON DECEMBER 1, 2011 2

Regarding the previously mentioned motivations, one can
conclude the suggested solutions in two main points. First,
the chips in advanced technologies require a dynamic power
management in order to highly reduce the energy consumption.
Also, some architectural issues are needed for helping the
yield enhancement of such circuits with strong technological
uncertainties.

A. Power management technique

In today’s technology nodes, leakage power is a significant
contributor to the total power, as the gate length and threshold
voltage are scaled down. Several techniques can be applied
at the circuit level to reduce leakage power, including multi-
threshold libraries, power gating and variable body biasing [4],
[5]. However, in current CMOS integrated circuits, the average
power consumption and the energy dissipation are dominated
by the dynamic power, that arises from the charging and
discharging of the load capacitance:

Pavg(t) ∝ Cfclk(t)Vdd(t)2

E(t) ∝ CVdd(t)2 (1)

where C is the load capacitance, Vdd is the supply voltage
and fclk is the clock frequency. These equations suggest that
minimizing the load capacitance, reducing the supply voltage
or slowing the clock can reduce power and energy. While
the load capacitance can only be reduced during chip design
(for example by minimizing on chip routing capacitances
and reducing external component access), voltage scalable
processor and power controllable peripheral devices make
possible to manage power by a dedicated digital hardware
or by an Operating System (OS). For instance, the OS can
control the processor frequency and its voltage and/or put
the devices in low-power sleep states using a dynamic power
management [6]. The power minimization can be achieved
by resolving an off-line stochastic optimization problem but
this is not always possible. Therefore the optimization has
to be performed on-line by the control system dedicated
to the power management. These techniques run slower the
processors at a reduced voltage according to the instantaneous
computational demand.

As previously shown in (1), reducing the frequency fclk and
the supply voltage Vdd decreases the energy and the power.
The energy reduction is a quadratic function of the voltage and
a linear function of the clock frequency. As a result, Dynamic
Voltage Scaling (DVS) can be used to efficiently manage the
energy consumption of a device [7]. Supply voltage can be
reduced whenever slack is available in the critical path, but one
has to take care that scaling the voltage of a microprocessor
changes its speed as well. Therefore, adapting the supply
voltage is very interesting when possible but implies the
use of Dynamic Frequency Scaling (DFS) to keep correct
the system behavior. The addition of DFS to DVS is called
Dynamic Voltage and Frequency Scaling (DVFS) and results
in simultaneously managing the frequency and the voltage. In
many cases, the only performance requirement is that the tasks
meet a deadline, like depicted in Fig. 2(a) where a given task
has to be computed before a given time. Such cases create

opportunities to run the processor at a lower computing level
and achieve the same perceived performance while consuming
less energy. Fig. 2(b) shows that decreasing the processor clock
frequency reduces power consumption but simply spreads the
computation out over time, thereby consuming the same total
energy as before. Fig. 2(c) shows that reducing the voltage
level as well as the clock frequency achieves the desired goal
of reduced energy consumption at an appropriate performance
level [8].

time

Pavg ∝ V 2
dd · fclk

Busy cycles

Hurry-up and wait

Idle cycles

E

deadline

(a)

time

Pavg ∝ V 2
dd ·

fclk

2

Frequency scaling

E

deadline

(b)

time

Pavg ∝
(

Vdd

2

)2

· fclk

2

Voltage and frequency scaling

E/4

deadline

(c)

Fig. 2. Dynamic power management: energy consumption vs. power
consumption. Whereas decreasing the frequency reduces the instantaneous
power (but yields the same energy consumption), reducing both the voltage
and frequency leads to a drastic energy saving with similar performance.

Several behaviors are known to minimize the energy con-
sumption while guaranteeing good computational performance
(see [9] for further details). Classically, each task has to be
considered independently. Thus, when several tasks – with
their own and different computational load – have to be
executed, the voltage level has to be calculated for each one
rather than considering a global scaling for all the tasks.
Moreover, the execution time has to fit with the deadline
regardless the chip runs with a continuously or a discretely
varying voltage range. When only the maximal voltage level
is possible – as this is the case for a classical processor
(without DVS) – the hurry-up and wait running is performed
but leads to an important energy consumption. On the other
hand, a continuously varying voltage scaling allows the use
of a unique level to fit with the deadline. The consumption is
hence optimal and cannot be decreased anymore. Nevertheless,
a discretely varying voltage scalable processor can also reduce
the energy consumption by using the available voltage levels
to fit the task with its deadline. In this case, the lowest energy
consumption is achieved using the two immediate neighbors
of the optimal level. Another essential rule is that selecting
some suitable voltage levels leads to a drastic energy reduction

MANUSCRIPT SUBMITTED TO CIRCUITS AND SYSTEMS I: REGULAR PAPER, ON DECEMBER 1, 2011 3

even if the number of levels is very small. In this case, a
frequency range is available for each voltage level [10], which
can be useful to fit the task with its deadline. Alternatively, the
clock-gating technique can be implemented. To save power, the
clock-gating technique adds more logic to a circuit to prune
the clock tree, thus disabling some portions of the circuitry in
order their switching power consumption goes to zero [4]. In
fact, this behavior leads to “pause” the clock when required
to save energy. Typically, the clock is paused when a task is
performed before its deadline.

A task scheduling is also a solution for power management.
In [11] for instance, a simple method consists in monitoring
the total activity of the chip – without knowing task by
task information – and in applying a high voltage when the
processor is busy or a low voltage when the computation
load is low. In [12], [13], the different tasks are sorted into
three possible throughput (the number of instructions to treat
in a given amount of time): some compute intensive and
short-latency processes for tasks which require the maximal
performance and will be executed with a high voltage level
and some background and high-latency processes for non-
critical tasks which will be computed at low voltage. The
tradeoff between a maximal throughput and a minimal energy
consumption is thereafter the key point. More sophisticated
scheduling policies propose to integrate a DVFS scheduler and
a feedback controller, as proposed in [14] where a (earliest
deadline first) scheduler is mixed with a (proportional integral
derivative) controller. As a result, closed-loop control laws
are required to manage the energy-performance tradeoff in
electronic devices and some new strategies are developed in
this sense in this paper. The main idea consists in i) reducing
the penalizing supply voltage so far as possible in order to
minimize the energy consumption and ii) adapting the clock
frequency to the computational load to fit the task with its
deadline.

B. Globally Asynchronous Locally Synchronous (GALS)
paradigm

Embedded integrated systems have two means of imple-
mentation. Firstly, the conventional clocked circuits with their
global synchronization – in which one faces the huge challenge
of generating and distributing a low-skew global clock signal
and reducing the clock tree power consumption of the whole
chip – makes them difficult for implementation. Secondly,
Systems-on-Chip (SoCs) built with predesigned IP-blocks run-
ning at different frequencies need to integrate all the IP-blocks
into a single chip. Therefore, global synchronization tends
to be impractical [15]. By removing the globally distributed
clock, GALS circuits provide a promising solution for SoC
design. Such an architecture is depicted in Fig. 3. GALS
techniques allow each locally synchronous module to be set
independently, making voltage and frequency scaling more
convenient than with the standard synchronous approach.
Moreover, a GALS architecture can mitigate the impact of
process and temperature variations, because a globally asyn-
chronous system does not require that the global frequency
was dictated by the longest path delay of the whole chip,

i.e. the critical path. In this case, each clock frequency is
only determined by the slowest path in its voltage/frequency
domain.

Domain 1
2 GHz

5 GHz

1 GHz

3 GHz
A
No
C

Domain 3

Domain 4

Domain 2

Fig. 3. Globally Asynchronous Locally Synchronous (GALS) architecture.
In fact, GALS chips are split into multiple frequency domains, where each
domain is synchronous with respect to its clock. The different domains
are mutually asynchronous – thanks to an Asynchronous Network-on-Chip
(ANoC) – in that they may run at different clock frequencies.

Structure of the paper

The paper is organized as follows. In section I, we explain
why a closed-loop architecture becomes essential in nanomet-
ric technologies. We present a three overlapped loop scheme
and introduce a practical example giving some architectural
solutions to overcome the barrier of sub-scale systems. Then,
a robust control setup is depicted in section II for the micro-
processor MIPS R2000, detailing the actuators, sensors and
control strategy of such a closed loop. Finally, some fine-
grained simulation results are presented in section III using
Modelsim.

I. CONTROLLING UNCERTAINTY AND HANDLING THE
PROCESS VARIABILITY

In a reconfigurable GALS system, the process variability
and the fabrication yield can be improved by smartly removing
some tasks over fault or some low performance frequency
domains and assign them into other high performance ones.
Whereas each performance can be measured by a sensor, a
global system manager is able to distribute the tasks over
the different computational nodes. The task assignment takes
into account the node performance and the task processing
load. The main target of this manager is then to ensure an
overall chip performance. As a result, it is no more required
to separately guaranty a performance for each domain with
this kind of approach, which hence relaxes the fabrication
constraints and permits a yield enhancement. An important
conclusion is that control loops become essential in advanced
technologies. This is more detailed in subsection I-A. A case
study is then proposed in subsection I-B.

A. Essential feedback control loops

In a multiprocessor GALS system, one can choose to slow
down some parts of the circuit while allowing others to
operate at the maximal frequency. This enables more energy
saving opportunities than conventional systems built around
one processor and allows adapting the clock speed to the
local process quality. Moreover, it has also been shown that

MANUSCRIPT SUBMITTED TO CIRCUITS AND SYSTEMS I: REGULAR PAPER, ON DECEMBER 1, 2011 4

multiple-clock designs with voltage scaling are even better
not only in terms of power and performance, but also in
terms of variability [16]. As a result, building a system
based on the implementation of hardware resources whose
performance are unpredictable at the fabrication time requires
to have some global management strategies, adapting the
voltage/frequency in order to respect real-time constraints of
the application and the allocated energy budget. Therefore, it
is proposed to use automatic feedback loops based on i) the
measurement of the real local performance and the actuation
of the voltage/frequency variables (hardware level) as well as
ii) the suitable hardware resource allocation for the execution
of a task in the assigned time/energy budget (operating system
level). Then, the idea is the use of DVFS techniques with
task scheduling to dynamically manage not only the energy
budget but also the activity of the processing nodes. Some
advanced control strategies will allow an optimal regulation of
the frequency/voltage converter according to the computational
load and the load distribution in the various GALS processors.
Furthermore, in order to compensate for the process variation
due to the technology dispersion, and optimize the operation
of the circuit, the dynamic voltage/frequency regulation should
be self-adjustable with variable loads and dispersion models
and robust against process variability.

One of the main points of interest of the proposal is to
handle the uncertainty of a processing node over a GALS
system and also to reduce its energy consumption by means of
automatic control methods. Activity sensors are supposed to
be embedded in each processing unit. These sensors provide
a real performance measurement of different processing nodes
after the fabrication process, which will be used afterwards by
the operating system to distribute tasks over different nodes.
This means the need for the rescheduling of tasks in each
processing node to meet the new assigned deadlines, and this
will be achieved by controlling its voltage/frequency, which in
accordance will control its consumption of energy. The control
system is based on three overlapped control loops, applied in
different architecture levels, which are depicted in Fig. 4:

1) Control of the processing power (supply voltage and
clock frequency).

2) Control of the tradeoff between energy consumption and
computational performance.

3) Control of the quality of the running application.

Voltage, frequency and energy control loops are used in order
to adapt the energy consumption and the process variability
effect. The other loop is needed to deal with the Quality of
Service (QoS) at the application level, with the limitation of
processing power and/or channel of communication and with
some constraints in energy consumption. This latter loop also
manages the different domains of the chip (denoted cluster in
Fig. 4) with their own performance.

The different control loops are nested. Actually, the op-
erating system (or the high-level loop) provides a set of
information – required computational speed, in terms of num-
ber of instructions and deadlines for each task to treat –
which can be statically inserted into the code or dynamically
computed at run time by the OS. These information about

fclk

ω

Computational
Nodes

Vdd

flevel

Vlevel

ωsp − ω

ωsp

Frequency
Controller

Voltage
Controller

Energy/Performance
Controller

Cluster

λsp

λ

λsp − λ QoS Controller

Fig. 4. Automatic control are essential in nanometric chips to manage the
computational activity and energy consumption. Three overlapped loops are
hence introduced: the voltage and frequency control (low-level), the energy-
performance tradeoff control (middle-level) and the applicative quality of
service control (high-level).

the real-time requirements of the applications enable to create
a computational load profile with respect to time. There
are also sensors embedded in each processing unit in order
to provide real-time measurements of the processor speed.
Consequently, combining such a profile with such a monitoring
makes possible to apply a fine-grain power/energy manage-
ment allowing application deadlines to be met. The DVFS
hardware part (or low-level loop) contains voltage/frequency
converters, such as a DC-DC converter and a programmable
clock generator. Then, a controller (the one from the middle-
level loop) dynamically controls these power actuators to
scale the supply voltage as well as the clock frequency, in
order to satisfy the application computational needs with an
appropriate management strategy. Of course, this controller
should have a strong robustness against process variability
for a correct system behavior. These solutions – the three
overlapped feedback control loops with some specific sensors
to monitor the activity of the chip – were established within
the ARAVIS project context which is now introduced.

B. Case study overview: the ARAVIS project

Using both a Network-on-Chip (NoC) distributed communi-
cation scheme and a GALS approach offers an easy integration
of different functional units thanks to a local clock generation
[17]. Moreover, it allows better energy savings since each
functional unit can easily have its own independent clock
frequency and voltage. Hence, such an architecture appears
as natural enablers for distributed power management systems
as well as for local DVFS. A detailed block diagram for
modeling DVFS and local process quality management in a
GALS system is shown in Fig. 5. This practical example
is part of the ARAVIS project which aims at providing
architectural solutions for manufacturing circuits in nanometric
technologies with strong technological uncertainties.

Since in advanced technologies, the associated processor
leakage has an important contribution to the system energy
consumption, a sleep mode management block is used to
put useless processors into a sleep mode in order to limit

MANUSCRIPT SUBMITTED TO CIRCUITS AND SYSTEMS I: REGULAR PAPER, ON DECEMBER 1, 2011 5

Fig. 5. Energy-performance management architecture proposed in the
ARAVIS project to control a multi-processor system with high process
variability.

their static power consumption. On the other hand, some
speed sensors are used to calculate the real-time computational
speed of the processing units (in Million of Instructions Per
Second for instance). Activity monitors disseminated into each
voltage-frequency island are also used to locally evaluate
the process quality in terms of its relative speed with re-
spect to the other processing nodes (denoted intrinsic speed).
The intrinsic speed value defines the upper clock frequency
bound of the operating voltage-frequency island. There are
also two actuators: the DC-DC converter which provides
the supply voltage and the programmable asynchronous ring
which generates the desired clock frequency to each local
processing node. Finally, the digital controller manages the
voltage/frequency couple. It processes the error between the
unit speed and the speed setpoint information extracted from
the information sent by the operating system (in terms of
number of instructions and deadlines) within a closed-loop
system, and by applying a well-suited compensator sends the
desired voltage and frequency code values to the actuators.
Consequently, the system is able to locally adapt their output
voltage and clock frequency values clock domain by clock
domain, in order to limit their dynamic power consumption.
Furthermore, the Asynchronous NoC (ANoC) is the reliable
communication path between the different domains. In this
model, we propose that data communications between two
different processing nodes can fix the speed to the slowest
communicating node. This is done by a local synchronization
mechanism which is based on handshakes. Thus, the slowest
communicating node of the ANoC fixes the throughput in
order to have a secure communication without metastability
problem and an adaptation to process variability too [18].

II. ROBUST CONTROL DESIGN TO PROCESS VARIABILITY:
APPLICATION TO THE MIPS R2000

MIPS R2000 is a 32-bit Reduced Instruction Set Computer
(RISC) initially developed by the Stanford University. It stands
for a Microprocessor without Interlocked Pipeline Stages. This

means that it has single execution cycle instructions so that the
compiler can schedule them to avoid conflicts. The MIPS ar-
chitecture includes thirty-two general-purpose 32-bit registers
and fifty-eight instructions, each 32 bits long. The instructions
are processed in a five-stage pipeline: fetch, decode, execute,
memory, and write back. MIPS R2000 also includes a copro-
cessor to handle exceptions and hold configuration bits. Only
few configuration bits are used in the R2000 architecture, and
are mostly used to enable/disable exceptions and to configure
the caches. The MIPS architecture supports exception handling
and interrupts. Due to the MIPS R2000 simplicity in terms of
architecture, programming model and instruction set, as well
as availability as an open core, it has been used as our main
case of study in the DVFS control system design for a GALS-
NoC, that compensate for the CMOS uncertainties in nanomet-
ric technologies (STMicroelectronics 45nm technology in the
present case). The MIPS R2000 is used as a processing node in
the energy-performance management architecture previously
introduced in Fig. 5. Finally, the integration of the MIPS
R2000 is depicted in Fig. 6. The actuators (programmable
oscillator and Vdd-hopping), the speed sensor and the digital
controller required for a robust control to process variability
are then detailed in the following subsections. On the other
hand, the ROM memory is loaded with a factorial program to
test its execution by the processor. Details of the MIPS R2000
synthesis and analysis results will be shown in section III.

Fig. 6. Architecture of the controlled system in the MIPS environment. The
digital controller calculates the voltage and frequency levels to send to the
Vdd-hopping and the programmable oscillator in order to manage the energy-
performance tradeoff of the MIPS R2000. A speed sensor is also used to
provide the real-time computational speed.

A. Vdd-hopping to scale voltage

The DC-DC converter is a circuit that converts a voltage
source (of direct current) from one voltage level to another.
Two kinds of DC-DC converter can be used. The first class
is a continuous DC-DC converter which provides an accurate
supply voltage, but with a weak efficiency. The second kind of
converter is a digitally controlled step-converter (Vdd-hopping
converter) which has a better efficiency but discrete output
values. Such a mechanism was described in [19], where two
voltages Vlow or Vhigh could supply the chip. In that case,

MANUSCRIPT SUBMITTED TO CIRCUITS AND SYSTEMS I: REGULAR PAPER, ON DECEMBER 1, 2011 6

the system simply goes to low or high voltage when the input
signal becomes Vlevel = Vlevel low or Vlevel = Vlevel high
respectively, with a given transition time and dynamics that
depend upon an internal control law (one could refer to the
reference above for more details). The Vdd-hopping technique
is also modeled with two possible voltage levels in the present
paper. Eventually, considering that this inner-loop is extremely
fast with respect to the loop considered in this paper, one can
neglect the dynamics of the Vdd-hopping.

B. Programmable self-timed ring to scale frequency and man-
age variations

The application of the proposed DVFS to a system requires
the use of a process variability robust source for generating
adjustable clocks. For example, these clocks can be derived
from analog Voltage Controlled Oscillators (VCO), which
are a part of a Phase Locked Loop (PLL). However, VCOs
have a limited operating range and require a stabilization
time when changing the frequency [20]. Another solution
is to use a standard clock divider, but this will make the
time resolution coarser due to counting integer periods of
the input frequency [21]. In addition, they give regular time
step which implies irregular frequency step (usually frequency
step follows “1/x” curve). Today many studies are oriented to
Self-Timed Ring (STR) oscillators which present well-suited
characteristics for managing process variability and offering an
appropriate structure to limit the phase noise. Therefore, they
are considered as a promising solution for generating clocks
even in presence of process variability. In [22], [23], they
are efficiently used to generate high-resolution timing signals.
Their robustness against process variability in comparison to
inverter rings is proven in [24]. Moreover, self-timed rings
can easily be configured to change their frequency by just
controlling their initialization at reset time. At the opposite,
inverter rings are not programmable.

Whereas the background, definitions and principles of the
Programmable Self-Timed Ring (PSTR) are detailed next,
a simple model based on the behavior of the fully pro-
grammable/stoppable oscillator of [25] is firstly given. Such
a frequency controller has a linear variation of its output
frequency with respect to the digital controller feed value. This
digital controller value defines the operating frequency. The
frequency controller also changes its output frequency with
respect to the input voltage, as shown in Fig. 7. The resulting
model is fclk = γfVdd, where γ is a constant while the desired
frequency f depends on the input signal, i.e. f = ψ(flevel),
using such a look-up table mechanism for instance. This
asynchronous ring was modeled in Matlab/Simulink and tested
under the two specified voltage levels of the DC-DC converter
for 45nm CMOS technology. In fact, only some limited
frequency values are possible, that is flevel = flevel n with
n ∈ {1, 2, . . . , N} and fn > fn+1, and switching from one
frequency to another can be considered as instantaneous.

1) Self-timed rings: The C-element is the basic element in
asynchronous circuit design, introduced by D. E. Muller [26].
The C-elements set their output to the input values if their
inputs are equal and hold their output otherwise. In Fig. 8(a),

Fig. 7. Behavioral variation of the frequency controller with respect to the
input voltage values.

a possible CMOS implementation is showed where the initial-
ization circuit is omitted. Each stage of a STR is composed
of a C-element and an inverter connected to one of its inputs.
The input which is connected to the previous stage is marked
F (Forward) and the input which is connected to the following
stage is marked R (Reverse), C denotes the output of the stage,
as shown in Fig. 8(b).

(a) Muller C-element.

(b) Self-timed ring.

Fig. 8. Representation of a possible CMOS implementation of a self-timed
ring, whose each stage is composed of a C-element and an inverter.

The behavior of the STR is mainly based on the tokens “T”
and bubbles “B” propagation rule. Stagei contains a token if
its output Ci is not equal to the output Ci+1 of Stagei+1.
On the other hand, Stagei contains a bubble if its output
Ci is equal to the output Ci+1 of Stagei+1. The number
of tokens and bubbles will be respectively denoted NT and
NB , with NT + NB = N , where N is the number of the
ring stages. For keeping the ring oscillating, NT must be an
even number. The reader can think about this as the duality
of designing the inverter ring by odd number of stages. Each
stage of the STR contains either a token or a bubble. If a token
is present in a Stagei, it will propagate to Stagei+1 if and
only if Stagei+1 contains a bubble. The bubble of Stagei+1

will move backward to Stagei. This implies a transition

MANUSCRIPT SUBMITTED TO CIRCUITS AND SYSTEMS I: REGULAR PAPER, ON DECEMBER 1, 2011 7

on Stagei+1 output. For instance, hereafter is depicted the
token/bubble movements in a five stage STR which contains
four tokens and one bubble.

Example: TTBTT (01001) ⇒ TBTTT (01101) ⇒ BTTTT
(00101) ⇒ TTTTB (10101) ⇒ TTTBT (10100) ⇒ TTBTT
(01001)

2) Programmable self-timed rings: The oscillation fre-
quency in STRs depends on the initialization (number of
tokens and bubbles and hence the corresponding number of
stages). The oscillation frequency in a self-timed ring can be
approximated according to the number of tokens and bubbles
by the formula from [27], which is

Fosc STR =
1

2D(R+ 1)

(D,R) =
{

(Drr, NT/NB) if Dff/Drr ≥ NT/NB

(Dff , NB/NT) if Dff/Drr < NT/NB

where Dff is the static forward propagation delay from input
F to output C and Drr is the static reverse propagation delay
from input R to output C.

Programmability can be simply introduced to STRs by
controlling the tokens/bubbles ratio and the number of STR
stages. Programmable Self-Timed Ring (PSTR) was presented
for the first time in [25]. It uses STR stages based on Muller
gates which have a set/reset control to dynamically insert
tokens and bubbles into each STR stage. Moreover, to be able
to change the number of stages, a multiplexer is placed after
each stage. The idea presented in [25] was also extended to
have a fully Programmable/Stoppable Oscillator (PSO) based
on the PSTR. Look-up tables loaded with the initialization
token control word (i.e. to control NT/NB), and the stage
control word (i.e. to control N) was used to program the PSTR
with a chosen set of frequencies.

3) PSTR programmability applied to MIPS R2000:
Presently, the variability is captured in the design by using
simulation corners, which correspond to the values of certain
process parameters that deviate by a certain ratio from their
typical value. In the STMicroelectronics 45nm CMOS tech-
nology, three PVT (Process, Voltage, and Temperature) corners
are available, denoted Best, Nominal and Worst. All standard
logic cells were characterized at each of these three corners.
So, we use Synopsis Design Vision tool to implement a GALS-
NoC island based on a MIPS-R2000 using STMicroelectronics
45nm CMOS libraries in order to test its behavior at each of
the previously specified PVT corners. Since, our main goal is
to define the optimal operating clock frequency needed by the
processing load that compensates for the propagation delay
variations due to the process variability impact. Therefore,
the critical path delay of the synthesized MIPS R2000 with
respect to the supply voltage is analyzed at the three different
PVT corners. According to the STMicroelectronics 45nm
libraries, we choose Vlow = 0.95 volts and Vhigh = 1.1 volts.
Consequently, the optimal clock frequency needed by the
MIPS R2000 at the specified two voltage levels with the three
different process variability corners are defined as shown in
Table I.

In order to adapt the generated clock frequency with respect
to the current located process variability impact and to the

TABLE I
MIPS R2000 OPTIMAL CLOCK FREQUENCIES REQUIRED TO COMPENSATE

FOR THE PROCESS VARIABILITY IMPACT ON THE 45 nm CMOS
TECHNOLOGY.

Voltage level Clock frequency (MHz)
(V) for different process variability conditions

Worst Nominal Best
0.95 60 75 85
1.1 95 115 145

processed workload, activity sensors are required. As already
explained in section I, they play a critical role in DVFS
systems and must be carefully selected. The period of the
reference clock is crucial since it determines the accuracy
of the calculated average speed. Moreover, it determines the
system speed response. In fact, the speed sensor integrates
also a register to memorize the computational speed on a
predefined period and determines the average speed on each
rising-edge of the reference clock (i.e. RST signal in Fig. 6).
If this period is short, the system will be fast but the calculated
average speed will not be accurate. On the opposite, a long
period leads to a slow system but to a more accurate speed.
Therefore, according to the set of clock frequencies available
for the MIPS R2000, the reference clock frequency was chosen
to be 2 MHz, in order to count a considerable amount of
instructions with a proper system response. To conclude, the
computational speed is now applied in terms of number of
instructions executed per 500ns to the digital controller.

Whereas three defined process variability corners are de-
fined in the 45nm CMOS libraries provided by STMicro-
electronics, the contents of the PSO code memory presented
in [25] are split into three main pages. Based upon the
activity monitor output, the corresponding page will be se-
lected. Each page contains a set of programming codes that
generates the suitable clock frequencies for the MIPS R2000
which compensate for the delay variation due to the process
variability effects. In each programming code set, we have
one code corresponding to the clock frequency Fhigh at the
high voltage Vhigh, and two other codes corresponding to the
clock frequencies Flow1 and Flow2 at the low voltage Vlow (a
discussion on the number of frequency levels to use follows in
subsection II-C). Consequently, our programmable oscillator
can be simply represented by the block diagram shown in
Fig. 9. Note that FC is the new frequency code which is sent
by the digital controller with the activity monitor evaluation of
the process variability to the PSO. CF is the change frequency
pulse that indicates the presence of a new frequency code and
PC is the pause clock pulse to stop the oscillator, refer to [25].
PCW is the PSTR programming code word that specifies the
ring initialization and its corresponding number of stages.

C. Control of the energy-performance tradeoff with strong
process variability robustness

The digital controller introduced in Fig. 5 is upstream from
the Vdd-hopping and the asynchronous ring since it calculates
the voltage and frequency level values that have to be sent
to these actuators in order to minimize the energy consump-
tion while guaranteeing good computational performance. The

MANUSCRIPT SUBMITTED TO CIRCUITS AND SYSTEMS I: REGULAR PAPER, ON DECEMBER 1, 2011 8

Fig. 9. Memory mapping of the programmable oscillator. It selects the PSTR
programming code to apply in function of a given frequency level calculated
by the digital controller.

resulting system architecture from a control point of view
is given in Fig. 10, where the device denotes the electronic
system to control (a processor or a computational node for
example, or the MIPS R2000 in the present case). A dynamic
scaling of the supply power – and therefore the energy
consumption – is possible introducing a closed-loop controller
which monitors the activity of the device (its computational
speed ω in number of instructions per second) in order to adapt
the control variables with respect to a given computational
load ref to treat. Finally, the model of the whole controlled
system (the device and the two actuators) can be approximated
by an affine function [28], that is

ω = σfVdd (2)

where σ is an unknown parameter which, in fact, can be
identified but highly varies with temperature and location on
the chip (variability). Nevertheless, the dynamics introduced
by the control law will make possible to control the system
without any information on this parameter.

ω

ω

ref

flevel

Vlevel
Vdd

fclk

System

Controller
Vdd

hopping

Oscillator Device

Vdd

Fig. 10. Representation of the system architecture to control the energy-
performance tradeoff. The controller calculates the control variables (voltage
level Vlevel and frequency level flevel) from the error between the measured
computational speed ω and a given setpoint ref , and sends them to both
actuators (the Vdd-hopping and the ring oscillator respectively).

Actually, the control of the energy-performance tradeoff in
a voltage scalable device consists in minimizing the energy
consumption (reducing as much as possible the supply voltage)
while ensuring some good computational performance (fitting
the tasks with their deadline). This is why we propose to
dynamically calculate an energy-efficient computational speed
setpoint that the system will then have to track. This setpoint
is based on some information provided by a higher level (the
operating system for example) for each task Ti to treat, that
are the computational load – i.e. the number of instructions

Ωi to execute – and the deadline ∆i. Moreover, let Λi denote
the laxity, that is the remaining available time to complete a
given task. Note that these parameters can change during the
running time of a task (if the OS decides to update them for
instance), this is why they are time-dependant.

The presence of deadline and time horizon to compute
tasks naturally leads to predictive control. Predictive control
consists in finding an open-loop control profile over some
time horizons and in applying it until the next time instant.
The control problem is then reconsidered using the new state
variables and a new control profile is generated. This finally
yields a closed-loop control and the stability relies in the way
the open-loop control is chosen. The horizon can be constant,
infinite or less classically contractive as in the present paper.
The key point is the choice of the open-loop strategy and
its computational cost. Indeed, if predictive control is known
to be a robust approach, it is also often associated to high
computational cost which is not acceptable in the present
case. Whereas the classical strategy consists in minimizing
some cost functions, the strategy adopted here is called fast
predictive control and consists in taking advantage of the
structure of the dynamical system to fasten the finding of
the open-loop control [29]. The simplicity of system (2)
considered here is very suitable for such strategies. The main
idea of the predictive strategy is firstly intuitively explained
and its formal expression is given in the sequel.

1) Speed setpoint building: Let ωmax denote the maximal
computational speed when the system is running at high
voltage, that is ωmax = σFVhighmaxVhigh from (2), where
FVhighmax is the maximal frequency in the available range
at Vhigh. Respectively, let ωmax denote the maximal possible
speed at low voltage, that is ωmax = σFVlowmaxVlow, where
FVlowmax is the maximal frequency at Vlow. It follows that
the high voltage level is necessary as soon as the average
speed setpoint of a task is higher than ωmax in order to
not miss a given deadline. An intuitive method consists in
building the average speed setpoint of each task – that is the
ratio Ωi/∆i – in such a way that the number of instructions
to do is performed at the end of the task. This is depicted in
Fig. 11(a). However, this method is not energy-efficient since
a whole task can be computed with the penalizing high supply
voltage, such as highlighted by tVhigh

for task T2. Moreover,
this technique implies to have an infinite number of voltage
levels. Nevertheless, a suggested solution consists in splitting
the tasks into two parts. This is represented in Fig. 11(b).
Firstly, the chip begins to run at high voltage – if required –
with the maximal available frequency in order to achieve the
maximal possible speed ωmax to go faster than the average
speed, such as for T2 from time t2 to k. Then, the task could be
finished at low voltage – which, consequently, highly reduces
the energy consumption – with a speed lower than ωmax. A
key point in this strategy is that the switching time to go from
Vhigh to Vlow has to be suitably calculated in order to ensure
some good computational performance. However, k is not a
priori known and, therefore, a predictive control law has to be
used to dynamically calculate this switching time.

In fact, the lower is the supply voltage the better will be
reduced the energy consumption since the supply voltage is the

MANUSCRIPT SUBMITTED TO CIRCUITS AND SYSTEMS I: REGULAR PAPER, ON DECEMBER 1, 2011 9

average computational speed setpoint ωsp(t)

tVhigh

voltage

time

Ω2
∆2

Ω1
∆1

Ω3
∆3 T3

T2

T1

ωmax

ωmax

t2 t3 timet1

Vhigh

Vlow

t2 t3t1

(a) Intuitive average speed setpoint.

energy-efficient computational speed setpoint ωsp(t)

time

voltage

Vhigh

Vlow

time

tVhigh

t2 t3

Ω2
∆2

Ω1
∆1

Ω3
∆3 T3

T2

T1

ωmax

ωmax

t2 t3kt1

t1 k

(b) Energy-efficient speed setpoint.

Fig. 11. Different computational speed setpoint buildings can be used to
save energy consumption while ensuring some good performance.

penalizing parameter in DVFS. For this reason, we propose
to have only one possible frequency Fhigh (i.e. FVhighmax)
when running at Vhigh and so minimize the penalizing high
voltage running time. On the other hand, several frequency
levels Flown

are possible at the low voltage level Vlow because,
as the energy consumption could not be reduced anymore –
since no lower voltage level exists – the degree of freedom on
the frequency will allow to fit the task with its deadline (as
much as this is possible). In the following, we propose to use
two frequency levels at Vlow and we decide that the maximal
one is Flow1 = FVlowmax. Whereas the maximal levels Fhigh
and Flow1 are determined from the optimal frequency values
in Table I (regarding the variability of the chip), one could
note that the second frequency level at low voltage, i.e. Flow2 ,
is equal to Flow1/2, which enables to have 3 dB reduction in
the power consumption. Note that Flow2 is included to add
more power saving opportunities to our DVFS once possible.

2) Fast predictive control: Actually, the predictive issue
can be formulated as an optimization problem. For each
task Ti to treat, what is the computational speed setpoint
which minimizes the high voltage running time tVhigh

while
guaranteeing that the executed instruction number is equal to
the number of instructions to do, that is

min tVhigh
s.t.

∫

∆i(t)

ω(t) dt = Ωi(t)

where
∫
ωdt corresponds to the executed number of instruc-

tions for the current task. This optimal criteria allows to solve
the predictive problem but is too complex to be implemented in
an integrated controller with low resources, as in the present
case. Nevertheless, the closed-loop solution yields an easier
and faster algorithm since, in fact, one simply needs to know
i) the computational load to treat and ii) how much time is
available to do it. The remaining time before the end of the
task is hence necessary, this is why the laxity Λi will be
used next instead of the deadline ∆i. The speed required to
fit the task with its deadline regarding what it has already
been executed – afterwards denoted the predicted speed δ –
is dynamically calculated at each sampling instant as follows

δ(tk+1) =
Ωi(tk)−

∑tk−τi

τi
ω(tk)

Λi(tk)
(3)

where τi is the beginning of the task Ti, tk and tk+1 are the
current and next sampling time respectively. The implementa-
tion of the previous equation then becomes

Ω(tk) = Ω(tk−1) + Tsω(tk)

δ(tk+1) =
Ωi(tk)− Ω(tk)

Λi(tk)
(4)

where Ω is the integration of the computational speed ω, Ts
is the sampling period and tk−1 is the last sampling time.
Furthermore, a conditional instruction is added to be coherent
with (3). Indeed, as the real-time speed is integrated on the
running time of each task, the variable Ω has to be reset when
a task is executed, which means in the last sampling time
before its deadline. More precisely, it is not set to zero to
prevent the case when the task is not completely executed at
its deadline but it is adjusted with the difference between what
it has already been done and what it was required to do, such
that

Ω(tk) = Ω(tk)− Ωi(tk) if Λi(tk) ≤ Ts

The energy-efficient speed setpoint ωsp is then directly de-
duced from the value of the predicted speed, and so are the
voltage and frequency levels. Indeed, the system has to run
at Vhigh and Fhigh when the required setpoint is ωmax, else
the low voltage will be enough to finish the task. In fact the
computational speed setpoint is not really required since the
control variables are easily deduced, but we notice it anyway
(for a well understanding) in the control decisions, that are

∣∣∣∣∣∣

ωsp(tk+1) = ωmax

Vlevel(tk+1) = Vhigh
flevel(tk+1) = fhigh

if δ(tk+1) > ωmax

∣∣∣∣∣∣

ωsp(tk+1) = ωmax
Vlevel(tk+1) = Vlow
flevel(tk+1) = flown

otherwise

where a frequency control strategy is needed to determine the
frequency level flown

. However, the principle is not detailed
here since it remains the same than for the voltage decision.
Also, one could note that the division in (4) could be removed
for a practical implementation, simply replacing the condition
δ(tk+1) > ωmax in the previous control decision by Ωi(tk)−

MANUSCRIPT SUBMITTED TO CIRCUITS AND SYSTEMS I: REGULAR PAPER, ON DECEMBER 1, 2011 10

Ω(tk) > ωmax ·Λi(tk). At the end, the algorithm of the digital
controller is hence quite easy to implement in a circuit with
limited resources.

The performance are guaranteed because the execution of a
task always starts with the penalizing high voltage level – by
construction of the predictive control law – and the low one
will not be applied while the remaining computational load is
important (higher than the maximal possible speed at Vlow).
As a result, it is not possible to make better. Furthermore,
even if the voltage/frequency levels discretely vary, the speed
setpoint to track is always higher or equal than required by
construction. On the other hand, the Lyapunov stability is
based on an elementary physical constatation: if the total
energy of the system tends to continuously decline, then this
system is stable since it is going to an equilibrium state.
Let V = xTPx be a candidate Lyapunov function, with
P positive definite and x(tk) = Ωi(tk) − Ω(tk). This latter
expression comes from (4), where x refers to the remaining
load in the contractive time horizon of the task. Therefore, the
Lyapunov function intuitively decreases – because the speed
of the processor can only be positive – and so is ensured the
stability of a task.

3) Estimation of the maximal speeds: The maximal speeds
ωmax and ωmax might be obtained from the equation of the
system model (2). They are proportional to the voltage and the
maximal frequency for each voltage level. However, even if the
proportional gain is inherent to the device it could vary with
temperature or location (variability), and yet, the control law
has to be robust to such an uncertainty. Furthermore, the value
of the different parameters are not known. For these reasons,
we propose to estimate the maximal speeds. Let ω̃m denote the
estimated speeds where m denotes the different power modes.
A solution consists in measuring the system speed for each
couple voltage/frequency levels. Moreover, we propose to use
a weighted average of the measured speed in order to filter
the (possible) fluctuations of the measurement, which yields

if
{
Vlevel(tk−1) = Vm
flevel(tk−1) = fm

ω̃m(tk) = (1− ρ)ω̃m(tk−1) + ρω(tk)

where 0 ≤ ρ ≤ 1 is the weighted value. Furthermore, the
proposed estimation of the computational speeds – which
leads to a control law without any information on the system
parameters – yields a robust strategy which will self-adapt
whenever the performance of the controlled chip. This is very
important for process variability (see [28] for further details
on how to bound ρ to satisfy such a robustness).

4) Clock-gating principle: On top of the proposed strategy,
a last control decision is also possible “deactivating” the clock
of the device. This is called the clock-gating principle, as
explained in introduction. In this case, the processor runs with
the low voltage and a null frequency. This behavior is useful
when a task is performed before its deadline to pause the clock
until the beginning of the following one. However, in order to
minimize the using of the clock-gating principle, we decide
to make available this principle only if the beginning of the
following task is not too close, that is when Λi(tk) > Λmin,
where Λmin is a tunable parameter.

5) Coarse-grain simulation results: Some initial simulation
results are realized in Matlab/Simulink in order to evaluate the
efficiency of the proposed digital controller. A scenario with
three tasks to execute is proposed: the first task starts with
4 instructions to do in 0.5µs, then a 65 instruction task has
to be executed in 2.5µs and the last one has to compute 10
instructions in 1µs. These data are considered as provided by
the OS. Fig. 12(a) shows the simulation results of the system
with two voltage levels and three frequency levels. The top plot
shows the average speed setpoint of each task (for guideline),
the predicted speed (for guideline) and the measured computa-
tional speed, while the bottom plot shows the supply voltage.
The energy consumption is calculated in order to have an idea
of the achieved reduction. The control strategy is compared
with a system without DVFS mechanism – where the supply
voltage is fixed to the most penalizing level, i.e. Vdd = Vhigh,
and so is the clock frequency fclk = Fhigh – and without DVS
mechanism where only the frequency can be scaled. Fig. 12(a)
shows that with the two possible voltage levels the system
runs during about 80 % of the simulation time at low voltage.
As a result, a reduction of about 30 % and 65 % of the energy
consumption is achieved (in comparison with a system without
DVS and DVFS mechanism respectively) with the three-task
test bench proposed. One could refer to [28] for further details.

As the proposed control strategy does not use any infor-
mation on the system parameters, the controller adapts itself
with these uncertainties. Fig. 12(b) shows how the system is
still working for 20 % of process variability effects, that is
when the real performance of the circuit are 20 % less than
expected. One could see that the estimation of the maximal
computational speed allows the system to still work, even if
the processing node does not work as expected. Of course,
in order to compensate a lower computational speed induced
by the process variability, the system will run a longer time
at the penalizing supply voltage. Note that the robustness is
limited by the maximal possible activity of the processing node
anyway. Indeed, if the chip is not enough fast to compute
the task while running at the maximal speed (the chip runs
with the highest voltage and highest frequency), the controller
would not be able to do anything to solve this failure. The
only way is to migrate the task allocated to this processing
node to a higher performance one, and this has to be done by
the operating system. More fine-grain simulation results are
shown in section III for the whole MIPS-R2000 architecture
with the 45nm CMOS parameter variations.

III. SIMULATION RESULTS

The design presented in section II is implemented using
STMicroelectronics 45nm CMOS standard libraries for the
physical implementation [30]. The digital controller main
principle of operation is based on implementing the energy-
efficient control algorithm, described in subsection II-C. In
order to evaluate the efficiency of the proposed control strategy
under different process variability conditions, a post layout
simulation with Modelsim has been performed. A scenario
with three tasks is proposed: the first task starts with 100
instructions to do in 2µs, then a 340 instruction task has

MANUSCRIPT SUBMITTED TO CIRCUITS AND SYSTEMS I: REGULAR PAPER, ON DECEMBER 1, 2011 11

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
predicted speed
measured speed

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Fully discrete control scheme
2 voltage levels and 3 frequency levels −− using of the clock gating

E = 1.14326 eJ

C = 19302 OPs

(a) Simulation results with three frequency levels, one for the high voltage
level and two for the low one, and the clock-gating principle.

C
om

pu
ta

tio
na

l
sp

ee
ds

[x
10

7 IP
S

]

0

1

2

3

4
average speed setpoint
measured speed (0% of variabiity)
measured speed (20% of variabiity)

V
ol

ta
ge

[V
]

Time [x10−6 s]

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1.1
voltage

Robustness to process variabilty (20%)
2 voltage levels and 3 frequency levels −− using of the clock gating

(b) Simulation results to test the robustness of the controller with 20% of
process variability.

Fig. 12. Simulation results of the energy-performance tradeoff control in
Matlab/Simulink.

to be executed in 4µs, and the last one has to compute
160 instructions in 3µs. These data are supposed to be
provided by the OS. The simulation results of the system
under different process variabilities are shown in Fig. 13. The
different available frequencies for each case were summarized
in Table I.

a) Nominal process variability results are shown in
Fig. 13(a). The used set of clock frequencies are Fhigh =
115 MHz, Flow1 = 75 MHz and Flow2 = 37 MHz. Task 1 was
completed successfully with both Vlevel and Flevel equal to the
low level, all over the allocated time for the task. For task 2,
the digital controller speeds up the MIPS R2000 in order to be
able to complete the task at the proposed deadline, by selecting
the maximal supply voltage Vhigh and clock frequency Fhigh.
Once the digital controller has detected that task 2 can be
completed with relaxed conditions, the system switches back
to Vlow. Therefore after running the MIPS R2000 for 1.52µs
at 1.1V, it is now supplied with 0.95V. For task 3, the digital
controller keeps supplying the MIPS R2000 with Vlow and
Flow2 all over task 3 execution time till its deadline.

b) In Fig. 13(b), the simulation results of the system under
worst process variability are depicted. In this case, the used
set of clock frequencies are now Fhigh = 95 MHz, Flow1 =
60 MHz and Flow2 = 30 MHz. Therefore, the programmable
oscillator now generates the proper set of clock frequencies
that has to be used with the reduced performance of the MIPS
R2000 (i.e. increased critical path delay), under worst process
variability effect. As a result, task 2 runs for 3.02µs at Vhigh,
which is twice longer than processing under nominal process
viability. However, it then switches to Vlow where it is able to
complete the task successfully.

c) The same three tasks workload is simulated again for the
MIPS R2000 under best process variability. The simulation
results are shown in Fig. 13(c). Now, the used set of clock
frequencies generated by the programmable oscillator are
Fhigh = 145 MHz, Flow1 = 85 MHz and Flow2 = 43 MHz.
These clock frequencies correspond to the proper set that can

be used under best process variability. When using these fre-
quency configurations, the MIPS R2000 is able to successfully
complete all the three tasks at Vlow, which adds much more
power/energy saving opportunities than under the nominal
case. Therefore, our proposed DVFS control architecture is
able to not only compensate for the delay variations with
different process variability impacts, but also exploit the en-
hanced response of the system under best variability conditions
to gain more in terms of energy savings.

To evaluate the proposed energy-efficient DVFS control
for GALS-NoC architecture, the implemented chip is char-
acterized for its average dynamic power, energy consumption,
area overhead and robustness to process variability. Table II
shows a comparison between the proposed energy-efficient
DVFS control using dynamic set of clock frequencies with an
intuitive average based DVFS control using fixed set of clock
frequencies. The values are given with respect to a system
without DVFS. From these results, it is clear that the DVFS
control with the energy-efficient control under nominal process
variability is 1.5 more power and energy saving efficient than
the average based control. Energy-efficient DVFS control is
able to save 21.18 % of the energy consumption and 51.42 %
of the average dynamic power consumed by a system without
DVFS. Our proposed energy-efficient DVFS control has the
ability to adapt the set of clock frequencies generated by the
PSO with respect to the process variability impact. Therefore
the energy-efficient DVFS control was able to exploit this
enhanced performance of the system (i.e. reduced critical path
delay) to save more energy consumption (i.e. 25.41 % under
best process variability impact). However, the average based
DVFS control saves the same amount of energy regardless of
the reduced process variability impact. Under worst process
variability conditions, the used set of clock frequencies for
a system without DVFS (i.e. 115 MHz) and even that for a
system with average based DVFS control (i.e. 115 MHz at
Vhigh and 75 MHz at Vlow) violates the MIPS R2000 critical
path delay. As a result, the MIPS R2000 will have erroneous
output results. Therefore this GALS-NoC processing node has
to be neglected and its allocated tasks have to be distributed
over other high performance processing nodes. However, with
the proposed DVFS control architecture, the MIPS R2000 was
still able to complete the allocated tasks successfully by using
the proper set of maximal clock frequencies (i.e. 95 MHz
at Vhigh and 60 MHz at Vlow). This drastically relaxes the
fabrication constraints and helps the yield enhancement.

The whole DVFS control system including the effect of
different parts depicted in Fig. 5 is also evaluated, as shown
in Table III. The values are given for a GALS-NoC voltage-
frequency island with a single processing element (i.e. MIPS
R2000) and compared with another one with eight process-
ing elements. Under nominal process variability, the average
dynamic power and energy saving values of the whole DVFS
control system are smaller than but not too far from those
presented in Table II. On the other hand, we have a single
DVFS control system for all the voltage-frequency islands
in a GALS-NoC system. Therefore, in a voltage-frequency
island with multiprocessing elements, the efficacy of the DVFS
control system will be more effective in saving power/energy

MANUSCRIPT SUBMITTED TO CIRCUITS AND SYSTEMS I: REGULAR PAPER, ON DECEMBER 1, 2011 12

TABLE II
A COMPARISON BETWEEN ENERGY-EFFICIENT AND NORMAL AVERAGE

BASED DVFS CONTROL WITH RESPECT TO A SYSTEM WITHOUT DVFS AT
DIFFERENT PROCESS VARIABILITY CORNERS.

Process variability
impact

Energy-efficient control
Average dynamic

power savings Energy savings

Best 51.39 % 25.41 %
Nominal 51.42 % 21.18 %

Achieve the requested performance
with a reduced set of clock frequencies

(Yield enhancement)
Worst

Process variability
impact

Average based control
Average dynamic

power savings Energy savings

Best 36.78 % 14.12 %Nominal
Used set of nominal clock frequencies
violates the MIPS R2000 critical path

(Erroneous data outputs)
Worst

consumption, see Table III. Moreover, the area overhead of
the extra DVFS hardware will be approximately divided by
the number of processing elements per a GALS island. For
example, the area overhead in a processing island with eight
processors is 4.15 %.

TABLE III
PERFORMANCE ANALYSIS OF THE WHOLE ENERGY-EFFICIENT

GALS-NOC DVFS CONTROL SYSTEM UNDER NOMINAL PROCESS
VARIABILITY IMPACT.

No. of processing
elements per

GALS-NoC island

Whole energy-efficient control
Average dynamic

power savings
Energy
savings

Area
overhead

1 45.62 % 14.86 % 33.21 %
8 50.7 % 19.92 % 4.15 %

CONCLUSIONS

In this paper a survey of different problems facing designers
over the nanometric era was first presented. Some solutions
were suggested in order to reduce the impact of process
variability, improve the yield enhancement and decrease the
leakage power consumption. A GALS system was taken as an
issue with the application of DVFS technique. Also, a closed-
loop scheme clearly appears as necessary in such systems and
an architecture was hence proposed in this way. The idea
to use integrated sensors embedded in each clock domain
is presented as one of the promising solutions to reduce
the process variability impact. Regarding the actuators, a
Vdd-hopping converter and a Programmable Self-Timed Ring
(PSTR) oscillator provide discrete supply voltage and clock
frequency levels respectively. A control algorithm has also
been proposed, based on a fast predictive control law. The
proposed feedback controller especially adapts more smartly
voltages and frequencies (energy-performance tradeoff) with
strong process variability. Finally, a practical validation of
the proposed ideas was realized on the MIPS R2000 mi-
croprocessor over STMicroelectronics 45nm technology to
get more information about the power consumption and area
overhead of each unit in the power management architecture.
Global results for a multicore system was also presented.

Through this example, we hence demonstrated that a dedicated
feedback system associated to the GALS paradigm and some
DVFS techniques, with correct sensors and actuators, is able
to achieve better robustness against process variability.

ACKNOWLEDGMENTS

This research has been supported by the ARAVIS project,
a Minalogic project gathering STMicroelectronics with aca-
demic partners, namely TIMA and CEA-LETI for micro-
electronics and INRIA for operating system and control. The
aim of the project is to overcome the barrier of sub-scale
technologies (45nm and above).

REFERENCES

[1] B.F. Romanescu, M.E. Bauer, D.J. Sorin, and S Ozev. Reducing
the impact of process variability with prefetching and criticality-based
resource allocation. In Proceedings of the 16th International Conference
on Parallel Architecture and Compilation Techniques, 2007.

[2] B. Pangrle and K. Shekhar. Leakage power at 90nm and below. In EE
Times Asia, 2005.

[3] A. Nicoli. Achieving yield in the nanometer age. In Mentor Graphics
Corp., 2007.

[4] W. Kuzmicz, E. Piwowarska, A. Pfitzner, and D. Kasprowicz. Static
power consumption in nano-cmos circuits: Physics and modelling. In
Proceeding of the 14th International Conference Mixed Design of
Integrated Circuits and Systems, 2007.

[5] K. von Arnim, E. Borinski, P. Seegebrecht, H. Fiedler, R. Brederlow,
R. Thewes, J. Berthold, and C. Pacha. Efficiency of body biasing in
90nm CMOS for low-power digital circuits. IEEE Journal of Solid-
state Circuits, 40(7):15491556, 2005.

[6] Y.H. Lu and G. De Micheli. Comparing system-level power management
policies. IEEE Design and Test of Computers, 18:10–19, 2001.

[7] K. Flautner, D. Flynn, D. Roberts, and D.I. Patel. An energy efficient soc
with dynamic voltage scaling. In Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition, 2004.

[8] A. Varma, B. Ganesh, M. Sen, S.R. Choudhury, L. Srinivasan, and
J. Bruce. A control-theoretic approach to dynamic voltage scheduling. In
Proceedings of the International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, 2003.

[9] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynami-
cally variable voltage processors. In Proceedings of the International
Sympsonium on Low Power Electronics and Design, 1998.

[10] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage scaling
on a low-power microprocessor. In Proceedings of the 7th Annual
International Conference on Mobile Computing and Networking, 2001.

[11] K. Flautner, S. K. Reinhardt, and T. N. Mudge. Automatic performance
setting for dynamic voltage scaling. In Mobile Computing and Network-
ing, 2001.

[12] T.D. Burd and R.W. Brodersen. Processor design for portable systems.
The Journal of VLSI Signal Processing, 13(2):203–221, 1996.

[13] TD Burd, TA Pering, AJ Stratakos, and RW Brodersen. A dynamic
voltage scaled microprocessor system. IEEE Journal of Solid-State
Circuits, 35(11):1571–1580, 2000.

[14] Y. Zhu and F. Mueller. Feedback dynamic voltage scaling dvs-edf
scheduling: Correctness and pid-feedback. In Workshop on Compilers
and Operating Systems for Low Power, 2003.

[15] L. Fesquet and H. Zakaria. Controlling energy and process variability
in system-on-chips: Needs for control theory. In Proceedings of
the 3rd IEEE Multi-conference on Systems and Control - 18th IEEE
International Conference on Control Applications, 2009.

[16] D. Marculescu and E. Talpes. Energy awareness and uncertainty in
microarchitecture-level design. IEEE Micro, 25:64–76, 2005.

[17] M. Krstic, E. Grass, F.K. Gurkaynak, and P. Vivet. Globally asyn-
chronous, locally synchronous circuits: Overview and outlook. IEEE
Design and Test of Computers, 24:430–441, 2007.

[18] T. Villiger, H. Käslin, F.K. Gürkaynak, S. Oetiker, and W. Fichtner.
Self-timed ring for globally-asynchronous locally-synchronous systems.
In 9th International Symposium on Asynchronous Circuits and Systems,
2003.

[19] Carolina Albea Sánchez, Carlos Canudas de Wit, and Francisco Gordillo.
Control and stability analysis for the vdd-hopping mechanism. In
Proceedings of the IEEE Conference on Control and Applications, 2009.

MANUSCRIPT SUBMITTED TO CIRCUITS AND SYSTEMS I: REGULAR PAPER, ON DECEMBER 1, 2011 13

Fig. 13. Timing diagram of the digital controller behavior with 3 different MIPS R2000 workloads under different process variability effects: Nominal, Worst
and Best.

[20] F.R. Boyer, H.G. Epassa, and Y. Savaria. Embedded power-aware cycle
by cycle variable speed processor. IEE Proceedings of Computers and
Digital Techniques, 153(4):283 290, 2006.

[21] M. Stork. Digital building block for frequency synthesizer and fractional
phase locked loops. In Joint First Workshop on Mobile Future and
Symposium on Trends in Communications, 2003.

[22] S. Fairbanks and S. Moore. Analog micropipeline rings for high
precision timing. In Proceeding of the International Symposium on
Advanced Research in Asynchronous Circuits and Systems, 2004.

[23] V. Zebilis and C. P. Sotiriou. Controlling event spacing in self-timed
rings. In 11th IEEE International Symposium on Asynchronous Circuits
and Systems, 2005.

[24] J. Hamon, L. Fesquet, B. Miscopein, and M. Renaudin. High-level time-
accurate model for the design of self-timed ring oscillators. In 14th IEEE
International Symposium on Asynchronous Circuits and Systems, 2008.

[25] E. Yahya, O. Elissati, H. Zakaria, L. Fesquet, and M. Renaudin.
Programmable/stoppable oscillator based on self-timed rings. In 15th
IEEE International Symposium on Asynchronous Circuits and Systems,

2009.
[26] D. Muller and W. Bartky. A theory of asynchronous circuits. In

Proceedings of International Symposium on the Theory of Switching,
1959.

[27] O. Elissati, E. Yahya, L. Fesquet, and S. Rieubon. Oscillation period
and power consumption in configurable self-timed ring oscillators. In
Joint IEEE North-East Workshop on Circuits and Systems and TAISA
Conference, pages 1 – 4, 2009.

[28] S. Durand and N. Marchand. Fully discrete control scheme of the
energy-performance tradeoff in embedded electronic devices. In Pro-
ceedings of the 18th World Congress of IFAC, 2011.

[29] M. Alamir. Stabilization of Nonlinear Systems Using Receding-Horizon
Control Schemes: A Parametrized Approach for Fast Systems, volume
339. Springer-Verlag, 2006.

[30] H. Zakaria. Asynchronous Architecture for Power Efficiency and
Yield Enhancement in the Decananometric Technologies: Application
to a Multi-Core System-on-Chip. PhD thesis, University of Grenoble
(France), 2010.

